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Abstract: The interaction of the actin cytoskeleton with cell–substrate adhesions is necessary for
cell migration. While the trajectories of motile cells have a stochastic character, investigations of cell
motility mechanisms rarely elaborate on the origins of the observed randomness. Here, guided by a
few fundamental attributes of cell motility, I construct a minimal stochastic cell migration model from
ground-up. The resulting model couples a deterministic actomyosin contractility mechanism with
stochastic cell–substrate adhesion kinetics, and yields a well-defined piecewise deterministic process.
Numerical simulations reproduce several experimentally observed results, including anomalous
diffusion, tactic migration and contact guidance. This work provides a basis for the development of
cell–cell collision and population migration models.

Keywords: cell motility; focal adhesions; piecewise deterministic process; superdiffusion;
tactic migration; cell contractility

1. Introduction

Cell migration is essential for embryogenesis, wound healing, immune surveillance and
progression of diseases, such as cancer metastasis. During embryogenesis, coordinated collective
migration to particular sites is essential to the development of an organism. Tissue repair and immune
response rely on directed movement of cells following external cues, which are produced after the
tissue layer is damaged and infected with pathogens. Likewise, cancer cells migrate away from the
tumour into surrounding tissue and distant organs to form metastases, which is the leading cause of
death among cancer patients.

Cell motility is a cyclical process, involving morphological changes of the cell body and
adhesive contacts with the underlying substrate [1]. The cycle can be divided into three steps:
protrusion of the leading edge, assembly of adhesions to the substrate at the front and disassembly
in the rear and contraction of the cell body, thereby producing locomotion [2]. This type of
crawling movement requires transmission of contractile forces, generated within the cell cytoskeleton,
through substrate adhesions. Such mechanical interactions between various cellular structures
is attained by integrating numerous signalling molecules, the most prominent of which are Rho
GTPases [3,4]. While there are other modes of motility relying on, for example, flagellar activity
(e.g., spermatozoa or E. coli) or rolling in the bloodstream (e.g., leukocytes), here the focus is on the
crawling type of movement.

Due to cell motility being a highly complex and not fully elucidated process, mathematical
modelling of the corresponding phenomena is a challenging task. Numerous approaches have
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been developed, each being able to capture a certain aspect of the process (see [5,6] for extensive
reviews on whole cell motility models and [7] for a review on modelling of its critical components).
For example, free boundary and phase-field models of steadily migrating cells in [8,9] (and its extension
in [10]), [11–13] are able to reproduce cell morphology as a result of mechanical and biochemical
interactions. Models of cell migration in [14,15] explored emergence of various motility modes
due to mechanical coupling of intracellular components and the substrate. In their hybrid motility
model, Marée et al. [16,17] explored the mechanochemical interaction in detail by considering the Rho
GTPase signaling circuit. A common feature of these continuum models is that they are not able
to reproduce experimentally observed random paths of migrating cells. Stochastic motility models
of eukaryotic cells have been proposed, for example, in [18–22]. There stochasticity is driven by a
Gaussian process, although there is evidence that the paths of the migrating cells follow a non-Gaussian
process [23–25]. Another way to include randomness is based on velocity jump process, as proposed
by [26] in the context of cell motility. Extending the model and including cell–substrate interactions,
population migration models have been proposed in [27,28]. Here, however, our focus is solely on
single cell migration.

In this paper and the follow-up works, I strike a middle ground. By proposing a minimal cell
representation including a few cellular structures essential for cell motility, I aim at reproducing
stochastic migratory paths in various experimental settings. In our model, stochasticity arises as
a result of mechanochemical coupling between the cell cytoskeleton and the substrate through
adhesive contacts. Specifically, the random events under consideration are the (de)adhesion events
of the cell migration cycle, whereas deterministic locomotion and contraction occur between arrival
of the events. Here, I do not make any prior assumptions about the distributions that the events and
their arrival times follow. Rather, I consider, in detail, the major determinants of adhesion dynamics
and derive the complete stochastic description. This is in contrast to most mathematically well-posed
models on stochastic cell migration, where it is assumed that the motion follows a Gaussian process.
Thereby, the construction of our cell motility model will result in a piecewise deterministic Markov
process (PDMP) [29,30]. Our simulations reproduce experimental observations, such as superdiffusive
scaling of the squared displacement [23,24,31], biased migration in the presence of an external cue,
contact guidance [32] and directed movement due to asymmetric contractility (and in the absence
of guidance cues) [33,34]. Thus, our approach illustrates how detailed treatment of adhesion cluster
dynamics can translate into stochastic cell motility description in a mathematically consistent manner.

Due to the minimal character of the model and our bottom-up approach, this work serves
as a basis for modelling cell–cell collisions in [35] and population migration (Chapter 7 in [36]).
In particular, the latter, mesoscopic scale model can be derived from our microscopic model presented
here (Chapter 7 in [36]). The derived model describes population migration via a (probability) density
function, and captures the aforementioned intracellular activity. Therefore, the work presented
here falls, in part, into a broader framework called Kinetic Theory of Active Particles (KTAP) [37].
Several multiscale approaches utilized this framework to model chemo-, haptotaxis and movement
along fibre tracts [27,28,38]. Although in these works subcell dynamics has been considered via a
description of receptor binding, interaction of subcellular structures, essential for generation of cell
migration, has been neglected. Here, I describe such interactions in detail and show that it can be
wrapped into PDMP theory, which can then be used to derive kinetic description more rigorously.
As the derivation is out of scope, I leave its demonstration for the forthcoming work.

This article is organized as follows. In Section 2, I briefly describe the cell motility cycle and the
relevant agents. I then introduce the minimal cell representation and describe the deterministic cell
motion between the cycle steps. In Section 3, I construct a stochastic model of adhesion events, which
signify transitions of cycle stages. In Section 4 I combine the deterministic and stochastic components
of the migration cycle to obtain a well-defined piecewise deterministic Markov process.At the end of
this section, I briefly remark how on relation of the process to the KTAP. In Section 5, I specify the
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kinetics of adhesion events. Numerical simulations are performed in Section 6. A discussion of the
results and future outlook are presented in Section 7.

2. The Cell Motility Model

The cell migration cycle begins with protrusion of the leading edge as a result of actin
polymerization (Figure 1a). The polymerization process in lamellipodia is mediated by the Arp2/3
complex, which acts downstream of signalling pathways responsible for cell polarization [4].
Next, the protrusions are stabilized due to formation of focal adhesions (FAs) in the lamellae
(regions behind the lamellipodia), which link the actin cytoskeleton to the extracellular matrix (ECM).
An FA is a multiprotein integrin-based adhesion cluster, which matures in a Rho GTPase dependent
manner [3]. Furthermore, FA maturation depends on the applied tension and occurs concomitantly
with actomyosin bundle formation [39]. These bundles, called stress fibres (SFs), generate contractile
forces due to non-muscle myosin II motors. Due to increased tension at cell rear, FAs rupture.
Finally, deadhesion leads to cell body translocation due to cytoskeletal contraction.
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Figure 1. (a) Schematic diagram of the cell migration cycle and the implicated cellular structures.
Actin polymerization at the front pushes the membrane allowing protrusions to form. Then, adhesions
assemble at the front and disassemble at the rear. Finally, deadhesion and cell contraction produce
locomotion, pulling the body forward. The black arrows overlaying the stress fibres show the inwardly
directed contractile forces. (b) Schematic representation of a cell with M = 8 focal adhesions. Solid black
lines represent stress fibres while red bullets represent focal adhesions. Red arrows indicate the direction
and magnitude of applied traction force Fi, i = 1, . . . , 8. The dashed line and the corresponding grey
circle represent an absent stress fibre and unbound focal adhesion, respectively. The central red arrow
indicates the net force F on xn and x is the cell centroid.

In order to construct the mathematical model, I make the following assumptions. First, FA
unbinding leads to reconfiguration of SFs and the cell movement, whereas assembly of new FAs leads
to only to the former. Second, FA events need not occur in the order described above. Several adhesions
might be assembled (disassembled) before deadhesion (adhesion) occurs. Note also that while the
contractile machinery is important, the dynamic instability of adhesions is what drives the migratory
process, for stable FAs prevent retraction. Thus, I consider only interactions of SFs and FAs. Moreover,
I do not consider the actin polymerization process and simplify the migration cycle to two steps:
after FA assembly occurs, a cell does not move, but reconfigures SFs; after disassembly, a cell
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does both. Neglecting the polymerization process and the reduction to binding/unbinding events
can be justified by the fact that one of the major consequences of the leading edge protrusions is
promotion of FA assembly. As a result that the repolarization of migrating cells occurs frequently as an
outcome of intricate biochemical activity, then, in order to keep the model tractable, I do not explicitly
model cell polarity. Instead, (de)adhesion frequency is indicative of (rear)front. By neglecting the
polymerization process, dynamic alterations to actin cytoskeleton (i.e., cytoskeletal remodelling) is
simplified to SF reconfiguration.

2.1. The Cell Representation

Consider the situation in Figure 1b. The disk represents a cell. Let the radius be Rcell and let
the position of the centre at time t be x(t) ∈ R2. Suppose there are M equally spaced adhesion sites
xi(t) ∈ RcellS1, i = 1, . . . M on a cell circumference with constant relative distance (see Remark 1 in
Section 2.3). Let Y(t) ∈ {0, 1}M be a vector of focal adhesion states at time t, i.e., Yi(t) = 0, 1 correspond
to unbound and bound FA at node i, respectively.

Since the traction stresses are oriented inward, transmitted to ECM by FAs and generated by
contractile SFs, then the FAs on the circumference must be one of the ends of SFs. Suppose the other end
of all SFs at time t is at the position xn(t) ∈ Ωcell :=

{
(x, y) ∈ R2 | x2 + y2 ≤ R2

cell
}

(in a cell’s reference
frame with origin at x), i.e., all SFs are connected at xn. Since stress fibres behave like Hookean springs
on extension, but readily buckle under compression (see Figure 2b for illustration) [40], then, inspired
by Guthardt Torres et al. [41], the force Fi at focal adhesion i is given by:

Fi =



(
Ti + EA Li−L0

L0

)
ei, L0 < Li

Tiei, Lc ≤ Li ≤ L0
Li−Lc+δ

δ Tiei, Lc − δ ≤ Li < Lc

0 Li < Lc − δ,

(1)

where Ti is the magnitude of the contractile force due to myosin motors, EA is the one-dimensional
Young’s modulus, L0 and Lc are, respectively, rest and critical lengths, Li = ‖xn − xi‖, ei =

xn−xi
Li

is the
unit vector along the ith SF and δ is a small positive constant. The first case in Equation (1) is due to the
Hookean behaviour of SFs upon extension and myosin tension generation. Furthermore, stress fibre
laser ablation experiments [42–44] revealed that the initial instantaneous response (elastic behaviour
due to the SF length dependence in the first case) is followed by slower contraction due to myosin
activity (force dependence on Ti) in the remaining portion of the fibre. Combined with stress fibre
buckling, the second case in Equation (1) is obtained. Deguchi et al. [45] also found that SF contraction
ceased after reaching a certain critical length. This implies that Fi := Fi · ei, the magnitude of Fi along
ei, is zero when Li < Lc − δ. For technical reasons, I assume Fi is piecewise continuous (see Figure 2a
for profile of Fi)—hence the last cases in Equation (1). For simplicity, it is also assumed that myosin
generated force Ti may vary between SFs, but is otherwise constant.
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Figure 2. (a) Profile of Fi, the magnitude of Fi along ei, in red. The blue dashed line corresponds
to the profile of Fi if we were to treat the fibre as a Hookean spring with constant EA/L0.
(b) Schematic representation of stress fibre contraction. As the fibre contracts below the rest length L0,
buckling occurs. As myosin mediated contraction causes the fibre to contract below the rest length L0,
buckling occurs due to lack of resistance to compression. Below the critical length Lc, the fibre ceases to
contract due to vanishing interfilament distance. Modified from [40].

Note that since xi(t) ∈ RcellS1 and FA sites are equally spaced, then in polar coordinates we have:

xi(t) = Rcell(cos(θi), sin(θi))
T , θi(t) := θ1(t) + (i− 1)

2π

M
,

and so Fi = Fi(xn, θ1).
Since the force at xn due to ith SF is −Fi, then the net force at xn is

F(xn, θ1, Y) := −
M

∑
i=1

YiFi(xn, θ1), (2)

then, assuming negligible inertial effects (due to the viscous nature of cytoplasm) and constant Y:

βcell ẋn = F(xn, θ1, Y), (3)

where βcell is the drag coefficient in the cytoplasm (see Appendix B for details).
The representation of a cell in such a way is justified for the following reasons:

• The traction stresses are largely applied on the cell periphery and their magnitude decays rapidly
towards the centre [46,47]. Thus, the cell body SF ends are at or near mechanical equilibrium.
Since contractile forces are generated by SFs, then a cell body SF end must be balanced by all
other SFs (due to the equilibrium). Hence, it is reasonable to have a single connecting node of
radial SFs which is either at mechanical equilibrium (for stationary cells) or tends to it.

• Paul et al. [48] demonstrated that application of force, originating from nuclear region, on FAs by
star-like SF arrangement, results in cells acquiring morphologies typical for motile cells. Since the
forces applied on FAs by SFs determine which one ruptures, then it also influences the motion
of a cell (due to retraction). Since I am primarily interested in cell migration, it is justified to
assume that this architecture represents a realistic situation. Furthermore, Oakes et al. [49] found
that modelling SFs embedded in contractile networks, where only SFs actively contract, yields a
behaviour mimicking their experimental results—the cytoskeletal flow was directed along the
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stress fibres. In the same study, the authors concluded that it is appropriate to treat an SF as a 1D
viscoelastic contractile element, which also justifies neglecting inertia in Equation (2).

• Since motile cells assume a wide variety of cell shapes and continuously remodel their actin
cytoskeleton, one can view this representation as a cell shape normalization (it is implicitly
assumed that a cell volume remains constant). That is, Figure 1b depicts a cell normalized to a
circle. Möhl et al. [46] applied the shape normalization technique to a timelapse series data of
migrating keratinocytes and demonstrated that this allows consistent analysis of FA dynamics,
actin flow and traction forces. In view of their results, a particular cell traction force map and FA
configuration normalized to a circle can be effectively captured by our representation.

Without loss of generality, I assume that our system starts to evolve at t = 0 and xn(0) ∈ Ωcell .
Note that if xn(0) ∈ Ωcell , then xn(t) ∈ Ωcell for t > 0, proved below. This result shows that our
representation of the cell does not yield unphysical outcome, where stress fibres move outside of
the cell. That is, provided initial conditions at t = 0 are physically well-defined (stress fibres are
contained in the cell, i.e., xn(0) ∈ Ωcell), then they will remain so.

Proposition 1. Let xn ∈ ∂Ωcell , θ1 ∈ [0, 2π), and Y ∈ {0, 1}M be arbitrary. Let n be outward unit
normal at xn. Then F(xn, θ1, Y) · n ≤ 0 with equality sign if and only if F(xn, θ1, Y) = 0.

Proof. The proposition above is obviously true, and it follows from the fact that

Yi(−Fi(xn, θ1)) · n = Yi‖Fi(xn, θ1))‖(−ei · n) =
Yi‖Fi(xn, θ1))‖

Li
(xi − xn) · n ≤ 0,

since xi · n < 0 and xn · n > 0.

Corollary 1. Let xn(0) ∈ Ωcell be arbitrary and let θ1(t) be given. Suppose xn ∈ C1([0, ∞)) is a solution of
Equation (3). Then, xn(t) ∈ Ωcell ∀t > 0 and ∀Y(t) ∈ {0, 1}M.

Proof. Due to Equation (3), it suffices to show that ∀xn ∈ ∂Ωcell we have F(xn, θ1, Y) · n ≤ 0, which
follows from Proposition 1.

2.2. The Cell Migration Cycle

Recall that during the migration cycle, deadhesion leads to cell body translocation, while adhesion
binding does not. In both cases actomyosin contractility leads to reconfiguration of the cytoskeleton.
Here, I show how our cell representation can describe the reconfiguration and cell body motion
following binding and unbinding events.

Without loss of generality assume that an event occurred at t = 0. Let τ > 0 be the time of the
next adhesion event, be it binding or unbinding. Let Y(0) ∈ {0, 1}M, x(0) ∈ R2, and xn(0) ∈ Ωcell
be arbitrary. Then, Y(t) = const. for t ∈ [0, τ).

I assume θ1(t = 0) = 0. Since the FA sites are equally spaced, it is sufficient to consider θ1(t) only.

2.2.1. Focal Adhesion Binding

Following an FA binding, I suppose that a cell becomes stationary (i.e., the cell centroid
remains constant). However, a newly formed FA and the associated SF lead to cytoskeletal reshaping.
Thus, we have the following system of ODEs for t ∈ [0, τ):

ẋ = 0

ẋn = β−1
cellF(xn, θ1, Y)

θ̇1 = 0. (4)
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2.2.2. Focal Adhesion Unbinding

Following an unbinding event, cytoskeletal contraction leads to cell body movement. Due to the
circular geometry, the contractile forces induce both rotational and translational motion.

Note that the bound focal adhesions are able to slide for short distances [46]. Oakes et al. [49]
found that the cytoskeleton behaves like an elastic solid on timescales up to one hour. Provided the
time τ between adhesion events is small enough, the following is justified.

The force F along the radial vector r̂(xn) is acting on the cell centre, thereby inducing translational
motion (see Figure 3). On the other hand, the rotational motion is produced due to F acting along the
tangential vector ϕ̂(xn). The radial and tangential components of the force F are given by:

Fr := F(xn, θ1, Y) · r̂(xn)

Fϕ := F(xn, θ1, Y) · ϕ̂(xn),

where xn = (xn,1, xn,2) and

r̂(xn) =
xn

‖xn‖
, ϕ̂(xn) =

(
− xn,2

‖xn‖
,

xn,1

‖xn‖

)T
.

Note that the characteristic Reynolds number Re is given by

Re =
ρ · s · L

ν
∼ 10−6 − 10−4,

θ̇1 Fϕϕ̂

r̂ϕ̂

xnF

x

Rcell

θ1

Fr r̂

Figure 3. Force diagram showing transmission of internally generated contractile forces into
translational and rotational motion. r̂ and ϕ̂ are radial and angular unit vectors, respectively. θ̇1 is the
angular velocity, F is a net contractile force, Fr and Fϕ are radial and tangential components of F, x and
Rcell are cell centre and radius, respectively.

Where I assumed the surrounding fluid is water (with corresponding values for density ρ and
viscosity ν, and that characteristic cell speed s and size L are 0.1–1 µm/s, L = 10–50 µm, respectively.
Thus, neglecting inertia, we have:

ẋ = β−1
ECMF(xn, θ1, Y) · r̂(xn)r̂(xn)

ẋn = β−1
cellF(xn, θ1, Y)

θ̇1 = β−1
rot‖xn‖F(xn, θ1, Y) · ϕ̂(xn), (5)



Symmetry 2020, 12, 1348 8 of 53

where βECM and βrot are, respectively, translational and rotational drag coefficients in the ECM
(see Appendix A for derivations). Note that drag depends on the body shape, which changes
frequently in migrating cells. However, for simplicity, the coefficients are assumed to be constant.

2.3. Specification of Kinematics

It is convenient to transform the system above into nondimensional form. In order to do so,
I define the following scales, characterized by their respective constants:

• The spatial and cell length scales are defined by cell radii Rcell .
• The time scale is set by FA disassociation rate k0

o f f , since FA unbinding of leads to locomotion.

• The force scale is defined by the characteristic force Fb usually observed at an FA.

The values of these constants are given in Appendix B. Whence the new variables are defined:

x̃ :=
x

Rcell
, x̃n :=

xn

Rcell
, t̃ := k0

o f f t

and transform Fi from Equation (1):

F̃i :=
Fi
Fb

=



(
T̃i + ẼA L̃i−L̃0

L̃0

)
ẽi, L̃0 < L̃i

T̃iẽi, L̃c ≤ L̃i ≤ L̃0
L̃i−L̃c+δ̃

δ̃
T̃iẽi, L̃c − δ̃ ≤ L̃i < L̃c

0 L̃i < L̃c − δ̃,

(6)

where

L̃i =
Li

Rcell
, L̃0 =

L0

Rcell
, L̃c =

L0

Rcell
, δ̃ =

δ

Rcell
,

T̃i =
Ti
Fb

, ẼA =
EA
Fb

ẽi =
x̃n − x̃i

L̃i
, x̃i =

xi
Rcell

.

Note that we have x̃n ∈ Ω̃cell :=
{
(x, y) ∈ R2 | x2 + y2 ≤ 1

}
and x̃i ∈ S1.

Let

F̃ := F/Fb, β̃cell :=
k0

o f f Rcell

Fb
βcell , β̃ECM :=

k0
o f f Rcell

Fb
βECM, β̃rot :=

k0
o f f

Rcell Fb
βrot.

To complete the specification of cell kinematics between adhesion events, another discrete variable
is introduced µ(t) ∈ {0, 1}:

µ =

{
1, if the last event was unbinding

0, if the last event was binding.

Then, plugging in Equations (4) and (5) the rescaled quantities and dropping tildes, it follows that
the system evolves according to the following ODE system between the FA events:

ẋ = µβ−1
ECMF(xn, θ1, Y) · r̂(xn)r̂(xn)

ẋn = β−1
cellF(xn, θ1, Y)

θ̇1 = µβ−1
rot‖xn‖F(xn, θ1, Y) · ϕ̂(xn) (7)

Remark 1. Our assumption on constant relative distance between FA sites stems from two slightly weaker
assumptions: (1) total number of adhesion sites (occupied and unoccupied) is constant; (2) there is a
neighbourhood around each adhesion site, in which no other site is present, and the size of this neighbourhood is
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the same (and constant) for each site. Figure 4 how it reflects on their peripheral motion. This assumption implies
that in each line segment of size 2π/M (with M = 8) there is only one FA site present, which may correspond
to bound (in red) or unbound FA (in gray). See also Appendix B on our discussion on the number of FA sites.
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Figure 4. (a) Schematic representation of the migration cycle between adhesion events. Suppose that
just before an event occurs at time t = 0, the cell is in state I. If at time t = 0 (de)adhesion occurs,
the cell jumps into state the (I I′)I I and the system evolves according to Equation (7) until the next
event occurs at time t = τ, after which the cycle begins anew. The scenarios can be characterized as
“run” and “tumble” phases in the bottom and top panels, respectively. (b) Schematic representation
of the FA positions projected on cell’s circumference at t = 0− and t = τ− in the top and bottom
panels, respectively.
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3. FA Event Model

In the previous section a model of cell motion between FA events has been constructed.
Following [50], here I construct a stochastic model describing the random adhesion/deadhesion
events and their arrival times. The discussion here differs from the standard approach of the Gillespie
algorithm in [50], as I do not assume that the propensity functions vary inappreciably between
the reactions. Moreover, it provides a connection to the theory of PDMPs, as the forms of the
objects, necessary to define a piecewise deterministic process (see the next section), follow from
the derivations here.

3.1. Focal Adhesion Events

Since there are M FAs and since each FA can participate in only two reactions
(binding and unbinding), then there are 2M total possible reactions. The following convention
for enumerating reactions is adopted: reaction j corresponds to a binding reaction of the FA site
i = (j + 1)/2 if j is odd; otherwise reaction j corresponds to an unbinding reaction of the FA site i = j/2.
Let Y(t) be defined as before.

Let aj(y, t)dt be the probability, given Y(t) = y ∈ {0, 1}M, µ(t), (x(t), xn(t), θ1(t)) and time t, that
reaction j will occur in the time interval [t, t + dt). For clarity, the dependence of the rate aj(y, ·) on
(x(·), xn(·), θ1(·)) and µ(·) is suppressed. I assume that the rate aj satisfies the following:

aj(y, t) =


0, if j is odd and y(j+1)/2 = 1

0, if j is even and yj/2 = 0

6= 0, else.

(8)

That is, if the FA is (un)bound, the probability of the (un)binding reaction is zero; if the FA is
(un)bound, the probability of (binding) unbinding is nonzero. This implies that aj(y, t) 6= 0 for at least
one j ∈ {1, . . . , 2M} (for each FA site i ∈ {1, . . . , M}, either a2i−1 or a2i is nonzero). For consistency of
mathematical theory, we must consider the entirety of state space, including the case of FA (un)binding
when it is already (un)bound. However, due to Equation (8), we effectively rule out such scenario.

Lemma 1. Let Y(t) = y. Then the probability that no FA event occurs in the time interval [t, t + dt) is
1−∑2M

j=1 aj(y, t)dt + o(dt).

Proof. Using the definition of aj, the probability that reaction j does not happen is 1− aj(y, t)dt. Then,

2M

∏
j=1

(
1− aj(y, t)dt

)
= 1−

2M

∑
j=1

aj(y, t)dt + o(dt),

is the probability that no FA reaction occurs is.
Let K(τ, j|t, y)dτ be the probability, given Y(t) = y and (x(t), xn(t), θ1(t)) at time t, that the

next reaction will occur in the time interval [t + τ, t + τ + dτ) and will be reaction j. Here, again,
the dependence on x, xn, θ1 is suppressed for clarity.

Proposition 2. Let τ > 0 and Y(t) = y. Then,

K(τ, j|t, y) = aj(y, t + τ) exp

− ∫ t+τ

t

2M

∑
j′=1

aj′(y, τ′)dτ′

 .
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Proof. Let P(τ|t, y) denote the probability that no reaction occurs in the time interval [t, t + τ), given y
(and x, xn, θ1) at time t. Then, by Lemma 1:

P(τ + dτ|t, y) = P(τ|t, y)

(
1−

2M

∑
j=1

aj(y, t + τ)dτ + o(dτ)

)
⇒

P(τ + dτ|t, y)− P(τ|t, y)
dτ

= −P(τ|t, y)
2M

∑
j=1

aj(y, t + τ) + P(τ|t, y)
o(dτ)

dτ
.

Letting dτ → 0 we obtain the following ODE:

d
dτ

P(τ|t, y) = −P(τ|t, y)
2M

∑
j=1

aj(y, t + τ).

Since P(0|t, y) = 1, the solution P(τ|t, y) is given by:

P(τ|t, y) = exp

(
−
∫ t+τ

t

2M

∑
j=1

aj(y, τ′)dτ′
)

.

We have then:

K(τ, j|t, y) = P(τ|t, y)aj(y, t + τ) = aj(y, t + τ) exp

− ∫ t+τ

t

2M

∑
j′=1

aj′(y, τ′)dτ′

 . (9)

Let Ktime(τ|t, y)dτ be the probability that the next reaction will occur in the time interval
[t + τ, t + τ + dτ), given Y(t) = y and (x(t), xn(t), θ1(t)) at time t.

Let Kindex(j|τ, t, y) be the probability that the index of the next reaction is j given Y(t) = y,
(x(t), xn(t), θ1(t)) at time t and given that the reaction will occur at time t + τ.

By elementary probability theory (using the definition of conditional probability), we know that

K(τ, j|t, y)dτ = Kindex(j|τ, t, y)Ktime(τ|t, y)dτ.

Due to Equation (9), we see that:

Kindex(j|τ, t, y) =
aj(y, t + τ)

a0(y, t + τ)

Ktime(τ|t, y) = a0(y, t + τ) exp
(
−
∫ t+τ

t
a0(y, τ′)dτ′

)
, (10)

where

a0(y, t) =
2M

∑
j=1

aj(y, t),

and a0 6= 0 due to Equation (8).
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Obviously,

2M

∑
j=1

Kindex(j|τ, t, y) = 1

∫ ∞

0
Ktime(τ|t, y)dτ = 1.

Thus, if T is (random) time until the next reaction, then its probability density function given by
Ktime, its survival function S(s) is given by (without loss of generality, suppose that t = 0):

P(T > s) = S(s) = exp
(
−
∫ s

0
a0(y, τ′)dτ′

)
, (11)

and its (cumulative) distribution function is given by 1− S(s) (one can check this by differentiating
the distribution function, given by 1− S(s), with respect to s). Note that the distribution of a random
variable is uniquely determined by its distribution function.

Using the proof of Proposition 2 one has the following:

Proposition 3. Let τ > 0 and let K̂(τ|t, y) be the probability of more than one FA event occurring in the time
interval [t + τ, t + τ + dτ), given the state of the system at time t. Then K̂(τ|t, y) = o(dτ) as dτ → 0.

Proof. By the proof of Proposition 2:

K̂(τ|t, y) = P(τ|t, y)o(dτ),

since, following the definition of aj, the probability of more than one reaction occurring in time interval
[t, t + dτ) is o(dτ).

Proposition 3 implies that we can neglect the case when more than one FA event occurs at the
event time. Thus, an FA event (binding or unbinding) unambiguously corresponds to a switch in
motility state. If this were not the case and the probability of two FA events at the same time were
not negligible, then binding and unbinding of distinct FAs could occur simultaneously. Since the
cell becomes motile after unbinding only [51,52], simultaneous events could lead to ambiguity in
determining the motile state of the cell.

3.2. Combining the Cell Motility and the FA Event Model

With the results of the previous section I can now formally state the cyclical mesenchymal cell
motility model as a stochastic process (see Figure 4).

Let t = 0, x(0), xn(0), θ1(0), µ(0) be given and Y(0) = y0.

• The time T1 of the FA event is chosen such that P(T1 > s) = S(s).
• The system evolves according to Equation (7) for t ∈ [0, T1).
• At time t = τ, the index j of the FA event is chosen with probability Kindex(j|T1, 0, y0) Y and µ

jump to new values:

Y(t = τ) =

{
y0 + êi, i = (j + 1)/2, if j is odd

y0 − êi, i = j/2, else
,

µ(t = τ) =

{
0, if j is odd

1, else
,

where êi ∈ RM is the standard basis vector. Note that due to Equation (8), we always have
Y(t = τ) ∈ {0, 1}M, since the probability of (un)binding of (un)bound FA is zero.
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• The cycle starts anew with initial time t = T1 and initial values of other variables at this time:
starting at t = T1 the time T2 of the FA event is chosen such that

P(T2 > s|T1) = exp
(
−
∫ T1+s

T1

a0(y, τ′)dτ′
)

.

• The system evolves according to Equation (7) for t ∈ [T1, T1 + T2) and so on.

One sees that the cyclical process described above is a Markov process, since the evolution of the
system depends only on the current state. This completes the formal specification of the model. In the
following it will be shown that this process is well-defined.

4. Piecewise Deterministic Process

In this section, I briefly overview a class of piecewise deterministic processes, first introduced
by Davis [29]. I then show how the deterministic Equations, describing motion between stochastic
focal adhesion events, can be combined to yield a well-defined piecewise deterministic Markov
process (PDMP).

4.1. PDMP Overview

Let A be countable and let Γ ⊂ Rd be open. Let Xt ∈ Γ and let Hν : Γ→ Rd for ν ∈ A.
Let (Ω,F , (Ft)t≥0,P) be a filtered probability space, where Ω is a sample space, F is a σ-algebra

on Ω, (Ft)t≥0 is a (natural) filtration and P is a probability measure. Let E := {(ν, ξ) : ν ∈ A, ξ ∈ Γ}
and let (E, E) be a Borel space. For details, see Chapter 2 in [30].

I can define the piecewise deterministic process on the state space (E, E) (for a more detailed
general treatment see Davis [30]) by the following objects (here, I first provide a constructive definition.
The verification of the conditions and their explicit representation corresponding to our case of cell
motility is postponed for the sake of clearer exposition):

I Vector fields (Hν, ν ∈ A) such that for all ν ∈ A there exists a unique global solution Xt ∈ Γ to the
following equation:

d
dt

Xt = Hν(Xt)

X0 ∈ Γ. (12)

Let φν : [0, ∞)× Γ→ Γ denote the flow corresponding to Equation (12), i.e.

φν(t, X0) = Xt.

II A measurable function a0 : E→ R+ such that the function s 7→ a0(ν, φν(s, X0)) is integrable.
III A transition measure Q : E × E → [0, 1], such that for fixed C ∈ E , (ν, ξ) 7→ Q(C; (ν, ξ)) is

measurable for (ν, ξ) ∈ E and Q(·; (ν, ξ)) is a probability measure for all (ν, ξ) on (E, E).

Let (ν0, X0) ∈ E at time t = 0 be given. Let a survival function S be defined similarly as in
Equation (11):

S(t, (ν, X)) := exp
(
−
∫ t

0
a0(ν, φν(s, X))ds

)
. (13)

Let T1 be the first jump time such that

P(T1 > t | (ν0, X0)) = S(t, (ν0, X0)),
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and let (ν1, X1) be distributed according to the probability law Q(·, φν0(T1, X0)). Then, the motion of
(νt, Xt) for t ≤ T1 is given by:

(νt, Xt) =

{
(ν0, φν0(t, X0)), t < T1,

(ν1, X1), t = T1.

At time t = T1 the next jump time T2 is distributed such that

P(T2 − T1 > s | (νT1 , XT1)) = S(s, (νT1 , XT1)).

The value of the process at the jump time T2 is determined by the measure Q(·, φνT1
(T2, XT1))

and the process continues in a similar way. Thus, we have a well-defined piecewise deterministic
process [29].

Theorem 1. [29] The process (νt, Xt)t≥0 is a homogeneous Markov process.

4.2. Cell Motility and PDMP

In this section I show that the cyclical cell motility model described in Section 3.2 is a
well-defined PDMP.

One can show that Fi(xn, θ1) satisfies the Lipschitz condition for (xn, θ1) ∈ Ωcell ∪ [0, 2π) :=
Dcell (the restriction to the interval [0, 2π] is due to the periodic dependence on θ1 in the definition
of xi. See Section 2). Furthermore, one can show that β−1

cellF(xn, θ1, Y) and µβ−1
rot‖xn‖F(xn, θ1, Y) · ϕ̂(xn),

given by

β−1
cellF(xn, θ1, Y) = −β−1

cell

M

∑
i=1

YiFi(xn, θ1)

µβ−1
rot‖xn‖F(xn, θ1, Y) · ϕ̂(xn) = −µβ−1

rot‖xn‖
M

∑
i=1

YiFi(xn, θ1) · ϕ̂(xn)

also satisfy the Lipschitz condition for (xn, θ1) ∈ Dcell and arbitrary µ ∈ {0, 1}, Y ∈ {0, 1}M.

Proposition 4. Let x(0) = x0, (xn(0), θ1(0)) ∈ Dcell . Let µ ∈ {0, 1}, Y ∈ {0, 1}M. Then there exists a
unique solution of the system

ẋ = µβ−1
ECMF(xn, θ1, Y) · r̂(xn)r̂(xn)

ẋn = β−1
cellF(xn, θ1, Y)

θ̇1 = µβ−1
rot‖xn‖F(xn, θ1, Y) · ϕ̂(xn),

(14)

for t > 0.

Proof. Note that since the evolution of x is decoupled from the other two equations, it is sufficient to
prove the claim for the following subsystem:

ẋn = β−1
cellF(xn, θ1, Y)

θ̇1 = µβ−1
rot‖xn‖F(xn, θ1, Y) · ϕ̂(xn) (15)

Since the right hand side of this system is Lipschitz on Dcell and (xn(0), θ1(0)) ∈ Dcell , then
there exists a unique solution of the subsystem Equation (15) for time t ≤ tDcell , where tDcell =

inf {t∗ > 0 | xn(t∗) /∈ Ωcell} is the exit time from Dcell . By Corollary 1, we see that tDcell = ∞.
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Let A :=
{

1, 2, . . . , 2M+1} and let α : A → {0, 1} × {0, 1}M be a bijection. This is simply a
mapping such that α(ν) = (µ, Y) ∈ {0, 1} × {0, 1}M corresponds to a particular cell motion and FA
states (recall that the former can either be moving or stationary).

Let (x(0), xn(0), θ1(0)) ∈ Γ := R2 × Ωcell × [0, 2π) and denote Xt = (x(t), xn(t), θ1(t)).
Moreover, let Hν : Γ→ R5 be such that

Hν(X) :=


α1(ν)β−1

ECMF(xn, α2(ν), θ1) · r̂(xn)r̂(xn)

β−1
cellF(xn, α2(ν), θ1)

α1(ν)β−1
rot‖xn‖F(xn, α2(ν), θ1) · ϕ̂(xn)

 , (16)

where α1 and α2 are, respectively, the first and the second components of α. In this work, the subscript
index in α2 always denotes the second component of α).

Let the probability (Ω,F , (Ft)t≥0,P) and state space (E, E) be defined as in the previous section.
The objects (I,II,III) described in Section 4.1 can now be specified.

I By Proposition 4 we see that for all ν ∈ A, there exists a unique global solution to (12).
II Note that in our case the rate function a0 is given by (recalling Section 3.1):

a0(ν, Xt) = a0(α2(ν), Xt) =
2M

∑
j=1

aj(α2(ν), Xt).

Here, I abuse the notation introduced in Section 3.1: aj(α2(ν), t) = aj(α2(ν), Xt) = aj(ν, Xt) for
j = 0, . . . , 2M. Thus, for the integrability condition to be satisfied, I assume that each probability
rate function aj is integrable along the solution of Equation (12). An exact form of the rates aj
satisfying this condition will be given in the subsequent section. Note that a0 is nonzero, which
follows from Equation (8).

III In our case, the measure Q(·; (ν, ξ)) is given by (recalling Section 3):

Q({η} × dξ′; (ν, ξ)) = δξ(dξ′)
M

∑
j=1

δα1(η),0

a+j (α2(ν), ξ)

a0(α2(ν), ξ)
δα2(η)j ,1

M

∏
i 6=j

δα2(η)i ,α2(ν)i

+δα1(η),1

a−j (α2(ν), ξ)

a0(α2(ν), ξ)
δα2(η)j ,0

M

∏
i 6=j

δα2(η)i ,α2(ν)i
, (17)

where δ is the Kronecker delta function, δξ(·) is the Dirac measure at ξ, a+j = a2j−1 and a−j = a2j
correspond to, respectively, the binding and unbinding probability rates at FA site j, and α2(·)i is
the ith component of the vector α2(·).

The justification for choosing the functions above stems from our deductions in Section 3.1. In particular,
the rate function a0 in (II) is due to (10): the probability density function of the jump time Tk+1,
given that Tk ≤ t < Tk+1, is given by:

Ktime(·|t, α2(νt)) = a0(α2(νt), Xt) exp
(
−
∫ ·

0
a0(νt, φνt(s, Xt))ds

)
= a0(α2(νTk ), Xt) exp

(
−
∫ ·

0
a0(νTk , φνTk

(s, Xt))ds
)

,

which corresponds to the survival function given by Equation (13).
I now turn our attention to the measure Q in Equation (17). The components of Xt do not jump,

and vary continuously in time, i.e., if Tk is the jump time, then XT−k
= XTk (see Section 3.2), hence the

Dirac measure δξ(·) at ξ in Equation (17). Clearly, such transition of the continuous component Xt of
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the PDMP at a jump time is probabilistically independent of the transition of the discrete component ν.
Hence we have the product of the Dirac measure with the sum, which is a discrete measure for the
transition of the discrete component.

By Proposition 3, there is only one FA event at a jump time. Hence, for the probability of transition
ν → η to be nonzero, the vectors of FA states α2(ν) and α2(η) must differ only by one component.
Consider the following example to illustrate the jump mechanism.

Example. Let M = 4, Tk ≤ t < Tk+1 and suppose Tk+1, Xt are given. Let ν, η ∈ A be such that
α(ν) = (µν, Yν) and α(η) = (µη , Yη), where

Yν =


0
0
0
1

 , Yη =


0
1
0
1

 .

Then, by Equation (10), the probability of the transition ν→ η is given by:

δµη ,0Kindex(3|Tk+1 − t, t, Yν) = δµη ,0
a3(α2(ν), φν(Tk+1 − t, Xt))

a0(α2(ν), φν(Tk+1 − t, Xt))

= δα1(η),0
a3(α2(ν), XTk+1)

a0(α2(ν), XTk+1)

= δα1(η),0
a+2 (α2(ν), XTk+1)

a0(α2(ν), XTk+1)
.

Clearly, the transition Yν → Yη corresponds to the binding event at FA site 2, explaining the
Kronecker delta term (see Sections 2.3 and 3.2). Now, consider the sum in Equation (17) for this example.
We see that

M

∏
i 6=j

δα2(η)i ,α2(ν)i
6= 0, for j = 2 only.

We therefore obtain

Q({η} × dξ′; (ν, XTk+1)) = δXTk+1
(dξ′)δα1(η),0

a+2 (α2(ν), XTk+1)

a0(α2(ν), XTk+1)
δα2(η)2,1.

Note that if at time t the vector of FA states is given by Yν, then there are M possible FA state
vectors into which a transition can occur with nonzero probability:


0
0
0
0

 ,


1
0
0
1

 ,


0
1
0
1

 ,


0
0
1
1


 .

Similarly as with the rate function a0, we can derive Equation (17) from the principles we
established before.

Proposition 5. The transition probability measure Q(·, (ν, ξ)) is given by Equation (17) for each
(ν, ξ) ∈ E.
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Proof. Let (ν, ξ) ∈ E, {η} × dξ′ ∈ E . Let (N, Ξ) and (N−, Ξ−) be E-valued random variables before
and after the jumps. Then,

Q({η} × dξ′; (ν, ξ)) = P
(
(N, Ξ) ∈ {η} × dξ′|(N−, Ξ−) = (ν, ξ)

)
= P

(
{η} × dξ′|(ν, ξ)

)
,

where the random variables were omitted for notational convenience. Then we have:

P
(
{η} × dξ′|(ν, ξ)

)
= P(dξ′| {η} , (ν, ξ))P({η} |(ν, ξ)) = δξ(dξ′)P(η|(ν, ξ)),

since Ξ = Ξ− a.s., by construction of the process. Note that if (H, Z) is a random variable, then, due to
α being a bijection:

{H = η} =
{

α−1(H) = α−1(η)
}
= {α(H) = α(η)} .

Since α is a bijection, we have

P(η|(ν, ξ)) = P ((α1(η), α2(η))|(α1(ν), α2(ν)), ξ)

= P (α1(η), α2(η)|α2(ν), ξ) ,

since, by construction of the cell motility process, the new FA state α2(η) is determined independently
of whether a cell was moving or not (represented by α1(ν) ∈ {0, 1}) and the new motility state α1(η) is
determined only by which FA event took place (binding or unbinding), regardless of whether a cell
was previously moving or not.

Note that when a jump occurs, then, by Proposition 3, only one of j = 1, . . . , 2M possible (binding
and unbinding) FA events occurs. Thus, for j, j′ ∈ {1, . . . , 2M} and j 6= j′ the events “reaction j occurs”
and “reaction j′ occurs” are mutually exclusive. We then have, by the definition of conditional
probability:

P (α1(η), α2(η)|α2(ν), ξ) =
2M

∑
j=1

P (α1(η), α2(η)|j, α2(ν), ξ)P (j|α2(ν), ξ) ,

where

• P (j|α2(ν), ξ) is the probability that the FA event j occurs, given α2(ν) and ξ.
• P (α1(η), α2(η)|j, α2(ν), ξ) is the probability of a jump into cell state (α1(η), α2(η)), given α2(ν)

and ξ, and that the FA event j occurred.

Let j ∈ {1, . . . , M} and j+ = 2j− 1 and j− = 2j. Due to Equation (10) we have:

P
(

j±|α2(ν), ξ
)
=

a±j (α2(ν), ξ)

a0(α2(ν), ξ)
. (18)

Furthermore,

P
(
α1(η), α2(η)|j+, α2(ν), ξ

)
= δα1(η),0δα2(η)j ,1

M

∏
i 6=j

δα2(η)i ,α2(ν)i

P
(
α1(η), α2(η)|j−, α2(ν), ξ

)
= δα1(η),1δα2(η)j ,0

M

∏
i 6=j

δα2(η)i ,α2(ν)i
.
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Therefore,

2M

∑
j=1

P (α1(η), α2(η)|j, α2(ν), ξ)P (j|α2(ν), ξ)

=
M

∑
j=1

P
(
α1(η), α2(η)|j+, α2(ν), ξ

)
P
(

j+|α2(ν), ξ
)

+ P
(
α1(η), α2(η)|j−, α2(ν), ξ

)
P
(

j−|α2(ν), ξ
)

=
M

∑
j=1

δα1(η),0

a+j (α2(ν), ξ)

a0(α2(ν), ξ)
δα2(η)j ,1

M

∏
i 6=j

δα2(η)i ,α2(ν)i

+ δα1(η),1

a−j (α2(ν), ξ)

a0(α2(ν), ξ)
δα2(η)j ,0

M

∏
i 6=j

δα2(η)i ,α2(ν)i
.

Remark 2. As mentioned in the introduction, one can derive the description of cell migration on the mesoscopic
scale. If we let f (t, ν, X) to be the density of cells with FA state α2(ν) and positions X at time t, then:

∂

∂t
f (t, ν, X) +∇X · (Hν(X) f (t, ν, X))

= −a0(ν, X) f (t, ν, X) + ∑
η

a0(η, X)q(ν; η, X) f (t, η, X),

where q(ν; η, X) is the probability that FA state will jump from α2(η) to α2(ν), given that the continuous
component has value X. Although it may seem daunting due to the dimensionality of variables, it is still amenable
for simplifications and macroscopic scaling. For example, by assuming that subcellular (FA binding/unbinding)
events occur at the fastest time scale, changes to cell position at an intermediate scale and appreciable changes to
the density function at the slowest scale, one can obtain parabolic-like scaling. See Chapter 7 in [36] for details.

5. Adhesion Kinetics

While I introduced the probability rates of binding and unbinding events, I have not yet fully
specified them. Here, I elaborate on how such quantities unambiguously correspond to the relevant
subcell dynamics by providing the precise functional forms of the propensity functions.

5.1. Unbinding Rate

Consider the unbinding rate a−j of FA adhesion site j ∈ {1, . . . , M} and let y ∈ {0, 1}M,
ξ = (x, xn, θ1) ∈ Γ. Following Bell [53], the bond disassociation rate under applied force is given by:

a−j (y, ξ) = k0
o f f e‖Fj(xn ,θ1)‖/Fb yj, (19)

where k0
o f f is the FA disassociation rate under no load, Fi is the force applied at the FA, given by

Equation (1), and Fb is a characteristic force scale. The last factor yj simply indicates that only bound
FAs can unbind (thus satisfying Equation (8)). Clearly, the function in Equation (19) is integrable. Here,
I neglect the fact that the force may be applied at the FA (and consequently at the transmembrane
receptors) at an angle and assume for tractability of the model that it is applied normally to the FA
(hence consider only magnitude).

Remark 3. In the context of cell migration and within the framework of our model, I only consider FA
disassembly on the cell periphery (including the lamellae). The primary cause of such FA unbinding has
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mechanical, rather than biochemical nature due to the cell contractile mechanism applying load to the adhesions.
Although it is known that the Rho family of GTPases (in particular its member RhoA) mediates disassembly of
FAs, their effect is indirect: the activity of myosin motors, which generate contractile forces in SFs, is regulated by
RhoA [54]. Hence the force dependence of the unbinding rate a−j . Recalling the definition of Fi in Equation (1),
such indirect biochemical mediation can be included by considering mediators of the force Ti. In order to keep the
model tractable, I omit the interaction between RhoA and myosin motors.

5.2. Binding Dynamics

Consider the binding probability rate a+j of the FA adhesion site j ∈ {1, . . . , M} and let

y ∈ {0, 1}M, ξ = (x, xn, θ1) ∈ Γ. The probability rate a+j is given by:

a+j (y, ξ) = kon,j(ξ)(1− yj),

where kon,j : Γ→ R+ is the effective binding rate at FA site j. The last term (1− yj) simply indicates
that only unbound FAs can bind. Whereas unbinding can be viewed effectively as a bond rupturing
under applied tension, a binding reaction, or focal adhesion assembly and maturation, is a highly
regulated process. Due to the complexity of the FA assembly process, I focus on two major mediators
of FA formation: Rac activity and contractile forces.

5.2.1. Rac Dependence

For simplicity, I assume that the probability of FA formation is directly proportional to local
Rac concentration. Consider the case of chemotactic cell migration. Leading edge protrusions
preferentially form in the direction of a chemoattractant. Since Rac is required for formation of
lamellipodium and FA formation [54], then local Rac activity correlates with the concentration of the
chemical cues. Conversely, local Rac activity negatively correlates with chemorepellent.

Let Qcue : R2 → R+ denote the concentration of a cue in the spatial domain and let q : R+ → R+

denote the Qcue dependent concentration of Rac. Clearly, q is an increasing function for the case of an
attractant and a decreasing function for a repellent. Then,

kon,j(ξ) ∝ q(Qcue(x + xj)),

where I recall that xj is the position of the jth FA site.
For example, one can take Qcue(x) to be the density of the ECM (or chemoattractant) at x ∈ R2 and

take q(x) = x. Then, the probability of binding is simply proportional to the ECM (or chemoattractant)
density. This corresponds to a bi-molecular reaction rate, which depends on the number of one of the
reactants (FA) and on the concentration (ECM or a chemoattractant) of the other. Although a more
complex function q can be considered, such as those in [55–57], in order to keep the minimal character
of the model, I opted for simple linear relation. Moreover, following Model 4 in [56] and assuming no
feedback with phosphoinositides, then in a steady state we have:

R = R̄
α

δR
C + R̄( ÎR + Qcue)

ρ =
ρ̄

δρ

Îρ

1 +
(

R
a2

)n

C =
C̄
δC

ÎC

1 +
(

R
a1

)n ,

where R, ρ, C denote the concentrations of Rac, RhoA, Cdc42 and the rest are constant parameters
(see [56] for details). That is, there is a linear dependence of Rac on an external cue.
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5.2.2. Force Dependence

The enlargement of nascent (immature) adhesions is concurrent with their maturation into focal
adhesions [39,58]. Thus, enlargement and maturation are synonymous. While the initial stage of
adhesion growth is force-independent [58], maturation occurs in a force-dependent manner [39,59,60].

However, during such a force-dependent maturation, the positive correlation between the
adhesion size and the applied tension exists only in the initial stages of maturation. As FAs increase in
size, the effect of applied force diminishes [59].

That is, the study by Stricker et al. [59] showed that for mature FAs there is no correlation between
applied force and FA size. One can consider an adhesion site as mature when its size reaches ∼1 µm2

(see e.g., [61,62]).
Choi et al. [58] showed that nascent adhesions assemble at a rate of ∼1.3 min−1 = 0.021 s−1

reaching a size of ∼0.2 µm2. Furthermore, it was shown that the formation of these adhesions is
independent of the surrounding environment’s mechanical properties (such as fibronectin density and
stiffness) [58] and force generation within the cell (i.e., myosin II activity) [58,63,64].

Let k0
on be the force-independent FA maturation (binding) rate. Since FAs are larger in size than

immature adhesions, which assemble at a rate of 0.021 s−1, then their assembly is slower and hence I
take k0

on = 0.01 s−1. It is now needed to find a function that could represent force dependence of FA
maturation rate. Denote this function k f orce : R+ → R+.

It satisfies the following:

• k f orce(0) = k0
on, i.e., if there is no force applied, the rate is k0

on.

• If the applied force is below the characteristic force Fb, then k f orce is greater than the unbinding
rate, i.e., it is more likely that an FA increases in size than that it ruptures.

• If the characteristic force Fb is applied, the rate k f orce should equal the unbinding rate, i.e., I assume
that there is a dynamic equilibrium in some sense.

• If the applied force is larger than Fb, then the unbinding rate dominates the binding rate. Note that
as FA increases in size, the force dependence diminishes [59]. Thus, k f orce should plateau around
Fb. I also assume that for large applied forces k f orce plateaus at k0

on, since exceeding loads rupture
integrin bonds frequently and impede stable maturation.

The following form of k f orce satisfies the conditions above:

k f orce(F) =


k0

o f f e+k0
on

1+exp(−γ1(F−F∗1 )/Fb)
+ k0

on − ε, F ≤ Fb

k0
o f f e+k0

on

1+exp(γ2(F−F∗2 )/Fb)
+ k0

on, else
, (20)

where F∗1 = Fb/4 and F∗2 = 5Fb/4 are the midpoints of the sigmoid functions (see Figure 5). To find
the values of γ1, γ2 and ε, see Appendix B.

Remark 4. Chan and Odde [65] showed that adhesion site dynamics depends on substrate stiffness. In particular,
they showed that for a stiff substrate the transmembrane bonds rupture more frequently, compared to the case
with softer substrate under the same load, since the critical load is reached faster. This mechanism provides
means for a cell to assess the surrounding rheology. Within the context of our model, this means that the force Fb
is smaller for the stiffer substrate, thus increasing the disassociation rate for the same load (see Equation (19)).
Consequently, the force dependent binding rate k f orce also changes for the stiffer ECM. In this case, the curves in
Figure 5 will shift to the left. Therefore, our model provides an opportunity to include mechanosensitivity of
migrating cells by considering the relevant dynamics for individual FAs.
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Figure 5. Force dependence of unbinding and binding rates.

Therefore, the binding propensity rate a+j of an adhesion j ∈ {1, . . . , M} is given by:

a+j (y, ξ) = q(Qcue(x + xj))k f orce(‖Fj(xn, θ1)‖)(1− yj). (21)

6. Numerical Simulations

Here, I show the results of simulating cell trajectories under different scenarios, which represent
various experimental settings, namely:

1. Uniform environment with no cues.
2. Non-uniform environment with external cue gradient and uneven myosin motor activity

within a cell.
3. Striped ECM architecture.

Note that the total number of adhesion sites M is a free parameter, which differs from cell
to cell. Nevertheless, it is a crucial parameter, determining whether the motility type is amoeboid
or mesenchymal. Amoeboid motility is characterized by a large number of weak adhesions,
high turnover and more contractile cell body. On the other hand, mesenchymal migration relies
on fewer, but stronger focal adhesions with slower turnover and lower overall contractility. The cells
with the former motility type are faster and have more diffusive motion [31,66]. Note that if a±j ∼ O(1),
then the rate function is a0 ∼ O(M). Therefore, adhesion events occur more frequently for increasing
M, implying higher adhesion turnover. Thus, by varying M, our model is capable of explaining this
particular aspect of the difference between the two migration types.

For all scenarios the same initial conditions for all cells are employed. Namely, at t = 0 the
conditions are:

• x is at the origin, xn is uniformly distributed on a circle with radius Rcell , and θ = 0.
• Each FA is in (un)bound state and each cell is in moving state with probability 1/2.

I simulate trajectories of ncell := 56 cells for time tend := 600 min. The time interval is divided into
ntime := 5000 intervals, at the end of which the cell centroid positions x are recorded. For details on
the parameters and numerical methods used for simulations, see Appendices B and D, respectively.
For details on the data analysis, see Appendix C.
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6.1. Uniform Environment

The results of the simulation with uniform spatial cue Qcue are presented in Figure 6. Due to the
absence of spatial variation of Qcue, q = 1 in Equation (21).

The cell trajectories with varying number of adhesion sites, depicted in Figure 6a–c, show no
clear trend and resemble those of a Brownian motion. Indeed, fitting the mean-squared displacement
msd(t) to the curve m̂sd(t) = β0tβ̄ (see Appendix C for details), we see that the exponent is β̄ ≈ 1
for the three cases (see Figure 6d–f). This suggests that the cell motion has diffusive characteristics
in this scenario. In Figure 6g–i, we see the simulated distribution of speeds. The average speeds sav

(and the interquartile range, sIQR, see Appendix B for details) and the parameters β0, β̄ are shown in
Table 1. We see that as M increases, the cell motion becomes progressively faster and more diffusive
(since β̄ ∼ 1, the slope β0 is a measure of diffusivity. See Appendix C), which is expected for a
dominantly amoeboid type of motility. As a result of β̄ ∼ 1, I can estimate the diffusion coefficient
D = β0/4. The obtained values are lower, but within an order of magnitude estimated by Liu et al. [31],
who found that D ≈ 2.7 µm2/min. Interestingly, the gamma distribution gives a very good fit to
the simulated data for various values of M, suggesting that cell speeds are gamma distributed.
Moreover, the computed values of the average speed sav fall in the range reported by Liu et al. [31],
who found the speeds to be in the range from 0.2 µm/min to 7 µm/min. Although there are very
high speeds observed in Figure 6i, which seem to be outliers, speeds as high as 25 µm/min have been
observed [67]. As expected, rose plots of normalized velocities show no bias in any particular direction
in Figure 6j–l. Along with time scaling of the squared displacement, persistence of motion can be
measured by directionality ratio (distance between cell centroids divided by path length) and velocity
autocorrelation [68]. Expectedly, Figure 7 illustrates that the cells strongly deviate from straight-path
migration (Figure 7 (left); see also time average of the directionality ratio r̄ in Table 1) and the deviation
directions are uncorrelated (Figure 7 (right)). The rapid decay in Figure 7 (right) also suggests that
correlations in time become stationary very fast. The increased oscillations in Figure 7 (right) towards
the end of the observation window are due to decreased number of observations (see Appendix C).

Although our results show in Figure 6d–f the mean-squared displacement scales diffusively
(i.e., linearly) with time, this is not consistent with the reported results. For example, Dietrich et al. [23],
Liang et al. [24] and Liu et al. [31] showed that the displacement scales superdiffusively. In these studies
it was experimentally found that the time scaling went as ∼tβ̄, where β̄ ≈ 1.2− 1.5. The primary
reason why, in our case, we have diffusive behaviour is that, given a certain state of adhesion sites,
there is a complete circular symmetry of the probability rates a±j with respect to xn variable. Due to
this symmetry, then, the probability of moving in one direction is exactly the same as the probability
of moving in the opposite direction if we rotate xn by π radians. Hence, somewhat reminiscent of a
random walk, we have a diffusive time scaling of the squared displacement. Moreover, this symmetry
of the probability rates is somewhat idealistic, since it implies that the signaling activity relevant
for adhesion dynamics is homogeneous within a cell. One of the ways to break this symmetry, is to
multiply each binding probability rate a+j by 1 + u, where u ∼ U(−δ, δ) is uniformly distributed on
the interval (−δ, δ) with δ ∈ (0, 1). Then, on average, the rates are unmodified (the multiplication
factor 1 + u for each j = 1, . . . , M of every cell is computed at the beginning of simulations and is
held fixed thereafter). This way, I not only simulate a non-homogeneous binding rate (and hence,
for example, non-homogeneous Rac activity) within a cell, but also simulate otherwise completely
identical copies of cells. Such a modification, where one does not explicitly apply a directed, predefined
bias can be referred to as chemokinesis [69].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6. Simulation results with M = 8, 16, 32 adhesions in the first, second and third columns,
respectively. (a–c) Trajectories of 13 cell centroids x(t). (d–f) Mean-squared displacements msd(t)
(red, dash) and fitted m̂sd(t) (black, solid) with parameters β0 and β̄ (see text for details). The unit
of β0 is µm2/minβ̄. (g–i) Histograms of speed probability density functions and fitted density
function of gamma distribution (red) with parameters k and θ. (j–l) Relative frequency histogram of
normalized velocities.
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Figure 7. Directionality ratio (left) and velocity autocorrelation (right) for M = 8 (green), 16 (red),
32 (blue).

Table 1. Parameters computed from the simulations.

M 8 16 32

sav, µm/min 1.7595 2.4845 3.6047

sIQR, µm/min 1.4557 2.217 3.1787

β̄, 1 1.0683 1.0035 1.0552

β0, µm2/minβ̄ 2.1493 3.3971 4.6308

r̄, 1 0.0483 0.0408 0.0497

The effect of modifying the rates a+j with δ = 0.05, 0.1, 0.15 can be seen in Figure 8. The cell
trajectories, depicted in Figure 8a–c, show that the motion consists of periods with relatively regular
path intermingled with highly irregular and random movement. In Figure 8d–f, we see that the rate
modification leads to a superdiffusive time scaling of the mean-squared displacement, as the exponent
β̄ becomes larger than one and falls within the experimentally observed range of values [23,24,31].
Moreover, we see that as δ increases, so does β̄, and the increase of the latter is more pronounced for a
larger number of adhesion sites M (see also Table 2). This is due to the fact that as each adhesion site is
modified independently, the variance of the modified rates of a cell grows with the number of FAs,
which corresponds to increased cell polarization, and hence more prominent persistent motion resulting
in higher values of β̄. However, the distribution of speeds for the corresponding values of M is virtually
identical to the case with the unmodified probability rates (Figure 8g–i and Table 2). The uniform
distribution of normalized velocities also remained unchanged (Figure 8j–l). These results suggest
that in the absence of spatial cues, the distribution of speeds for a given adhesiveness (represented by
the total number of adhesions M) remains invariant under symmetry breaking of adhesion binding,
while the diffusion type (normal vs. anomalous) does not. Thus, the adhesion number and its turnover
is a major determinant of the cell speed, which is consistent with [66].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. Simulation results with M = 8, 16, 32 adhesions in the first, second and third columns,
respectively, and with various values of δ. (a–c) Trajectories of 27 cell centroids x(t) with δ = 0.1.
(d–f) Mean-squared displacements msd(t) (solid) and fitted m̂sd(t) (dash) with δ = 0.05 (black),
0.1 (red), 0.15 (blue). (g–i) Superimposed histograms of speed probability density functions and fitted
density function of gamma distribution (solid red) with average parameters k and θ (see text for details).
(j–l) Superimposed histogram of relative frequency of normalized velocities.
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Table 2. Parameters computed from the simulations with varying δ.

M 8 16 32

δ 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

β̄, 1 0.9859 1.3184 1.4084 1.0086 1.3505 1.5581 1.1014 1.4299 1.5639

sav,

µm/min
1.7656 1.7768 1.7557 2.4918 2.5009 2.5021 3.5818 3.5735 3.6104

sIQR,

µm/min
1.3964 1.4319 1.472 2.24 2.2322 2.2355 3.2136 3.1108 3.0269

β0,

µm2/minβ̄
3.0846 0.6934 0.5534 3.4517 0.7103 0.3543 4.1257 0.9536 0.5716

r̄, 1 0.0452 0.0519 0.0597 0.0440 0.0513 0.0587 0.0522 0.05 0.0623

Note that the increased values of β̄ indicate that the cells explore a larger surface
area [68]. However, other indicators of motion persistence are not affected significantly (Figure 9),
although migration paths become slightly straighter, as indicated by increased values of r̄ (Table 2).
These results suggest that symmetry breaking of adhesion binding may allow cells to explore larger
area without introducing velocity correlations (Figure 9d–f).

As cell polarization is required for migration even in the absence of external signals, it is
not surprising that our results show that an imbalance of adhesion formation within a cell
leads to experimentally observed superdiffusive scaling of the squared displacement [23,24,31].
Nevertheless, this highlights a potential mechanism of anomalous diffusion. In the following, I examine
whether our model gives biologically consistent results in the case of externally induced polarization.

(a) (b) (c)

(d) (e) (f)

Figure 9. Persistence of motion for cells with M = 8, 16, 32 adhesions in the first, second and third
columns, respectively, and with δ = 0.05 (green), 0.1 (blue), 0.15 (red). (a–c) Directionality ratio.
(d–f) Velocity autocorrelation.
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6.2. External Cue Gradient

I first investigate how cell trajectories are varied in the presence of an external cue gradient. If a
cue, for example, is a chemoattractant, then it is well known that adhesion formation in a cell is biased
in the direction of the attractant. Thus, to simulate such biased migration, I let the functions Qcue and q
to have the following form (recall Equation (21)):

Qcue(x) =

{
1 + δEx2, if x2 ≥ 0

1, else

q(Qcue(x)) = Qcue(x),

where δE represents the gradient magnitude and x2 is the second component of x. Here, for simplicity
I took the identity function for q and a linear cue gradient in the y coordinate. This cue can represent,
for example, density of ECM or concentration of a chemoattractant. Thus, I simulate, respectively,
hapto- or chemotactic migration.

In the presence of a cue gradient, we see that the cell trajectories, shown in Figure 10a–c, exhibit a
clear trend in the direction of an increasing concentration. The corresponding plots of the mean-squared
displacements show the superdiffusive time scaling in Figure 10d–f, with the exponent β̄ > 1 for
all cases. Notice that as the number of adhesion sites M increases, so does β̄ for the same δE (see
Table 3). Together with the trajectory plots in Figure 10, our results suggest that in the presence of an
external gradient, the taxis becomes more prominent and a cell more sensitive to a cue for increasing
number of FAs. Moreover, comparing with the case of a uniform environment, we see that although the
amoeboid motility is more diffusive in the absence of external cues, it is also more regular and directed
when a cue gradient is present (see Tables 1 and 2 vs. Table 3 and Figures 6 and 8a–c vs. Figure 10a–c).
In Figure 10g–i, we see that the evolution of time-averaged exponents βav(t) (see Appendix C) have
three phases. Following the rapid increase in the first phase, there is a gradual decrease in the rate of
change in the second phase, followed by stabilization of βav(t) at β̄. Curiously, a similar behaviour has
also been observed by Dieterich et al. [23].

The distribution of speeds again remained invariant and the average speeds are very close to
the cases with no external cues (see Table 3). However, the frequency of normalized velocities
(see Figure 11d–f show, as expected, that the cell velocities are aligned with the cue gradient.
Accordingly, we see that persistent motion emerges: directionality ratio increases compared to unbiased
migration (Table 3) and the velocities become correlated (Figure 12d–f). We also observe that an
external signal has a stronger impact on motion persistence for higher number of adhesions due
to relative increases of r̄ and the degree of velocity autocorrelation. Recall that in the presence of,
for example, a chemotactic cue, a cell polarizes so that its adhesion dynamics is aligned with the
gradient. In particular, adhesions are preferentially formed at the front (where the chemoattractant
concentration is larger), and preferentially ruptured at the back. We can see in Figure 11g–i, that our
simulation results reproduce such polarized dynamics: the ratio of binding to unbinding events is
larger (smaller) than unity in the northern (southern) part of the cells, where the cue is stronger
(weaker) relative to the cell centroid. In addition, for a smaller number of adhesion sites, the effects
of increasing the cue gradient have a more noticeable effect on the ratios of events (see Figure 11g–i).
This is simply due to the reduced density of adhesion sites, which leads to larger relative difference in
the concentration of the cue between them. From Figure 13 we can asses the effect of an external cue
Qcue on the the binding rate a+i (omitting the force dependence for clarity), since the rate is proportional
to Qcue.
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Table 3. Parameters computed from the simulations with varying δE.

M 8 16 32

δE 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

β̄, 1 1.2551 1.5051 1.52 1.3405 1.6963 1.7545 1.5427 1.7722 1.8569

sav,

µm/min
1.8136 1.9133 2.0365 2.5235 2.5972 2.6089 3.5819 3.4218 3.3074

sIQR,

µm/min
1.7384 1.5461 1.6434 2.0398 2.1999 2.1180 2.8058 2.9067 3.0175

β0,

µm2/minβ̄
1.0697 0.4625 0.6845 1.0312 0.3496 0.3654 0.8319 0.3412 0.2242

r̄, 1 0.0523 0.0607 0.0693 0.053 0.08 0.097 0.0726 0.1 0.1223

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Simulation results with M = 8, 16, 32 adhesions in the first, second and third columns,
respectively, and with various values of δE. (a–c) Trajectories of 27 cell centroids x(t) with δE = 0.1.
(d–f) Mean-squared displacements msd(t) (solid) and fitted m̂sd(t) (dash) with δE = 0.05 (black),
0.1 (red), 0.15 (blue). (g–i) Time-averaged exponents βav(t).



Symmetry 2020, 12, 1348 29 of 53

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Superimposed histograms of speeds, velocities and adhesion events with M = 8, 16, 32
adhesions in the first, second and third columns, respectively, and with various values of δE.
(a–c) Speed probability density functions and fitted density function of gamma distribution (solid
red) with average parameters k and θ (see text for details). (d–f) Relative frequency of normalized
velocities. (g–i) Ratio of the number of binding to unbinding events in each sector, such that any given
time, only one adhesion site is in each sector.
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(a) (b) (c)

(d) (e) (f)

Figure 12. Persistence of motion for cells with M = 8, 16, 32 adhesions in the first, second and third
columns, respectively, and with δE = 0.05 (green), 0.1 (blue), 0.15 (red). (a–c) Directionality ratio.
(d–f) Velocity autocorrelation.

Together with Figure 13, the simulations illustrate that directed tactic migration, resulting
from biased adhesion formation, follows from the local information about the external cue. That is,
the spatial dependence of the FA binding rate is solely due to the local concentration of an external cue
(see Equation (21)) and no central mechanism for gradient determination was utilized to bias adhesion
formation. Consequently, migration along the gradient of an external cue is achieved without its
explicit “computation” by the cell.
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Figure 13. Concentration of an external cue projected on the cell’s circumference. Gray bullets represent
focal adhesion (FA) sites.

Along with external cue, force dependence of the binding rate is also important for directed
migration and without it, the cells do not exhibit biased migration (data not shown). Figure 14
illustrates how the dependence fits into the migration cycle (recall Figure 1a). For the directed migration
to occur, at the time of FA disassociation xn must be preferentially in the rear (Figure 14 step 2).
After FA unbinding the increased force at the rear FAs due to extended SFs promotes binding
there (Figure 14 step 3). Note that since cell body translocation occurs only after an unbinding event,
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formation of new FA in the prospective rear of the cell does not lead to backwards movement.
In addition, due to the external signal, more FAs tend to be at the front than at the rear.

Thus, the pulling force exerted by the front on the rear tends to be larger than the opposite
and hence the cell moves preferentially in the direction of the gradient. Without the signal,
of course, movement becomes unbiased, as shown in the previous section. This suggests that the
SF length dependence of the forces (see Equation (1)) and the force dependence of the FA binding
rate (see Equation (20)) are necessary for directed migration resulting from biased adhesion formation
in the presence of an external signal.

Figure 14. The force dependence of the binding rate and the biased adhesion formation during the
migration cycle. Side view schematic of the cell is illustrated, where (un)bound FAs are shown as
(white)black circles. (1) Initial configuration. (2) Unbinding leads to cell translocation and motion
of xn within the cell. (3) Increased force on the cell rear (due to its dependence on stress fibre (SF)
extension) promotes FA association due to force dependence k f orce of the binding rate (see Section 5.2.2),
after which the cycle begins anew.

6.3. Fibrillar Architecture of ECM

The ECM topography is another important determinant of directed cell migration. In particular,
the spatial distribution of the ECM fibres guides the motility by inducing cell shape alignment along
the adhesive cues, resulting in characteristic directed movement along the fibre tracts [69]. Such guided
migration is called contact guidance [32,69]. Ramirez-San Juan et al. [32] showed that contact guidance
can be modulated by micrometer scale variations of interfibre spacing. Inspired by this study, I simulate
how subcellular scale fibre spacing influences cell motility, and whether such ECM architecture yields
migration patterns characteristic of contact guidance.
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Similar to the case with an external cue gradient, the functions Qcue and q have the following form:

Qcue(x) =

{
1, if x ∈ ΩδG

0.01, else

q(Qcue(x)) = Qcue(x),

where ΩδG represents the stripe pattern, δG = 0.15, 0.25, 0.35 represents the spacing between stripes
such that the distances between them is δGRcell (Figure 15). The stripe width is taken to be 0.25Rcell .
Similarly as in [32], these dimensions are chosen so that a cell is spread on multiple stripes.

The simulation results, shown in Figure 16, indicate that the cell motility has characteristics of
contact guidance. Namely, the trajectories show preferential horizontal cell movement (Figure 16a–c),
and the displacements are aligned with the fibre pattern (Figure 16d–f). However, increasing the
spacing does not simply lead to a greater adhesion alignment along the horizontal direction, as can be
observed in Figure 16g–i. Rather, it is the combination of the ECM pattern and the radial position of
FAs that gives rise to, for example, definite x-shaped adhesion binding patterns (Figure 16h).

Such binding (and unbinding) pattern leads to fluctuating movement along northwest-southeast
and northeast-southwest axis, with the resulting net migration pattern shown in Figure 16b.
Similarly, the binding pattern shown in Figure 16i with more frequent events along the equator
corresponds to a mixture of diagonal and horizontal movements (Figure 16c), as larger interfibre
spacing precludes FA binding at the poles and facilitates adhesion along, as well as across the stripes
in x-shaped pattern (see also Figure 15 (right) for illustration of a characteristic FA configuration).
On the other hand, smaller spacing also leads to horizontal movement, but with more frequent vertical
displacement across the stripes (Figure 16). These results are also in line with conclusions made by
in [70], where it was found that adhesion alignment determines contact guidance. I also found that the
average speeds were lower than in previous scenarios (Tables 2 and 3): 1.52 µm/min, 0.94 µm/min
and 0.87 µm/min corresponding to, respectively, δG = 0.15, 0.25, 0.35. Interestingly, the average speeds
reported in [32] were∼0.6 µm/min, although in that study the speeds were nearly constant for varying
fibre pattern.

Figure 15. Stripe pattern with δG = 0.15, 0.25, 0.35 on, respectively, left, middle and right plots. A cell
is illustrated such that each FA on a stripe is bound and cell centre x coincides with xn at the origin.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16. Simulation results with M = 16, and δG = 0.15, 0.25, 0.35 in first, second and third
columns, respectively. (a–c) Trajectories of 7 cells and the striped extracellular matrix (ECM) pattern.
(d–f) Relative frequencies of normalized velocities. (g–i) Relative frequencies of binding events in each
of the 16 cell sectors.

In Figure 17, I illustrate the characteristic adhesions pattern and the profiles of the FA binding
rate corresponding to ECM architecture in Figure 15 (right). Assuming that there is a mechanical
equilibrium for simplicity, we see that the adhesion pattern on the cell’s periphery reflect the structure
of the environment, since low values of Qcue translate into low probability of focal adhesion binding.
Alternatively, if the cell is positioned as in Figure 17 (bottom, left), then the adhesion pattern is
modified accordingly. Thus, we see that our assumption about constant relative distance of FAs does
not preclude the characteristic cell adhesion patterns to reflect environmental inhomogeneities (see also
Figure 13).

Altogether, our simulations of contact guidance are, for the most part, consistent with the
observations reported in the literature. In particular, I obtain the expected guidance of cell movement
(Figure 16a–f) and the geometric constraint of adhesion sites (Figure 16g–i) by the fibrillar ECM
pattern, in agreement with [32,69]. Nevertheless, since our model does not explicitly take into account
morphological changes in cell shape (recall that in our model cell shape is normalized to a circle;
see Section 2) and since cell shape control is essential to contact guidance [32,69], increasing the
interfibre distance does not necessarily lead to greater alignment of cell migration along the ECM
fibres in our simulations: the values of the guidance parameter G, defined as in [32] (See Appendix C
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for details), were found to be 0.64, 0.70, 0.64, corresponding to, respectively, δG = 0.15, 0.25, 0.35.
Moreover, in the case when the total number of adhesion sites is very low, the stripes are too narrow,
and the separation between them is large, then it might occur that all adhesion sites “miss” the stripes,
although the cell is spread over multiple stripes. In this case, the probability that any adhesion binds
to the substrate is low, which is not biologically consistent. To remedy these shortcomings, the model
needs to be extended in order to accommodate strong changes to cell morphology.

1

37

9

11 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Qcue

2

456

8

10

141312
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 17. Profiles of an adhesion pattern and an external cue, projected on cell’s circumference.
Bound and unbound focal adhesions are depicted as red and grey circles, respectively. Stress fibres are
also coloured in red.

6.4. Asymmetric Contractility

I now investigate how cell motility is influenced by asymmetrical contractile forces in a cell.
Along with preferential adhesion formation, due to, for example, a chemotactic gradient, formation of
cell rear by increased actomyosin contractile activity serves as an alternative mechanism by which a
directed migration can be induced in the absence of such gradient [52]. In particular, local stimulation
of contractility leads to directed motility in the direction opposite to the stimulated area, even in
the absence of response to chemotactic stimuli [34]. Here, I show that our model is also capable of
capturing such directed movement, triggered by breaking myosin mediated contractile symmetry.

Recall that Ti in Equation (1) denotes the force generated by myosin motors at an adhesion site i.
Instead of taking it constant, it varies with the radial position of an FA. Namely, let Ti : [0, 2π)→ R+

be defined as:

Ti(θ) =

{
(1 + δmyo)Ti0 , if π < θ + (i− 1) 2π

M < 2π

Ti0 , else
,

where δmyo = 0.35, 0.40, 0.45, Ti0 is the constant value used in previous simulations (see Appendix B),
and θ + (i− 1) 2π

M is the radial position of the ith FA. Thus, contractile forces south of cell equator are
larger by 35%, 40%, 45% for corresponding values of δmyo. I should, therefore, expect in our simulations
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that the northern part of a cell becomes the front due to the imposed contractile symmetry breaking,
and that cells will move accordingly (see Figure 18 for illustration).

1

2
3

4

5

6

7

8

Figure 18. A schematic representation of asymmetric contractility. (Bottom row) Increased contractility
causes xn (blue circle) to shift south of the otherwise equilibrium point in the center. (Top row)
Preferential unbinding of FAs south of equator leads to directed movement indicated by blue arrows.
See also Figure 4 (II’) for schematic representation of cell motility in case of an unbinding event.

Indeed, Figure 19a–c shows, as expected, the trajectories of cells maintaining north-south polarity
corresponding to, respectively, front and rear. Since the asymmetry of myosin forces remained during
the simulations, the cell’s north-south polarity also persisted, resulting in the cell movement that
was highly directed along this axis, consistent with [34]. Consequently, higher values of βav(t) are
calculated, as shown in Figure 19d–f. In particular, for δmyo = 0.45, we see that the time scaling of the
mean-squared displacement is close to ballistic (see Table 4 for values of β̄).

Moreover, increasing the number of FAs leads to more polarized, directed migration. As in the
previous cases, neither speed averages (Table 4) nor their distribution (data not shown) changed
significantly for a given number of focal adhesions. Interestingly, for δmyo = 0.35, the binding is
relatively more frequent in the rear (i.e., south of equator) than in the front, and unbinding is relatively
more frequent in the front (i.e., north of equator) than in the back (Figure 19g–i). This suggests,
then, that cells were preferentially moving in the southern direction. However, as can be seen in
Figure 20, this is not the case. Although movements southwards are more frequent in this situation
(due to the above-mentioned event frequencies), the speeds are lower than northward movements:
the ratios of the average speeds directed north to the average speeds directed south were found to
be 1.0165, 1.0181 and 1.0858 corresponding to, respectively, M = 8, 16, 32. The net effect is northward
movement. For higher values of δmyo, we see that the unbinding is, expectedly, more frequent in the
rear, while binding is preferentially in the front.
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Table 4. Parameters computed from the simulations with varying δmyo.

M 8 16 32

δmyo 0.35 0.40 0.45 0.35 0.40 0.45 0.35 0.4 0.45

β̄, 1 1.3072 1.6325 1.7759 1.1311 1.7905 1.8524 1.4650 1.8892 1.9353

sav,

µm/min
1.6230 1.5639 1.5103 2.3742 2.3798 2.3516 3.5861 3.7414 3.7701

sIQR,

µm/min
1.3827 1.4534 1.4607 2.0273 2.0186 2.2693 3.1370 3.2738 3.1152

β0,

µm2/minβ̄
0.7767 0.3659 0.2493 2.3088 0.2893 0.3037 1.0713 0.9894 1.2787

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 19. Simulation results with M = 8, 16, 32 adhesions in the first, second and third columns,
respectively, and with various values of δmyo. (a–c) Trajectories of 13 cells with δmyo = 0.4.
(d–f) Time-average exponents βav. (g–i) Ratio of the number of binding to unbinding events in
each sector.
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Figure 20. Simulated trajectories with M = 8, 16, 32 adhesions with δmyo = 0.35 on left, middle and
right plots, respectively.

These adhesion frequency patterns also illustrate the significance of the force dependence
of the FA binding rate. Recalling Figure 5, we see that, for δmyo = 0.4, 0.45 (corresponding to
Ti = 1.018Fb, 1.054Fb), the binding rate dominates unbinding north of equator due to greater SF
extension (see Figure 18 for an illustration) leading to increased contractile force. Since the expected
adhesion pattern is reversed for δmyo = 0.35 (corresponding to Ti = 0.981Fb) and yet the cells migrate
northwards, it may suggest that there is a threshold value of δmyo, above which cells can migrate in a
certain direction solely by asymmetric contractility, and/or below which cells must additionally bias
adhesion formation to do so.

This prompted us to investigate whether varying mechanical properties of SFs can yield the
expected adhesion pattern for lower degree of asymmetry, corresponding to δmyo = 0.35. Specifically, I
varied the buckling length L0 and stiffness EA such that x = (1 + δx)x0 corresponds to the modified
value of the parameter x ∈ {L0, EA}, where x0 corresponds to the default value given in Appendix B.
In Figure 21a, I see that reducing the buckling length L0 by 27% leads to the expected adhesion pattern,
while reducing it by 18% leaves it largely unchanged. However, decreasing and increasing stiffness
when δL0 = −0.18,−0.27, respectively, leads to the opposite results (Figure 21b,c). This suggests that if
SFs are less prone to buckling and less stiff, lower degree of myosin induced contractile asymmetry
may be required to drive directed migration.

(a) δEA = 0 (b) δL0 = −0.18 (c) δL0 = −0.27

Figure 21. Ratios of the number of binding to unbinding events in each sector with varying buckling
length and stiffness of SFs. (a) The effect of reducing the buckling length L0 with fixed and stiffness
value EA. (b,c) The effects of varying stiffness EA for reduced buckling length.

Remark 5. Another way to induce contractile asymmetry is, for example, to decrease the myosin force Ti north
of the cell’s equator. Then, again, the south of the cell equator is more contractile. However, the simulated
trajectories show southward directed movement (data not shown), contrary to what we should expect. Therefore,
merely inducing contractile asymmetry is not sufficient. For the expected directed migration to occur, there must
be a local increase of contractile forces above some critical level in the prospective cell rear, rather than a local
decrease of contractility in the prospective front. Interestingly, Yam et al. [34] were able to initiate directed
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movement by increasing local actomyosin contraction, while locally decreasing the contractile activity did not
lead to migration initiation. More recently, Shellard et al. [71] showed that directed collective cell migration of
neural crest cells requires greater contractility at the rear of the clump.

7. Discussion and Outlook

In this paper I constructed a stochastic model of cell migration using a minimal representation
of cellular structures, essential for crawling, such as stress fibres and focal adhesions. Using this
representation, and observing that FA assembly and disassembly events of the migration cycle lead
to different migratory outcomes, we obtained the Equations describing deterministic cell motion
between the random occurrence of FA events. After introducing the rates of FA binding and unbinding,
we obtained the remaining necessary objects to define a piecewise deterministic Markov process:
the distribution of interarrival times and of the next FA event. Note that the forms of these distributions
have been derived, rather than simply postulated. Nonetheless, several biological assumptions
were imposed. The most principle of them are:

• The migration cycle is reduced to two steps: FA unbinding leads to movement and cytoskeletal
reconfiguration, while binding to the latter only (Section 2).

• Cell shape is assumed to be spherical and constant (Section 2.1).
• The number of adhesion sites (occupied and unoccupied) is constant (Section 2.3).
• Adhesion binding and unbinding depend on the force applied by stress fibres and position of the

cell, i.e., we omit intracellular biochemical interactions (Section 5).

We refer the reader to the referenced sections for detailed justifications.
Having specified the coupling between SFs and FAs, as well as between the cellular environment

and FAs, I performed numerical simulations. I showed that our model is able to reproduce experimental
observations, such as: superdiffusive scaling of the mean-squared displacement [23,24,31] (Figure 8);
biased motility in the presence of external cue (Figure 10); contact guidance [32] (Figure 16). In these
cases, the obtained results followed solely due to asymmetric, dynamic instability of FAs in direct
response to environmental stimuli. Specifically, it is only the biased FA assembly rate that drives
biased cell motility along the cue gradient or the fibre tracts (Figures 11 and 16d–i). That is, preferred
velocities were not imposed or chosen in any way, but simply followed as a consequence of front-rear
polarity, as the cell front is characterized by preferential FA binding and the rear by unbinding.

Another characteristic of directed migration is the asymmetric contraction of actomyosin bundles.
By increasing the force generation of myosin motors in the prospective rear, I obtained directed
movement in the opposite direction (Figure 20). Here, asymmetric FA dynamics (and so front-rear
polarity) were also obtained, but as a consequence of locally induced contractile activity, consistent
with [34].

Our simulation results in various settings suggest that the cell speeds follow a gamma distribution
(Figures 6g–i, 8g–i and 11a–c). Furthermore, the number of adhesion sites seems to be a determinant
of the gamma distribution, as its parameters are similar under different settings and given number
of FAs. These results suggest that cell speeds are independent of biased FA formation, i.e., the bias
only alters the directionality and not the speed. It is also interesting to see a correlation between the
number of adhesion sites and diffusivity (Table 1), as well as average speed (Tables 1–4). Note that
faster and diffusive amoeboid movement is characterized by an increased number of weaker adhesions
with high turnover and contractility [66]. Thus, the aforementioned correlation is also consistent with
experimental observations. I note that our model is not fit to take into account motility strongly relying
on cell shape control, which is required, for example, in highly mobile cells. However, the simulations
reproduce migration along fibre tracts, where cell reshaping takes place [32]. Our results suggest,
then, that adhesion along the tracts is sufficient to produce such migration patterns.

Although the model of the internal contractile machinery driving cell locomotion and cytoskeletal
remodelling is simple, the resulting numerical simulations reproduce some important aspects of
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migrating cells observed in experiments. Moreover, the cyclical nature of cell motility is captured with
our piecewise deterministic model. While migration of a crawling cell is accompanied by changes in
its shape, dynamic coupling of cell–substrate adhesions and contractile machinery, i.e., focal adhesions
and stress fibres, represent another side of the coin. Numerous sophisticated phase-field or free
boundary models that produce realistic morphology of motile cells, often do not emphasize this
coupling (and stochasticity) during the migration cycle. I attempted to remedy this issue in our
model, and showed with our simulations that numerous aspects of cell migration can be explained
without detailed account of cell shape changes. Nevertheless, shape control is essential for a more
complete description of the phenomena. I believe this can be done with the framework provided
by vertex-based models [72]: a more complex contractility apparatus can be described via active
cable network model [41] and a more detailed account of mechanical forces (e.g., protrusions due
to actin polymerization) can be done as in [14]. Together with models of RhoGTPases signalling
pathways [5,56,73], the most significant drawbacks of our approach (including rigid rotation of the
SF structure) can be overcome. The presented framework of piecewise deterministic motility process
can also be extended to three-dimensional setting, as neither the event interarrival time distribution,
nor the transition measure rely on the particular features of migration in a plane.

However, given the relative simplicity of the stochastic model and its ability to explain a handful
of the experimental observations, it is possible to extend the model to include cell–cell collisions in the
context of contact inhibition of locomotion (CIL). Here, the collisions lead to cessation of locomotion
and to repolarization, such that the formation of new adhesions at the site of contact is inhibited,
while contractility is stimulated [74]. Within the framework of our model this can be implemented in a
straightforward manner: collisions cause a switch to a non-moving state and the FA probability rates
are modified according to contact location, as was done in our work in [35]. Yet another extension
is obtained by treating cells as particles and using kinetic theory, yielding Equations governing
population migration. Thus, we can achieve a multiscale description of cell motility. Due to limitations
in size and scope, cell–cell collisions and population migration will be treated in forthcoming works.
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Abbreviations

The following abbreviations are used in this manuscript:

FA Focal adhesion
ECM Extracellular matrix
SF Stress fibre
PDMP Piecewise deterministic Markov process
MSD Mean-squared displacement

Appendix A. Equations of Cell Motion

In our model, using common, lab’s reference frame will yield the same governing relations,
because the involved forces are determined by relative position of cellular structures. Below, I show
why this is the case and provide a more detailed explanation regarding the Equation of motions for
x, xn, θ1 presented in Sections 2.1 and 2.2.
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Let x′n = x + xn and x′i = x + xi, where primes indicate the corresponding variables in the lab’s
reference frame (recall that xi is the position of the ith FA in cell’s reference frame). Then, in this frame,
the length of the ith SF L′i and the unit vector e′i along it are given by

L′i = ‖x′n − x′i‖ = ‖xn − xi‖ = Li

e′i =
x′n − x′i

L′i
=

xn − xi
Li

= ei,

respectively. Thus, F′i(x
′
n, θ1) = Fi(xn, θ1), where F′i is the force applied by the ith SF at the ith FA.

Note that the force at x′n (or xn) due to the ith SF is −F′i(x
′
n, θ1) (or −Fi(xn, θ1)) by action–reaction

principle. Therefore, net force F′ at x′n is F′(x′n, θ1, Y) = −∑M
i=1 YiF′i = −∑M

i=1 YiFi = F(xn, θ1, Y).
Neglecting inertia, we have

βcell ẋn = F(xn, θ1, Y) = F′(x′n, θ1, Y).

Now, let us examine the Equations of motion after FA unbinding, stated in Section 2.2.2, but in
lab’s reference frame. In this frame, the radial unit vector r̂′(x′n) from the cell centre x is given by
(see Figure 3 in the manuscript for illustration)

r̂′(x′n) =
x′n − x
‖x′n − x‖ =

xn

‖xn‖
= r̂(xn).

Analogously, the tangential unit vector ϕ̂′(x′n) is given by

ϕ̂′(x′n) =

(
−

x′n,2 − x2

‖x′n − x‖ ,
x′n,1 − x1

‖x′n − x‖

)T

=

(
− xn,2

‖xn‖
,

xn,1

‖xn‖

)T
= ϕ̂(xn).

Note that the tangential component F′ϕ of the force F′ at x′n induces rotational motion, while the
radial component F′r of the force F′ at x′n induces translational motion. These components are given by:

F′ϕ = F′(x′n, θ1, Y) · ϕ̂′(x′n) = F(xn, θ1, Y) · ϕ̂(xn) = Fϕ

F′r = F′(x′n, θ1, Y) · r̂′(x′n) = F(xn, θ1, Y) · r̂(xn) = Fr.

Neglecting rotational inertia, we then have

βrot θ̇1 = ‖x′n − x‖F′ϕ(x′n, θ1, Y)

= ‖xn‖Fϕ(xn, θ1, Y)

where the right hand side in the first (second) line is the torque due to tangential component of the
force F′ (F) at x′n (xn). As a result of low Reynolds number, we also have

βECMẋ = F′r(x
′
n, θ1, Y)r̂′(x′n)

= Fr(xn, θ1, Y)r̂(xn),

due to translational motion induced by the radial component of the force F′ at x′n.
In the common reference frame, the following system of ODEs holds after unbinding (using the

definition of x′n):

βECMẋ = F′r(x
′
n, θ1, Y)r̂′(x′n)

βcell ẋ
′
n = βcell ẋ + F′(x′n, θ1, Y)

βrot θ̇1 = ‖x′n − x‖F′ϕ(x′n, θ1, Y),
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which is equivalent to Equation (5). Using the common reference frame becomes even less convenient
when formulating and analysing our stochastic process of cell motility. Moreover, our approach in the
main text does not contradict the formulation with the single reference frame, and is equivalent to it.

Appendix B. Parameter Assessment

The values of all parameters have been summarized in Table A1. Below we provide the
justification. Note that the length of myosin mini-filaments is ∼0.3 µm [75] and the interfilament
distance is ∼1 µm in an uncontracted fibre [76]. Assuming vanishing interfilament distance
(see Figure 2 for illustration and [40] for a review on actomyosin contraction mechanism),
then the proportion of the minifilaments to the initial, uncontracted SF length is 0.3

1+0.3 = 0.23.
Kassianidou et al. [42] showed that the retraction length scales linearly with the initial length. If the
interfilament distance vanishes, the front myosin motor cannot perform a power stroke and step
forward, which renders the single motor and the entire minifilament unable to apply contractile
stress. Therefore, taking the initial length to be ∼Rcell , I estimate the critical length Lc = 0.2Rcell .
Interestingly, Deguchi et al. [45] found that stress fibres contract, on average, to 20% of their original
length. As stress fibres generally span more than half of a cell, and since it was found that there is a
preexisting strain [45] in them, I estimate L0 = 1.1Rcell .

Taking Rcell = 25 µm, and assuming a SF has at rest the length of Rcell , I can estimate the number
of myosin minifilaments in a fibre to be 25 µm/1.3 µm ≈ 20. It was estimated in [77] that there are
10–30 myosin motors in each minifilament. As each motor produces a force of 2− 10 pN [40,78,79],
I then estimate Ti = 4 nN. Balaban et al. [61] found that focal adhesions apply a constant stress of
∼5.5 nN/µm2 over an area of ∼1 µm2 on an elastic substrate. Thus, I take Fb = 5.5 nN. Assuming a
preexisting strain was 0.1 when these measurements were taken, and since Ti = 4 nN, I then estimate
the one dimensional Young’s modulus EA = 15 nN.

Using Stokes’ Law for drag in the low Reynolds number regime, the drag coefficient βECM can be
estimated as:

βECM = 6πηECMRcell ,

where ηECM is the dynamic viscosity of the environment. Assuming that the viscosity ηECM is higher
than that of water, and taking into account that the contact between cell surface and the substrate
increase the effective friction, I estimate βECM ≈ 10− 103 N·s

m2 × Rcell . Similarly, due to the low Reynolds
number, the rotational drag coefficient βrot is given by:

βrot = 8πηECMR3
cell ≈ 10− 103 N · s

m2 × R3
cell .

In order to obtain estimates for the drag coefficient βcell one needs to have an estimate of the
cytoplasm viscosity. Assessing the effective cytoplasmic viscosity of migrating cells is a challenging
task, since the viscoelastic properties of the cytoskeleton (which, among other things, consists of
polymer networks) are highly dynamic due to constant remodelling and spatiotemporal mediation
of the rheology by various signaling pathways. Particularly, the actin network bundle size and
cross-linkers influence the viscoelastic properties [80]. Furthermore, the effective viscosity experienced
by an experimental probe (or a protein) in polymer solutions depends not only on the type of material
properties of the fluid, but also on the size of a probe [81]. Using a small molecule as a probe,
the cytoplasm viscosity was found to be ' 2− 3× 10−4Pa·s [82]. With larger probes, the viscosity was
found to be ' 2− 4× 10−2Pa·s [81] and ' 5× 10−2Pa·s[83] . Assuming that the body being dragged
in the cell is the nucleus with spherical, constant shape and radius Rnucleus, I estimate:

βcell = 6πηcell Rnucleus ≈ 10− 102 N · s
m2 × Rnucleus,
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where ηcell is the cytoplasm viscosity. The assumption that the nucleus has constant shape reflects the
fact that it is significantly stiffer compared to the cytoplasm [84].

Table A1. Parameters used for simulation and their relative size with respect to spatial, temporal and
force scales. See Section 2.3 for details.

Parameter Value Value Parameter Value Value

Ti 4 nN 0.72 Rcell 25 µm 1

EA 15 nN 2.72 L0 27.5 µm 1.1

Fb 5.5 nN 1 Lc 5 µm 0.2

k0
o f f 0.05 s−1 1 βrot 1.56× 10−11N · s ·m 5.68

k0
on 0.01 s−1 0.2 βECM 5× 10−4 N·s

m 0.11

Rnucleus 5 µm 0.2 βcell 5× 10−3 N·s
m 1.14

Note that a focal adhesion is a cluster of transmembrane receptors (integrins) linking the substrate
with the cytoskeleton, which is always under tension. The cluster also includes adapter proteins,
which interlinks these receptors with the cytoskeleton (see e.g., reviews [85,86]). Thus, if there is no
load on a focal adhesion, then, since the cytoskeleton is always under tension, such a focal adhesion
can be treated as a complex of independent bonds to the substrate without a link to SF. In the absence
of a load, the average cluster lifetime Tli f e is given by [87]:

Tli f e =
1

k1
0 + k1

on

[
HN +

N

∑
n=1

(
k1

on

k1
0

)n
1
n

(
N
n

)]
,

where N is the number of bonds in a cluster, HN is the Nth harmonic number, k1
0 and k1

on are,
respectively, unbinding and binding rates of integrins under no load. Note that in the absence
of a load, (re-)binding of individual integrins is an independent event, which bears no relation to the
FA, since tension is required for an FA to form and sustain itself. I then estimate:

k0
o f f = 1/Tli f e|k1

on=0= k1
0/HN .

Li et al. [88] found that k1
0 = 0.012 s−1 for α5β1-integrin binding to fibronectin.

For N = 103 − 104 I estimate that k0
o f f = 0.05 s−1 − 0.1 s−1.

The rationale for simulating M = 8, 16, 32 FAs is the following. Note that the number of
cell–substrate adhesions is higher than the number of focal adhesions chosen for the simulations.
However, not all adhesions are directly involved in translocating the cell body, during which large
traction forces are applied to the substrate through focal adhesions (which are fewer in number than
immature, less stable focal complexes/points and nascent adhesions). Moreover, detachment of
focal adhesions that leads to translocation, is primarily the result of contractile tension applied by
ventral stress fibres, as opposed to transverse arcs and dorsal stress fibres [89]. The latter two have
primarily structural role, while the former is fundamental to rear retraction [89,90]. Thus, the number
of focal adhesions that are directly involved in cell body translocation is controlled by the number
of the associated ventral stress fibres, which are also the most significant source of traction force
applied to the substrate due to large tension within them [62,89]. Although reports of ventral stress
fibre numbers are elusive, visual inspection of the fluorescence images in, for example, [62,91,92]
(or any other appropriate study) suggests that simulations with the chosen number of (ventral) fibres
(and focal adhesions) are realistic. Moreover, diameter of focal adhesions d ∼ 1− 5 µm [39]. Assuming
that the separation between focal adhesions is comparable to their size, and taking the cell radius to be
Rcell = 25 µm (as in our simulations), we see that the upper range of possible number of adhesions
on the cell circumference is 2πRcell/2d ≈ 16− 80. I reiterate that this number is an estimate of focal
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adhesions attached to ventral stress fibres, and it underestimates the total number of focal adhesions
that a cell employs, since significant number of them are attached to other types of stress fibres and
may also be present within the cell body and not on its periphery. I performed simulations with
M = 64 focal adhesions and did not find any added insight.

The values of γ1, γ2 and ε, mentioned in Section 5.2.2, can be found as follows:
Suppose F ≤ Fb. Then,

γ1 = − Fb
F− F∗1

log

(
k0

o f f e + k0
on

k f orce(F)− k0
on + ε

− 1

)
.

Since k f orce(0) = k0
on and k f orce(Fb) = k0

o f f e, then:

γ1 =
Fb
F∗1

log

(
k0

o f f e + k0
on

ε
− 1

)

γ1 = − Fb
Fb − F∗1

log

(
k0

o f f e + k0
on

k0
o f f e− k0

on + ε
− 1

)
.

It follows that ε is given as the solution of the following Equation:

Fb
F∗1

log

(
k0

o f f e + k0
on

ε
− 1

)
+

Fb
Fb − F∗1

log

(
k0

o f f e + k0
on

k0
o f f e− k0

on + ε
− 1

)
= 0.

Similarly, since k f orce(Fb) = k0
o f f e, I find:

γ2 =
Fb

Fb − F∗2
log

(
k0

o f f e + k0
on

k0
o f f e− k0

on
− 1

)
.

The values of γ1, γ2, and ε are fixed for a value of Fb.

Appendix C. Data Analysis

Given that the time interval [0, tend] is divided into ntime subintervals of equal length ∆t and given
the positions xi(tj) of cell i at the time points tj := j∆t, j = 0, . . . , ntime, the mean-squared displacement
msdi(tj) of cell i ∈ {1, . . . , ncells} over a time interval of length tj is given by:

msdi(tj) :=
1

ntime − j

ntime−j

∑
k=1
‖xi(tj+k)− xi(tk)‖2, (A1)

where j = 1, . . . , ntime − 1 and ncells is the total number of cells. Then, the mean-squared displacement
msd(t) of an ensemble of cells over time interval of length tj is defined by:

msd(t) :=
1

ncells

ncells

∑
i=1

msdi(tj). (A2)

Remark A1. In general, the (time-averaged) mean-squared displacement < d2(t, T) > of a particle trajectory
x(t) at the time t, time endpoint T is formally defined as:

< d2(t, T) >=
1

T − t

∫ T−t

0
‖x(s + t)− x(t)‖2ds. (A3)
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For an ergodic process, we have:

lim
T→∞

< d2(t, T) >=< x2(t) >,

where < x2(t) > is formally defined as:

< x2(t) >=
∫

x2Pt(dx),

and Pt(dx) is the probability measure of the underlying stochastic process at time t. That is, for an
ergodic process, and for sufficiently long times, the time average equals the phase space average.
However, our cell motility process need not be ergodic and hence, using a quadrature to evaluate
the integral in Equation (A3), I obtain time average displacement in Equation (A1). To smooth
out trajectory-to-trajectory fluctuations, I then average the displacements over all trajectories in
Equation (A2).

For a diffusive motion one expects that msd(t) ∼ tβ(t) with β(t) ≈ 1, while for a ballistic motion
β(t) ≈ 2. Since msd(0) = 0, I can estimate the exponent β(t) for t ∈ [∆t, tend − ∆t] from the simulated
data as:

β(t) =
d ln msd(t)

d ln t
.

Although averaging reduces fluctuations, it does not eliminate them completely. Thus, computing
the derivative above will yield a result that may oscillate wildly, which we want to avoid. Then, in order
to investigate how β varies with time, I define the time average βav(t) over the interval [∆t, t] as:

βav(t) :=
1

t− ∆t

∫ t

∆t
β(s)ds =

1
t− ∆t

(
s ln msd(s)

∣∣∣∣t
∆t
−
∫ t

∆t
ln msd(s)ds

)
,

where t ∈ [2∆t, tend−∆t], and I used integration by substitution and by parts. Then, β̄ := βav(tend−∆t)
estimates the time scaling of msd over the whole time interval. To asses how well β̄ reflects the scaling of
msd, I define the following function m̂sd(t) := β0tβ̄, where β0 is found by minimizing the square error:

min
β0

1
2

ntime−1

∑
j=1

(
β0tβ̄

j −msd(tj)
)2
⇒

β0 =
∑ntime−1

j=1 msd(tj)t
β̄
j

∑ntime−1
j=1 t2β̄

j

.

Letting β̄ = βav(t− ∆t) to asses time scaling of msd ∼ tβ(t) is more accurate than the standard
methods used for Brownian motion, since it also takes into account time dependence of the exponent.
In addition, our stochastic model has no Gaussian component. I refer to Section 6 for comparisons
between msd and m̂sd, which show that the former well approximates the latter. The sample size used
to compute βav and β0 in Section 6 was ncellntime = 2.8× 105.

Note that because binding events can occur, a cell need not to have moved between the two time
points tj and tj+1. Thus, the speed between the consecutive time points may be zero for many time
points, which would give an inaccurate statistical assessment of cell speeds. In order to estimate the
speeds of a cell i I use the following procedure:

First, I find li, given by:

li := min
{

l ∈ N : xi(tl+k) 6= xi(tk), 0 ≤ k < ntime, l + k ≤ ntime

}
.



Symmetry 2020, 12, 1348 45 of 53

Then I find the set of speeds Si as:

Si :=

{
s ∈ R+ : s =

‖xi(t(k+1)li )− xi(tkli )‖
li∆t

, k ∈ N, (k + 1)li ≤ ntime

}
.

This simply means that to compute speeds I only use a (minimal) time interval, such that a cell i is
guaranteed to change its position. The total set of speeds for ncells is S := ∪ncells

i=1 Si. The average speed
sav is then defined as arithmetic average:

sav :=
1
|S| ∑

s∈S
s.

The sample sizes used to compute sav in Section 6 were on the order of 2× 105. It is less than
ncellsntime, since non-zero speeds have been excluded.

The set of normalized velocities Vi (or, alternatively, displacements) of cell i is given by:

Vi :=

{
v ∈ R2 : v =

xi(t(k+1)li )− xi(tkli )

‖xi(t(k+1)li )− xi(tkli )‖
, k ∈ N, (k + 1)li ≤ ntime

}
,

and the total set of normalized velocities V is given by V := ∪ncells
i=1 Vi.

The directionality ratio ri(tj) of cell i over a time interval of length tj is given by:

ri(tj) :=
∑

j
k=1‖x

i(tk)− xi(tk−1)‖
‖xi(tj)− xi(t0)‖

.

The population and the time averages of the directionality ratio are given by, respectively:

r(tj) =
1

ncell

ncell

∑
i=1

ri(tj)

r̄ =
1

ntime

ntime

∑
j=1

r(tj).

The sample size used to compute r̄ in Section 6 was ncellntime = 2.8× 105.
Velocity autocorrelation vi

ac(tj) of cell i over a time interval of length tj is given by:

vi
ac(tj) :=

1
ntime − j

ntime−j

∑
k=1

vi(tj+k) · vi(tk)

‖vi(tj+k)‖ ‖vi(tk)‖
,

where j = 1, . . . , ntime − 1 and vi(tk) =
(
xi(tk)− xi(tk−1)

)
/∆t. Velocity autocorrelation of the

population vac(t) is simply the arithmetic average of each cell’s velocity autocorrelation. To compute
vac I used the time step of 12 min, whereas for all other quantities involving time dependence (e.g., msd)
I used the time step of 0.12 min.

Defining the guidance parameter G ∈ [0, 1] similarly as in [32]:

G :=
1
|Θ| ∑

θ∈Θ
g(θ),

where Θ := ∪ncells
i=1 Θi. The set Θi of angles between a displacement vector of cell i and the ECM fibres

is defined by
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Θi :=

{
θ ∈ [−π

2
,

π

2
] : θ = arcsin

(
xi

2(t(k+1)li )− xi
2(tkli )

‖xi(t(k+1)li )− xi(tkli )‖

)
, k ∈ N, (k + 1)li ≤ ntime

}
,

where xi
2 is the y-component of xi. The function g : [−π

2 , π
2 ]→ {0, 1} is given by

g(θ) =

{
1, if |θ| ≤ π/4

0, else
.

Thus, G increases when displacements are aligned with the horizontal axis.

Data Variability

To asses the variability of speeds, the interquartile ranges have been reported along with average
speeds (see Tables 1–4). We see that the ranges are similar to the means. Together with histogram plots
of speeds, we can conclude that most of the values fall in the middle 50% of data set. That is, very high
or low speeds are relatively rare.

Other parameters computed from the data depend on time and in order to asses their variability
one can observe the corresponding plots:

• Figures 7, 9a–c and 12a–c show plots of directionality ratio r, where we can see the variations
(i.e., oscillations) are rather small.

• Figures 10g–i and 19d–f show variations of the exponent βav in time, where we also observe
relatively smooth graphs.

In both of these cases, the plots are smooth due to abundance of sample size and in part due to
their definitions (see above), which smooths out oscillations. As a result of how well the time averaged
parameters fit the simulated mean-squared displacement data (Figures 6d–f, 8d–f and 10d–f), lack of
oscillations in parameter values in time, abundance of sample size, I deemed that further statistical
investigations of time-series to be unnecessary.

Appendix D. Simulation of the PDMP

In order to compute the trajectories of the cell motility process, the following Algorithm A1 is
used:

Algorithm A1 Simulation of the PDMP.

1. Set (ν0, X0) ∈ A× Γ and t = T0 = 0
2. For k = 0, 1, . . .

Generate interarrival time ∆k = Tk+1 − Tk, whose distribution function is given by:

P (∆k ≤ τ) = 1− exp
(
−
∫ t+τ

t
a0(νt, φν(s, Xt))ds

)
(A4)

Compute Xt+s− := φν(s, Xt)
Set t = Tk+1 = Tk + ∆k
Generate (νt, Xt) ∼ Q(·; (νt− , Xt−))

To generate the interarrival time ∆k, we need to solve for τ in the following Equation:

f (τ) :=
∫ t+τ

t
a0(νt, φνt(s, Xt))ds + ln(1− u) = 0, (A5)
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where u is uniformly distributed on the interval (0, 1).
Notice that the evaluation of the integral by a quadrature rule requires computing the solution

Xt+s = φνt(s, Xt) up to time s, where s is a quadrature point. Moreover, using an iterative method to
solve Equation (A5) requires computing the integral at each iteration. Therefore, it is imperative to
devise an efficient method to sample from distribution Equation (A4). In the following, I propose a
general method to generate the next event time.

Appendix D.1. Simulation of the Next Event Time

Let Tk ≤ t < Tk+1 and let G(·; h) : Γ→ Γ represent a numerical method to solve the ODE system

d
dt

Xt = Hνt(Xt)

for one time step h. That is, Xt+h = G(Xt; h) is the numerical solution of the above ODE system at time
t + h.

Let [Tk, Tk+1)
2 3 (s′, t′) 7→ A0(t′, s′) :=

∫ t′
s′ a0(νt, φνt(u, Xt))du denote the integrated rate function.

The method to find the root τ of Equation (A5) is given in Algorithm A2. First, in steps (1–22),
I find the upper bound τmax by solving the ODE system for n steps with step size h and store the
solution, the computed rate a0 and the integrated rate A0 at these time steps. Then, for any τ ≤ τmax

one can compute A0(t + τ, t) upon using the stored value of A0 at time t + τi, where i =
⌊

τ
h
⌋

and
τi = ih:

A0(t + τ, t) =
∫ t+τ

t
a0(νt, φνt(s, Xt))ds

=
∫ t+τi

t
a0(νt, Xt+s)ds +

∫ t+τi+τ−τi

t+τi

a0(νt, φνt(s, Xt))ds

= A0(t + τi, t) +
∫ t+τi+hi

t+τi

a0(νt, φνt(s, Xt))ds.

To compute the last integral in the expression above, we interpolate the integrand using the stored
values a0(νt, Xt+τi ) and a0(νt, Xt+τi+1). Let

I
(
a0(νt, Xt+τi ), a0(νt, Xt+τi+1); hi, h

)
:=
∫ t+τi+hi

t+τi

a0(νt, φνt(s, Xt))

denote the approximation of the integral using interpolated integrand. We can use the following
interpolation methods for t + τi < s < t + τi+1:

1. Piecewise constant
Forward: a0(νt, φνt(s, Xt)) = a0(νt, φνt(τi, Xt)) = a0(νt, Xt+τi ).

I
(
a0(νt, Xt+τi ), a0(νt, Xt+τi+1); hi, h

)
= hia0(νt, Xt+τi ). (A6)

Backward: a0(νt, φνt(s, Xt)) = a0(νt, φνt(τi+1, Xt)) = a0(νt, Xt+τi+1)

I
(
a0(νt, Xt+τi ), a0(νt, Xt+τi+1); hi, h

)
= hia0(νt, Xt+τi+1). (A7)

2. Average: a0(νt, φνt(s, Xt)) =
1
2
(
a0(νt, Xt+τi ) + a0(νt, Xt+τi+1)

)
.

I
(
a0(νt, Xt+τi ), a0(νt, Xt+τi+1); hi, h

)
=

1
2

hi
(
a0(νt, Xt+τi ) + a0(νt, Xt+τi+1)

)
. (A8)
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3. Piecewise linear:

a0(νt, φνt(s, Xt)) = (s− t− τi)
a0(νt, Xt+τi+1)− a0(νt, Xt+τi )

h
+ a0(νt, Xt+τi ).

I
(
a0(νt, Xt+τi ), a0(νt,Xt+τi+1); hi, h

)
.

= hia0(νt, Xt+τi )

(
1− hi

h

)
+

h2
i

2h
a0(νt, Xt+τi+1). (A9)

Thus, f (τ) can be evaluated using Equations (A6)–(A9):

f (τ) = A0(t + τi, t) + I
(
a0(νt, Xt+τi ), a0(νt, Xt+τi+1); hi, h

)
+ ln(1− u).

Algorithm A2 Event time computation.

1: procedure INITIALIZATION
2: Input: Time t = Tk; (νt, Xt); time step h and ODE method G; n, m ∈ N.
3: Set s0 := 0, n0 := 0, create Lista0 , ListA0 , and ListX.
4: Append Lista0 ← a0(νt, Xt), ListA0 ← 0, ListX ← Xt.
5: Set τmax := nh, s0 := n0h.
6: Set initial condition Xs ← ListX[last].
7: Set A0

0 := ListA0 [last].
8: for i = 1 to n do
9: si := t + s0 + ih.

10: Compute Xsi := G(Xs; h) and a0(νt, Xsi ).
11: Compute A0(si; t + s0) with quadrature points sj, j = 0, . . . , i.
12: A0(si; t) := A0

0 + A0(si; t + s0).
13: Append Lista0 ← a0(νt, Xsi ), ListA0 ← A0(si; t), ListX ← Xsi .
14: end for
15: Generate u ∼ U(0, 1).
16: if ListA0 [last] < −ln(1− u) then
17: n := n + m.
18: n0 = n0 + m.
19: go to 5.
20: end if
21: Output: τmax, Lista0 , ListA0 , and ListX.
22: end procedure
23: procedure EVALUTION OF f
24: Input: τ; time step h; Lista0 , ListA0 ; Integrated interpolation method I.
25: Set i :=

⌊
τ
h
⌋

and hi = τ − ih.
26: Output: f (τ) = ListA0 [i] + I(Lista0 [i], Lista0 [i + 1]; hi, h) + ln(1− u)
27: end procedure
28: procedure EVENT TIME
29: Find the root τ of f (τ) = 0 using 23 and a root finding method.
30: i :=

⌊
τ
h
⌋
.

31: Compute Xt+τ := G(ListX[i]; τ − ih).
32: Output: τ, Xt+τ

33: end procedure

Using the interpolations above, one can now employ, for example, Newton’s method to find the
root of Equation (A5):

τl+1 = τl −
f (τl)

a0(νt, φνt(τl , Xt))
,

or any other root-finding method (note that a0 > 0).
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Once the root is found, one simply advances the ODE system for one time step as described in
Steps (28–33) of the Algorithm A2.

Note that one solves the ODE system for n + 1 = τmax/h + 1 steps and also solves for the
interarrival time τ primarily by using a look-up table. Moreover, obtaining a relatively sharp
upper bound τmax does not yield a large computational overhead, since one simply can start the
Algorithm A2 with a small n, m. Consequently, choosing an initial guess close to the sharp upper
bound for Newton’s method results in a faster convergence. In case of thinning methods (see [93]
or [94] for adaptive method), after each rejection one needs to solve the ODE system for time period
that is, on average, approximately the same as τmax (in the best case scenarios for both methods,
i.e., when the bound τmax and the bound for the rate function in thinning methods are sharp). Of course,
these arguments hold when the computational cost of solving the ODE system is relatively large.

Appendix D.2. Sampling from the Transition Measure

Given the time t of the next event and Xt one needs to sample from the transition distribution
Q(·, (νt− , Xt−)). Recalling Section 3.2 and the proof of Proposition 5, in order to sample from the
transition measure it is sufficient to simulate the index j ∈ {1, . . . , 2M} of the next reaction, since the
continuous component of the process does not jump. The discrete distribution of the next reaction
index is given by Equation (18):

P(j|α2(νt−), Xt−) =
aj(α2(νt−), Xt−)

a0(α2(νt−), Xt−)
.

To simulate from the discrete distribution one can use the fairly efficient Vose Alias Method [95].
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