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Abstract: This express brief deals with the problem of the state variables regulation in the ball and
beam system by applying the discrete-inverse optimal control approach. The ball and beam system
model is defined by a set of four-order nonlinear differential equations that are discretized using
the forward difference method. The main advantages of using the discrete-inverse optimal control
to regulate state variables in dynamic systems are (i) the control input is an optimal signal as it
guarantees the minimum of the Hamiltonian function, (ii) the control signal makes the dynamical
system passive, and (iii) the control input ensures asymptotic stability in the sense of Lyapunov.
Numerical simulations in the MATLAB environment allow demonstrating the effectiveness and
robustness of the studied control design for state variables regulation with a wide gamma of dynamic
behaviors as a function of the assigned control gains.

Keywords: discrete-inverse optimal control; ball and beam dynamical system; asymptotic stability;
passivity-based analysis; Hamiltonian and Lagrangian functions; state variables regulation

1. Introduction

The ball and beam dynamical system is a classical and well-known nonlinear dynamical system
that attracts much attention in the control area [1]. The main challenge in this plant is to regulate all the
state variables at the origin, taking into account that it corresponds to a fourth-order dynamical system
(n = 4) with only one control input (m = 1) [2]. Additionally, the system contains strong nonlinearities
such as products between variables and trigonometric functions [3]. Analyzing the ball and beam
system from the control analysis point of view is interesting as its model can be used to understand
transportation systems, communication, or power system dynamics [4]. In the literature, the problem
of control in ball and beam systems has been addressed with linear and nonlinear techniques with some
of these are presented as follows; proportional-integral control [5], feedback of state variables [6], linear
matrix inequalities [7] exact feedback linearization [8], control Lyapunov functions [9,10], adaptive
control design [2], passivity-based control [11], fuzzy logic [12,13], and artificial neural networks [14],
among others.

The main contributions of our approach, different from previous works, can be summarized as
follows [15].
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X The application of the discrete-inverse optimal control to regulate all the state variables of the ball
and beam system guaranteeing passivity, stability, and optimality properties.

X The numerical validation via simulations by working the discrete equivalent nonlinear model of
the system without any special assumption on the open- or closed-loop dynamics.

X The robustness and effectiveness of the discrete-inverse optimal control design when parametric
variations affect the discrete dynamical model.

It is important to mention that after an exhaustive revision of the literature about the ball and
beam dynamical system modeling and control, we identify that the discrete-inverse optimal control
has not been studied in this system. This indicates that it is a clear opportunity for research that this
article tries to fill.

The remainder of this document is organized as follows. Section 2 presents the general dynamical
formulation for the ball and beam dynamical system on the continuous and discrete domains. Section 3
presents the general theory about discrete-inverse optimal control applied on nonlinear systems by
highlighting its passivity, stability, and optimality properties. Section 4 shows all the numerical
simulations and their corresponding analysis and discussion. Section 5 presents the main conclusions
derived from this research study.

2. Dynamical Model and Discretization

The ball and beam system generates a fourth-order nonlinear set of ordinary nonlinear differential
equations [2]. The main objective is to regulate all the state variables around the origin of coordinates
guaranteeing stability in closed-loop. Figure 1 illustrates the physical form of the ball and beam system.

θ
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Figure 1. Schematic representation of the ball and beam dynamical system.

In this figure the variables and parameters have the following interpretation; θ and r are the beam
angle and the ball position, respectively. Moreover, k1 is the steady-state gain; τ is the time-constant,
Lbeam is the length of the beam; and m and Jb are the mass and moment of inertia of the ball, respectively.
In addition, R is the radius of the ball, g is the acceleration due to gravity, rarm is the distance between
screw and motor gear, and Vm is the input of the system [2]. The dynamical formulation of the ball and
beam system depicted in Figure 1 is presented below.

r̈ =
mrarmgR2

Lbeam (mR2 + Jb)
sin (θ)− m

Jb
R2 + m

rθ̇2, (1a)

θ̈ = − 1
τ

θ̇ +
k1

τ
vm, (1b)
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To reach the state space representation of the dynamical model (1), let us define kbb = mrarmgR2

Lbeam(mR2+Jb)
,

h = m
Jb
R2 +m

, and [x1, x2, x3, x4]
T =

[
r, ṙ, θ, θ̇

]T , which allows finding the following fourth-order nonlinear

dynamical model,
ẋ1 = x2, (2a)

ẋ2 = kbb sin (x3)− hx1x2
4, (2b)

ẋ3 = x4, (2c)

ẋ4 = − 1
τ

x4 +
k1

τ
u, (2d)

where u = vm corresponds to the control input. Note that the equilibrium point of the dynamical
system (2) is

[
x?1 , x?2 , x?3 , x?4

]T
= [r0, 0, 0, 0]T , being r0 an arbitrary point between the extremes of the

beam; nevertheless, the unique physical solution possible is when r0 = 0, due to the gravity force in
the real system will make any other point unstable as can be seen in Figure 1.

To design the proposed controller it is needed to represent the continuous dynamical system (2)
into a discrete equivalent. For doing so, the classical forward difference is applied [16], i.e.,

ẋ = f (x) ↔ xk+1 = ∆k f (xk) + xk,

where subscript k is the current sample and ∆k represents the discretization time. If we apply the
forward difference in the set of Equations (2), the the following discrete system is reached. l

x1k+1 = ∆kx2k + x1k , (3a)

x2k+1 = ∆k

(
kbb sin

(
x3k

)
− hx1k x2

4k

)
+ x2k , (3b)

x3k+1 = ∆kx4k + x3k , (3c)

x4k+1 = ∆k

(
− 1

τ
x4k +

k1

τ
uk

)
+ x4k , (3d)

3. Inverse Optimal Control Design

In this section three main aspects of the inverse optimal control design will be explored for general
nonlinear discrete systems [15,17]. For doing so, let us define the general structure of the system under
analysis as follows [18,19].

Definition 1. A nonlinear dynamical system in the discrete domain with the form ,

xk+1 = f (xk) + g (xk) uk, (4a)

yk = h (xk) + j (xk) uk, (4b)

fulfills passivity properties, is globally asymptotically stable, and also there is a control law with the form
uk = −yk, such that a functional cost function is minimized, i.e., uk is an optimal control law. Note that in (4),
yk is the output of the system and h (xk) and j (xk) take the followings structures, ,

h (xk) = gT (xk)P f (xk) , (5a)

j (xk) =
1
2

gT (xk)Pg (xk) (5b)

being Q a symmetry positive definite matrix, i.e., P = PT � 0.
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To demonstrate each one of the properties presented in Definition 1, let us consider a candidate
Lyapunov function with a quadratic form as follows,

V (xk) =
1
2

xT
k Pxk, (6)

which is positive definite for all xk 6= 0 and zero only for xk = 0. In addition, let us define a general
form for the control input uk as follows,

uk = β (xk) + vk, (7)

where vk is the new input and β (xk) can be defined as presented below,

β (xk) = − (I + j(xk))
−1 h(xk), (8)

being I an identity matrix with appropriate dimensions.

Definition 2. The dynamical system (4) exhibits passivity properties if there is a matrix P such that the
following inequality is held.

( f (xk) + g (xk) β (xk))
T P ( f (xk) + g (xk) β (xk)) ≤ xT

k Pxk, (9)

3.1. Passivity

To demonstrate passivity properties in the the dynamical discrete system consider Lemma 1 as
presented below [20–22].

Theorem 1. The dynamical system in (4) is a feedback passive system for the output ỹk. The control input is
defined as (7), where ỹk takes the following form,

ỹk = h̃ (xk) + j (xk) vk. (10)

where
h̃ (xk) = gT (xk)P f̃ (xk) , (11a)

f̃ (xk) = f (xk) + g (xk) β (xk) (11b)

Proof. To proof the feedback passivity properties of the dynamical system (4), consider the variation
of the Lyapunov function for the current and the future states as follows,

∆V = V (xk+1)− V (xk) . (12)

Note that using (4) and (7) in (12), we have

∆V =
1
2
( f (xk) + g (xk) β (xk))

T P ( f (xk) + g (xk) β (xk))

−1
2

xT
k Pxk + ( f (xk) + g (xk) β (xk))

T Pg (xk) vk+

1
2

vT
k gT (xk)Pg (xk) vk. (13)

From (13), we can observe that

( f (xk) + g (xk) β (xk))
T Pg (xk) vk = h̃T (xk) vk, (14a)

vT
k gT (xk)Pg (xk) vk = 2vT

k jT (xk) vk. (14b)
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Now, if we consider Definition 2 and expressions in (14) to be replaced in (13), then we have

∆V ≤ ỹT
k vk, (15)

which confirms that the discrete system is passive from the output ỹk to the new input vk and the proof
about passivity is completed.

3.2. Stability

To demonstrate passivity properties the stability properties in the sense of Lyapunov for
closed-loop operation, let us consider the following Lemma.

Theorem 2. The system (4) is asymptotically stable in the sense of Lyapunov with the control input (7) if vk is
defined as

vk = −ỹk = − (I + j(xk))
−1 h̃(xk). (16)

Proof. To proof stability in the sense of Lyapunov, we can transform the dynamical system (4) with
the control input (7) as an equivalent system with the following structure

xk+1 = f̃ (xk) + g (xk)wk. (17)

Now, if we consider the difference between the current and the next step of the Lyapunov function
defined in (12), we have

∆V =
1
2
(

f̃ (xk) + g (xk)wk
)T P

(
f̃ (xk) + g (xk)wk

)
−1

2
xT

k Pxk = f̃ T (xk)Pg (xk) vk +
1
2

vT
k gT (xk)Pg (xk) vk+

1
2

(
f̃ T (xk)P f̃ (xk)− xT

k Pxk

)
. (18)

From (18), we can note that

f̃ T (xk)Pg (xk) vk +
1
2

vT
k gT (xk)Pg (xk) vk = ỹT

k vk, (19)

in addition, from Lemma 2, we know that vk = −ỹk, which implies that in conjunction with (19),
the expression (18) takes the following form

∆V =
1
2

(
f̃ T (xk)P f̃ (xk)− xT

k Pxk

)
− ||vk||2 < 0, (20)

which allows to conclude that the system (4) is globally asymptotically stable in xk = 0 as the candidate
Lyapunov function V(xk) =

1
2 xT

k Pxk is radially unbounded. This completes the proof.

3.3. Optimality

Theorem 3. The inverse control law (7) is considered optimal since it stabilizes the dynamical system as
presented in Section 3.2, and it minimizes the following functional cost

F =
∞

∑
k=0
L (xk, β (xk)), (21)
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where L (xk, β (xk)) is the LaGrangian function of the system that can be written as

L (xk, β (xk)) = l (xk) + βT (xk) β (xk) . (22)

being l (xk) defined as

l (xk) =
xT

k Pxk − f̃ T (xk)P f̃ (xk)

2
, (23)

Note that the optimal solution for the functional cost is F ? = V (x0), being it x0 the initial condition for
the dynamical system (4).

Proof. To demonstrate the control law β (xk), that is, an optimal function, let us consider the
Hamiltonian of the system as

H (xk, uk) = L (xk, β (xk)) + V (xk+1)− V (xk) , (24)

which has the global minimum as ∂H(xk ,uk)
∂uk

= 0.
To minimize this Hamiltonian function, we can rewrite (23) considering (22) as follows,

min
β(xk)

{
l (xk) + βT (xk) β (xk) + V (xk+1)− V (xk)

}
= 0. (25)

The solution of the minimization function (25) considering (23) and the variation of the candidate
Lyapunov function (12) as presented in [18], it is taken the following form,

−hT (xk) + 2βT (xk) j (xk) +(
f T (xk)− yT

k gT (xk)
)

Pg (xk) = 0, (26)

in addition, if we consider (4b) and (5), then we can simplify (27) as presented below,

βT (xk) j (xk) + hT (xk) j (xk) + βT (xk) jT (xk) j (xk) = 0. (27)

It is important to mention that the solution of (27) for β (xk) takes the following structure,

β (xk) = − (I + j (xk))
−1 h (xk) , (28)

which confirms control function initially defined in (8) as an optimal control law as it minimizes the
functional cost (21).

In order to determine the optimal value for the Lagrangian function (21), let us consider that the
interval of analysis [0, N], being N a natural number with the following result,

∞

∑
k=0
L (xk, β (xk)) = −V (xN) + V (x0) +

∞

∑
k=0
H (xk, β (xk)), (29)

In the case of the optimal control law β (xk), this is optimal if it makes zero the Hamiltonian
function H (xk, β (xk)) demonstrated in [18]; in addition, we know based on the stability properties
of the inverse optimal control that when N → ∞ the Lyapunov function V (xN) → 0 for any initial
condition x0, which implies that F ? = V (x0).

3.4. General Commentaries

In the application of the studied inverse optimal control it is worthy to mention the following.
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X To stabilize a nonlinear discrete dynamical system with the form defined in (4) it is used the
optimal control law (uk = β (xk)) guaranteeing passivity, stability, and optimallity properties.

X The application of the inverse optimal control design is subject to the fact that the dynamical
system be zero detectable, which can be expressed as presented in Definition 3.

Definition 3. A system (4) is locally zero-state observable (locally zero-state detectable) if there is a
neighborhood Z of xk = 0 ∈ Rn such that for all x0 ∈ Z

yk|uk=0 = h (φ (k, x0, 0)) = 0∀k→ xk = 0,

where φ (k, x0, 0) = f k (xk) is the trajectory of the unforced dynamics xk+1 = f (xk) with initial condition
x0. If Z = Rn, the system is zero-state observable (respectively zero-state detectable).

4. Numerical Validation

To demonstrate the effectiveness and robustness of the studied discrete-inverse optimal control
for regulation variables in the ball and beam dynamical system, we use the parametric information
reported in [2] as presented in Table 1.

Table 1. Parameter information of the ball and beam system.

Parameter Value Unity

Lbeam 42.55 cm
rarm 2.54 cm

R 1.27 cm
m 64 mg
g 9.81 m/s2

Jb 4.1290×106 kgm2

k1 1.76 rad/sv
τ 28.5 ms

With the parameters in Table 1, the coefficients kbb and h are 0.4183 and 0.7143, respectively.
The discretization time ∆k is assigned as 1× 10−3 s. To evaluate the dynamical performance of the
proposed approach, the initial condition of the state variables is 15 cm for the ball position, i.e., for x10 ,
and zero for the rest of state variables.

The parametrization of the control design is based on the structure of the P matrix, which for the
ball and beam system can take the following form,

P =


r 0 0 j1
0 r 0 j2
0 0 r j3
−j1 −j2 −j3 r

 (30)

note that P is a positive definite matrix, as it can be rewritten as P = R + J, where R is a positive
diagonal and J is skew-symmetry, for r > 0 and ji > 0.

From the structure of the P matrix, we can observe that there exist four parameters that need
to be adjusted to reach the desired dynamical performance, i.e., r and j1 to j4. Here, they are
tuned via a trial and error procedure by running multiple simulations in the MATLAB/OCTAVE
programming environments.
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4.1. Regulation of the State Variables

In this simulation we present the ability of the proposed control to regulate all the state variables
using the anti-symmetry nature of the P matrix, where the control gains were assigned as follows,
r = 10.37, j1 = 16, j2 = 20, and j3 = 5.

Figure 2 presents the numerical behavior of each one of the state variables of the ball and beam
system after its numerical simulations in MATLAB/OCTAVE software.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500 8,000
−0.200
−0.150
−0.100
−0.050

0.000
0.050
0.100
0.150
0.200

(a
)x

1 k
[m

],
x 2

k
[m

/s
] x10 = 0.15 m x20 = 0 m/s

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500 8,000
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0.000
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3 k
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x 4
k

[r
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−0.500

−0.250

0.000
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samples
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)u

k
[V

]

Figure 2. Time-domain behavior of the state variables and control input in the ball and beam system:
(a) position and and speed of the ball, (b) angular position and angular speed of the beam, and (c)
control input.

From Figure 2 we can observe the following.

X All the state variables are regulated when have passed 4000 samples, i.e., ~4 s, which implies
that the discrete-inverse optimal control fulfill the control objective when the control input (28) is
applied to the discrete equivalent system (3).

X The ball position exhibits a smooth dynamical behavior from the initial position (like a
second-order system), i.e., x10 = 15 cm, to the origin with a minimum overpass, which implies
that the selection of the control gains was appropriate. Nevertheless, this behavior can also be
improved (smoothing) if an optimization procedure over gains in P is made as recommended
in [13].

X The control input uk presented in Figure 2c reaches the zero value when all the state variables are
in the origin of coordinates, which is a natural behavior as it is a nonlinear function of all these
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variables working as a proportional controller that reduces its amplitude when the regulated
variables are near to the origin of coordinates.

It is worth mentioning that the proposed controller can regulate all the state variables for the
ball and beam system even if this system is strong nonlinear with unique control input and four
dynamical equations with a basic implementation in the discrete domain. Figure 3 provides the
MATLAB/OCTAVE code implementation that generates all the dynamical behaviors reported in
Figure 2.

1 %% BALL AND BEAM SYSTEM . Data from :
2 % Koo , M. S . ; Choi , H. L . ; Lim , J . T .
3 % A d a p t i v e n o n l i n e a r c o n t r o l o f a b a l l and beam s y s t e m u s i n g t h e

10 %% Number o f samples and v e c t o r s ’ i n i t i a l i z a t i o n
11 N = 10000 ; % Samples
12 x1 = z e r o s ( 1 ,N) ; x2 = z e r o s ( 1 ,N) ; x3 = z e r o s ( 1 ,N) ;
13 x4 = z e r o s ( 1 ,N) ; u = z e r o s ( 1 ,N) ;
14 x1 ( 1 ) = −0 .15 ; % I n i t i a l c o n d i t i o n o f t h e b a l l p o s i t i o n [cm]
15 Ts = 1e −3; % D i s r e t i z a t i o n t i m e
16 % C o n t r o l m a t r i x
17 P = 100∗ [1 0 0 −0 .160 ;
18 0 1 0 −0.200
19 0 0 1 −0.050
20 0 . 1 6 0 . 2 0 0 .050 0 . 1 0 3 7 ] ;
21 % Run s i m u l a t i o n
22 f o r k = 2 :N
23 % C o n t r o l ga in c a l c u l a t i o n
24 fxk = [ Ts∗x2 ( k−1) + x1 ( k−1) ;
25 Ts ∗ ( kbb∗ s i n ( x3 ( k−1) ) − H∗x1 ( k−1) ∗ ( x4 ( k−1) ) ˆ 2 ) + x2 ( k−1) ;
26 Ts∗x4 ( k−1) + x3 ( k−1) ;
27 Ts ∗ ( 1 / t a u ) ∗x4 ( k−1) + x4 ( k−1) ] ;
28 gxk = [ 0 ; 0 ; 0 ; Ts ∗ ( k1 / t a u ) ] ;
29 hxk = gxk ’∗P∗ fxk ;
30 j x k = ( 1 / 2 ) ∗gxk ’∗P∗gxk ;
31 u ( k−1) = − inv (1 + j x k ) ∗hxk ;
32 % D i s c r e t e s y s t e m
33 x1 ( k ) = Ts∗x2 ( k−1) + x1 ( k−1) ;
34 x2 ( k ) = Ts ∗ ( kbb∗ s i n ( x3 ( k−1) ) − H∗x1 ( k−1) ∗ ( x4 ( k−1) ) ˆ 2 ) + x2 ( k−1) ;
35 x3 ( k ) = Ts∗x4 ( k−1) + x3 ( k−1) ;
36 x4 ( k ) = Ts ∗ ( 1 / t a u ) ∗x4 ( k−1) + x4 ( k−1) + Ts ∗ ( k1 / t a u ) ∗u ( k−1) ;
37 end
38 % V i s u a l i z e t h e o u t p u t
39 s t a i r s ( 1 : N, x1 , ’ LineWidth ’ , 1 . 5 ) ;
40 hold on

1

c e n t r i f u g a l f o r c e term .
4 %% PARAMETERS
5 Lbeam = 0 . 4 2 5 5 ; rarm = 0 . 0 2 5 4 ;
6 R = 0 . 0 1 2 7 ; m = 0 . 0 6 4 ; g = 9 . 8 1 ;
7 Jb = 4 .1290 e −6; k1 = 1 . 7 6 ; t a u = 0 . 0 2 8 5 ;
8 kbb = (m∗ rarm ∗g∗R ˆ 2 ) / ( Lbeam ∗ (m∗Rˆ2 + Jb ) ) ;
9 H = m / ( Jb /Rˆ2 + m) ;

Figure 3. MATLAB/OCTAVE implementation of the inverse optimal controller for the ball and
beam system

Note that the main idea of providing the MATLAB/OCTAVE code in Figure 3 is the possibility of
using it for possible comparisons in future works by engineering students and researches related to
nonlinear control areas.

4.2. Dynamical Performance for Different Control Gains

This subsection explores the effect that has the variations in the control gains in the matrix P
regarding the dynamical performance of the ball position. Figure 4 presents some dynamical outputs
of the ball position for variations in the control gain j3. These variations begin with j3 = 4 and ends
with j3 = 6.
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0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500 8,000
−0.200

−0.150

−0.100

−0.050

0.000

0.050
1 k

[m
]

x10 = 0.15 m j3 = 4.0 j3 = 4.5
j3 = 5.0 j3 = 5.5 j3 = 6.0

Figure 4. Dynamical behavior of the ball position for different values of the gain j3.

The results in Figure 4 demonstrate that the dynamical behavior of the ball position is strongly
related to the control gain j3, as values of approximately 4 produce higher oscillations in its position
that vanish after 6500 samples, i.e., 6.5 s approximately. When this gain increases until 6, the system
has low oscillations, and the settling time is ~4.5 s.

It is important to point out that similar behaviors on the ball position can be reached if r or j2
are also modified because, as aforementioned, the control input (28) is a nonlinear function of the
state variables, which implies that these allow governing the closed-loop behavior of the ball and
beam system.

4.3. Effect of the Parameter Variations

To evaluate the ability of the proposed discrete-inverse optimal control to deal with parametric
uncertainties, we consider that parameters h and kbb have a 20 % of error in their calculations.
This implies that in the dynamical model, these parameters are different from the user to design the
controller. Figure 5 presents the dynamical performance of the ball position for different combinations
of the parameters h and kbb.

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500 8,000
−0.200

−0.150

−0.100

−0.050

0.000

0.050

x 1
k

[m
]

x10 = 0.15 m kbb = 80% and h = 80%
kbb = 100% and h = 80% kbb = 120% and h = 80%
kbb = 80% and h = 100% kbb = 100% and h = 100%
kbb = 120% and h = 100% kbb = 80% and h = 120%
kbb = 100% and h = 120% kbb = 120% and h = 120%

Figure 5. Dynamical behavior of the ball position when parametric variations are experimented in h
and kbb parameters.

From Figure 5, we can observe that the variation in the parameters associated with the physical
quantities of the ball and beam system, i.e., h and kbb, has effects on the dynamical behavior of
the ball position. Nevertheless, this does not compromise the stability properties ensured by the
discrete-inverse optimal control law proposed in this research. In addition, from this simulation, it is
possible to note that the setting time remains constant at approximately 4.5 s, which is the same time
reported when all the parameters are entirely known. This confirms the robustness of the proposed
control approach to possible parametric uncertainties.

5. Conclusions and Future Works

In this paper, the nonlinear discrete-inverse optimal control approach to regulate all the state
variables in the discrete version of the ball and beam system was proposed. Numerical results confirm
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that the proposed controller allows guaranteeing passivity, stability, and optimally properties during
closed-loop operation. In addition, numerical simulations show that the dynamical behavior of the
system is highly dependent on the control gains contained in the P matrix as one or more of then
can produce similar dynamical performances with small oscillations around the origin of coordinates.
The control design robustness was tested by varying the parameters kbb and h from 80 % to 120% of
their nominal rates, where simulations demonstrate that in all of these cases the setting time remains
constant at approximately 4.5 s with smooth oscillations around the control objective, i.e., the origin
of coordinates.

As future works it will be possible to develop the following. (i) The experimental validation
of the discrete-inverse optimal control and their comparisons with nonlinear control methodologies,
(ii) the application of the interconnection and damping assignment control to regulate all the state
variables by taking advantage on the open-loop model of the ball and beam via Hamiltonian functions,
and (iii) the extension of the proposed discrete-inverse optimal control to the four-order model of the
synchronous machine system to regulate the angular deviation when short-circuit scenarios appear in
the power system.
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