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Abstract: We perform a detailed (computational) scaling study of well-known general indices
(the first and second variable Zagreb indices, Mα

1 (G) and Mα
2 (G), and the general sum-connectivity

index, χα(G)) as well as of general versions of indices of interest: the general inverse sum indeg index
ISIα(G) and the general first geometric-arithmetic index GAα(G) (with α ∈ R). We apply these indices
on two models of random networks: Erdös–Rényi (ER) random networks GER(nER, p) and random
geometric (RG) graphs GRG(nRG, r). The ER random networks are formed by nER vertices connected
independently with probability p ∈ [0, 1]; while the RG graphs consist of nRG vertices uniformly
and independently distributed on the unit square, where two vertices are connected by an edge if
their Euclidean distance is less or equal than the connection radius r ∈ [0,

√
2]. Within a statistical

random matrix theory approach, we show that the average values of the indices normalized to the
network size scale with the average degree 〈k〉 of the corresponding random network models, where
〈kER〉 = (nER− 1)p and 〈kRG〉 = (nRG− 1)(πr2− 8r3/3+ r4/2). That is, 〈X(GER)〉 /nER ≈ 〈X(GRG)〉 /nRG

if 〈kER〉 = 〈kRG〉, with X representing any of the general indices listed above. With this work, we give
a step forward in the scaling of topological indices since we have found a scaling law that covers
different network models. Moreover, taking into account the symmetries of the topological indices
we study here, we propose to establish their statistical analysis as a generic tool for studying average
properties of random networks. In addition, we discuss the application of specific topological indices
as complexity measures for random networks.

Keywords: computational analysis of networks; general topological indices; Erdös–Rényi networks;
random geometric graphs

1. Introduction

Harold Wiener can be considered the pioneer in the study of the so-called topological indices.
His first investigations in this subject appeared in 1947 [1]. There, he introduced the today known as
Wiener index in order tu analyze and correlate physicochemical properties of alkanes. The topological
indices associate a numerical value to topological properties of discrete structures, based on its
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invariants. The initial goal of the study of topological indices was to establish quantitative relationships
between different structures and properties of molecules. Winner’s work did not produce an immediate
impact. Note that it was about 30 years later, in 1971, that Haruo Hosoya continued the research on
topological indices by introducing the Z index [2]; currently known as the Hosoya Z index, which has
been successfully applied in establishing quantitative structure–property relationships (QSPRs) and
quantitative structure–activity relationships (QSARs).

It is also fair to recognize the relevance of the contributions made by two important groups in
the study and development of topological indices. On the one hand, the extinct group of the Ruder
Boskovic Institute in Zagreb, where the mathematical and computational properties of the well-known
Zagreb indices were first studied. In fact, the first and second Zagreb indices appeared for the first
time in 1972, a year later than the Hosoya Z index, in a paper by Gutman and Trinajstić [3,4]. On the
other hand, the group leaded by Milan Randić, whose index, the Randić index (introduced in 1975 [5]),
is presumably the most studied and applied topological index.

Later on, the concept of variable molecular descriptors was proposed as a way of characterizing
heteroatoms in molecules (see [6,7]). The essential idea is that the variables are determined during the
regression; this allows making the standard error of the estimate for a particular property (targeted in
the study) as small as possible (see, e.g., [8]).

Given a network G = (V(G), E(G)), the first and second variable Zagreb indices are defined
as [8–10]

Mα
1 (G) = ∑

u∈V(G)

(ku)
α (1)

and
Mα

2 (G) = ∑
uv∈E(G)

(kukv)
α, (2)

respectively, with α ∈ R, ku is the degree of the vertex u, and uv denotes the edge of the network G
connecting the vertices u and v. Note that M2

1(G) is the first Zagreb index M1(G) and M−1
1 (G) is the

inverse degree index ID(G). Furthermore, notice that M−1/2
2 (G) is the usual Randić index R(G) and

M1
2(G) is the second Zagreb index M2(G). The second variable Zagreb index has found applications

in the structure-boiling point modeling of benzenoid hydrocarbons [11].
The general sum-connectivity index was defined in [12] as

χα(G) = ∑
uv∈E(G)

(ku + kv)
α. (3)

Some relations of this and other indices are reported in [13]. Note that χ1(G) is the first Zagreb index
M1(G), 2χ−1(G) is the harmonic index H(G) and χ−1/2(G) is the sum-connectivity index χ(G).

Moreover, here we introduce two new general indices: the general inverse sum indeg index and
the general first geometric-arithmetic index, that we define as

ISIα(G) = ∑
uv∈E(G)

(
kukv

ku + kv

)α

(4)

and

GAα(G) = ∑
uv∈E(G)

( √
kukv

2(ku + kv)

)α

, (5)

respectively. Evidently, ISI1(G) and GA1(G) are the standard inverse sum indeg index ISI(G) and
first geometric-arithmetic index GA(G), respectively. We note that a general inverse sum indeg index
similar to ours was recently proposed in [14]. Furthermore, for reviews on geometric-arithmetic indices
and a new variant of the geometric-arithmetic index (to get a better estimates of the boiling point of
alkanes) see Refs. [15,16] and [17], respectively. We stress that the goal of introducing these two general
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indices is to show that the statistical approach described below is so general that can be applied to
any general index, even these new ones with still unknown properties. Thus, we will not focus on
their mathematical properties here. Instead we discuss the application of specific topological indices
as complexity measures for random networks (see Section 4) and leave the mathematical study and
other possible applications for future research.

Here we consider two models of random networks G: Erdös–Rényi (ER) random networks
GER(nER, p) and random geometric (RG) graphs GRG(nRG, r). The ER random networks, introduced by
Solomonoff and Rapoport [18] and investigated later in great detail by Erdös and Rényi [19–21],
are formed by nER vertices connected independently with probability p ∈ [0, 1]. While the RG
graphs [22,23], often used to study the structure and dynamics of spatially embedded complex systems,
consist of nRG vertices uniformly and independently distributed on the unit square, where two vertices
are connected by an edge if their Euclidean distance is less or equal than the connection radius
r ∈ [0,

√
2]. We stress that the statistical study of topological indices we perform here is justified by

the random nature of the network models we want to explore. Since a given parameter pair (nER, p)
[(nRG, r)] represents an infinite-size ensemble of ER random networks (RG graphs), the computation of
a topological index on a single network is irrelevant. In contrast, the computation of a given topological
index on a large ensemble of random networks, all characterized by the same parameter pair (nER, p)
[(nRG, r)], may provide useful average information about the full ensemble. This statistical approach,
well known in random matrix theory studies, is not widespread in studies involving topological
indices, mainly because topological indices are not commonly applied to random networks; for very
recent exceptions see [24,25].

Therefore, the purpose of this work is twofold. First, we propose to establish the statistical
analysis of topological indices as a generic tool for studying average properties of random networks,
and second, we perform for the first time (to our knowledge), a scaling study of general topological
indices on random networks.

Our results are presented separately for ER random networks and RG graphs in Sections 2 and 3,
respectively. Finally, the discussion and conclusions are drawn in Section 4.

2. Erdös–Rényi Random Networks

In what follows, we present the average values of the indices listed in Equations (1)–(5).
All averages are computed over ensembles of 107/nER ER random networks characterized by the
parameter pair (nER, p).

2.1. Computational Properties of General Indices on Erdös–Rényi Random Networks

In Figures 1a–5a we present, respectively, the average first variable Zagreb index
〈

Mα
1 (GER)

〉
,

the average second variable Zagreb index
〈

Mα
2 (GER)

〉
, the average general sum-connectivity index

〈χα(GER)〉, the average general inverse sum indeg index 〈ISIα(GER)〉 and the average general first
geometric-arithmetic index 〈GAα(GER)〉 as a function of the probability p of ER random networks of
size nER = 1000. There, we show curves for α ∈ [−2, 2]. As a reference, red curves correspond to α = 0
while blue curves indicate α = 1.

From these figures we observe that:

(i) The curves of
〈

Mα
1 (GER)

〉
,
〈

Mα
2 (GER)

〉
, 〈χα(GER)〉 and 〈ISIα(GER)〉 show three different behaviors

as a function of p depending on the value of α: for α < α0, they grow for small p, approach
a maximum value and then decrease when p is further increased. For α > α0, they are
monotonically increasing functions of p. For α = α0 the curves saturate above a given value of p.
See Figures 1a–4a.

(ii) α0 = 0 for
〈

Mα
1 (GER)

〉
, where

〈
Mα0

1 (GER)
〉

is the average number of non-isolated vertices 〈V×(GER)〉;
α0 = −1/2 for

〈
Mα

2 (GER)
〉
, where

〈
Mα0

2 (GER)
〉

is the average Randic index 〈R(GER)〉; α0 = −1
for 〈χα(GER)〉, where 2 〈χ−1(GER)〉 is the average Harmonic index 〈H(GER)〉; and α0 = −1 for
〈ISIα(GER)〉, so 〈ISI−1(GER)〉 = 〈V×(GER)〉.
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(iii) All curves of 〈GAα(GER)〉 grow linearly with p for all α and nER; see the magenta dashed line in
Figure 5a, plotted to guide the eye.

(iv) For α = 0, see the red curves in Figures 2a–5a,
〈

M0
2(GER)

〉
, 〈χ0(GER)〉, 〈ISI0(GER)〉 and 〈GA0(GER)〉

give the average number of edges of the ER random network. That is〈
M0

2(GER)
〉
= 〈χ0(GER)〉 = 〈ISI0(GER)〉 = 〈GA0(GER)〉 =

nER(nER − 1)
2

p . (6)

(v) When nER p� 1, we can write ku ≈ kv ≈ 〈kER〉 in Equations (1)–(5), with

〈kER〉 = (nER − 1)p. (7)

Therefore, for nER p � 1, the average values of the indices we are computing here are well
approximated by:

〈Mα
1 (GER)〉 = nER[(nER − 1)p]α, (8)

〈Mα
2 (GER)〉 =

nER

2
[(nER − 1)p]1+2α, (9)

〈χα(GER)〉 =
nER

21−α
[(nER − 1)p]1+α, (10)

〈ISIα(GER)〉 = nER

[
(nER − 1)p

2

]1+α

, (11)

〈GAα(GER)〉 =
nER(nER − 1)p

21+2α
. (12)

In Figures 1b–5b, we show that Equations (8)–(12) (red-dashed lines) indeed describe well the
data (thick black curves) for 〈kER〉 ≥ 10.
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Figure 1. (a,b) Average first variable Zagreb index
〈

Mα
1 (GER)

〉
as a function of the probability p of

ER random networks of size nER = 1000. Here we show curves for α ∈ [−2, 2] in steps of 0.2 (from
bottom to top). The red (blue) curve in (a) corresponds to α = 0 [α = 1]. The red dashed lines in
(b) are Equation (8). The blue dashed line in (b) marks 〈kER〉 = 10. (c)

〈
Mα

1 (GER)
〉

as a function of
the probability p of ER random networks of four different sizes nER. (d)

〈
Mα

1 (GER)
〉

/nER as a function
of the average degree 〈kER〉. Same curves as in panel (c). The inset in (d) is the enlargement of the
cyan rectangle.
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Figure 2. (a,b) Average second variable Zagreb index
〈

Mα
2 (GER)

〉
as a function of the probability p of

ER random networks of size nER = 1000. Here we show curves for α ∈ [−2, 2] in steps of 0.2 (from
bottom to top). The red (blue) curve in (a) corresponds to α = 0 [α = 1]. The red dashed lines in
(b) are Equation (9). The blue dashed line in (b) marks 〈kER〉 = 10. (c)

〈
Mα

2 (GER)
〉

as a function of
the probability p of ER random networks of four different sizes nER. (d)

〈
Mα

2 (GER)
〉

/nER as a function
of the average degree 〈kER〉. Same curves as in panel (c). The inset in (d) is the enlargement of the
cyan rectangle.
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Figure 3. (a,b) Average general sum-connectivity index 〈χα(GER)〉 as a function of the probability p
of ER random networks of size nER = 1000. Here we show curves for α ∈ [−2, 2] in steps of 0.2 (from
bottom to top). The red (blue) curve in (a) corresponds to α = 0 [α = 1]. The red dashed lines in
(b) are Equation (10). The blue dashed line in (b) marks 〈kER〉 = 10. (c) 〈χα(GER)〉 as a function of
the probability p of ER random networks of four different sizes nER. (d) 〈χα(GER)〉 /nER as a function
of the average degree 〈kER〉. Same curves as in panel (c). The inset in (d) is the enlargement of the
cyan rectangle.
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Figure 4. (a,b) Average general inverse sum indeg index 〈ISIα(GER)〉 as a function of the probability p
of ER random networks of size nER = 1000. Here we show curves for α ∈ [−2, 2] in steps of 0.2 (from
bottom to top). The red (blue) curve in (a) corresponds to α = 0 [α = 1]. The red dashed lines in (b)
are Equation (11). The blue dashed line in (b) marks 〈kER〉 = 10. (c) 〈ISIα(GER)〉 as a function of the
probability p of ER random networks of four different sizes nER. (d) 〈ISIα(GER)〉 /nER as a function
of the average degree 〈kER〉. Same curves as in panel (c). The inset in (d) is the enlargement of the
cyan rectangle.
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Figure 5. (a,b) Average general first geometric-arithmetic index 〈GAα(GER)〉 as a function of the
probability p of ER random networks of size nER = 1000. Here we show curves for α ∈ [−2, 2] in steps
of 0.4 (from bottom to top). The red (blue) curve in (a) corresponds to α = 0 [α = 1]. The red dashed
lines in (b) are Equation (12). The blue dashed line in (b) marks 〈kER〉 = 10. The magenta dashed line in
(a) proportional to p is shown to guide the eye. (c) 〈GAα(GER)〉 as a function of the probability p of ER
random networks of four different sizes nER. (d) 〈GAα(GER)〉 /nER as a function of the average degree
〈kER〉. Same curves as in panel (c).
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2.2. Scaling Properties of General Indices on Erdös–Rényi Random Networks

Now in Figures 1c–5c we show 〈X(GER)〉 as a function of the probability p of ER random networks
of four different sizes nER. Here and below, X represents Mα

1 , Mα
2 , χα, ISIα and GAα. It is quite clear

from these figures that the blocks of curves, characterized by the different network sizes, display similar
curves but displaced on both axes. Thus, it is the goal of this section to find the scaling parameters that
make the blocks of curves to coincide.

First, we recall that the average degree 〈kER〉, see Equation (7), is known to scale both topological
and spectral measures applied to ER random networks. In particular, 〈kER〉 was shown to scale both
the normalized Randic index [24] and the normalized Harmonic [25] index on ER random networks.

Second, we observe (not shown here) that the effect of increasing the network size is to displace the
blocks of curves 〈X(GER)〉 vs. 〈kER〉, characterized by the different network sizes, upwards in the y−axis.
Moreover, the fact that these blocks of curves, plotted in semi-log scale, are shifted the same amount
on the y−axis when doubling nER is a clear signature of scalings of the form 〈X(GER)〉 ∝ nβ

ER 〈kER〉.
Furthermore, since from Equations (8)–(12) we have that 〈X(GER)〉 ∝ nER 〈kER〉, we anticipate that β = 1
for all α.

Therefore, in Figures 1d–5d we plot 〈X(GER)〉 /nER as a function of 〈kER〉 showing that all indices
are now properly scaled; i.e., the blocks of curves painted in different colors for different network sizes
fall on top of each other. Moreover, following Equations (8)–(12), for 〈kER〉 ≥ 10 we have that〈

Mα
1 (GER)

〉
nER

≈ 〈kER〉α , (13)

〈
Mα

2 (GER)
〉

nER

≈ 〈kER〉1+2α

2
, (14)

〈χα(GER)〉
nER

≈ 〈kER〉1+α

21−α
, (15)

and
〈ISIα(GER)〉

nER

≈ 〈kER〉1+α

21+α
. (16)

While
〈GAα(GER)〉

nER

≈ 〈kER〉
21+2α

(17)

is indeed valid for all 〈kER〉.

3. Random Geometric Graphs

As in the previous section, here we present the average values of the indices listed in
Equations (1)–(5). Again, all averages are computed over ensembles of 107/nRG RG graphs, each
ensemble characterized by a fixed parameter pair (nRG, r).

3.1. The Average Degree of Random Geometric Graphs

We want to stress that, in the previous section, the average degree was shown to be the most
important quantity in the scaling of the general indices on ER random networks. Thus, since the
average degree may also play a prominent role in the scaling of general indices on RG graphs, we focus
on it before starting the study of 〈X(GRG)〉. Then, in Figure 6a we present the average index

〈
M1

1(GRG)
〉

normalized to the network size (symbols), which in fact corresponds to the average degree 〈kRG〉:〈
M1

1(GRG)
〉

nRG

= 〈kRG〉 . (18)

Moreover, an expression for 〈kRG〉 was derived in Ref. [26] and reads as
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〈kRG〉 = (nRG − 1) f (r), (19)

where f (r) is a quite non-trivial function of r:

f (r) = πr2 − 8
3

r3 +
1
2

r4.

Indeed, as shown in Figure 6a, Equation (19) (full lines) coincides perfectly with
〈

M1
1(GRG)

〉
/nRG

(symbols). This fact is of paramount importance to our study because given the similarity of
Equation (18) with Equations (13)–(17), we can already interpret 〈kRG〉 as the scaling parameter of the
index

〈
M1

1(GRG)
〉
. This trivial scaling is shown in Figure 6b where we plot

〈
M1

1(GRG)
〉

/nRG versus
〈kRG〉, as given in Equation (19); there, the curves corresponding to different network sizes collapse on
top of the identity function. Moreover, since

〈
M1

1(GRG)
〉

is a special case of the average first variable
Zagreb index, 〈kRG〉 becomes the perfect candidate to scale the general index

〈
Mα

1 (GRG)
〉

and, based on
the results of the previous section, also the rest of the general indices we study here.
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Figure 6. (a) Average index
〈

M1
1(GRG)

〉
/nRG as a function of the connection radius r of RG graphs

of four different sizes nRG (symbols). Full lines correspond to Equation (19). (b)
〈

M1
1(GRG)

〉
/nRG as a

function of the average degree 〈kRG〉. Same data as in panel (a).

3.2. Computational Properties of General Indices on Random Geometric Graphs

Now, in Figures 7a–11a we present, respectively, the average first variable Zagreb index
〈

Mα
1(GRG)

〉
,

the average second variable Zagreb index
〈

Mα
2(GRG)

〉
, the average general sum-connectivity index

〈χα(GRG)〉, the average general inverse sum indeg index 〈ISIα(GRG)〉 and the average general first
geometric-arithmetic index 〈GAα(GER)〉 as a function of the connection radius r of RG graphs of size
nRG = 1000.

For comparison purposes, Figures 7–11 are equivalent to Figures 1–5. In fact, most of the
statements (i–v) made in the previous section for ER random networks are also valid for RG graphs.
Even though most statements are applicable to RG graphs by just replacing GER → GRG and p→ f (r),
given the fact that this is the first study (to our knowledge) of average topological indices on RG
graphs, we want to explicitly write three statements we consider relevant:

(iii’) The curves 〈GAα(GRG)〉 grow with r, for all α and nRG, as 〈GAα(GRG)〉 ∝ f (r); see the magenta
dashed line in Figure 11a, plotted to guide the eye.

(iv’) For α = 0, see the red curves in Figures 8a–11a,
〈

M0
2(GRG)

〉
, 〈χ0(GRG)〉, 〈ISI0(GRG)〉 and

〈GA0(GRG)〉 give the average number of edges of the RG graph. That is〈
M0

2(GRG)
〉
= 〈χ0(GRG)〉 = 〈ISI0(GRG)〉 = 〈GA0(GRG)〉 =

nRG(nRG − 1)
2

f (r) . (20)
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(v’) When nRGr � 1, we can write ku ≈ kv ≈ 〈kRG〉 = (nRG − 1) f (r) in Equations (1)–(5). Therefore,
for nRGr � 1, the average values of the indices we are computing here are well approximated by:

〈Mα
1 (GRG)〉 = nRG[(nRG − 1) f (r)]α, (21)

〈Mα
2 (GRG)〉 =

nRG

2
[(nRG − 1) f (r)]1+2α, (22)

〈χα(GRG)〉 =
nRG

21−α
[(nRG − 1) f (r)]1+α, (23)

〈ISIα(GRG)〉 = nRG

[
(nRG − 1) f (r)

2

]1+α

, (24)

〈GAα(GRG)〉 =
nRG(nRG − 1) f (r)

21+2α
. (25)

In Figures 7b–11b, we show that Equations (21)–(25) (red-dashed lines) indeed describe very
well the data (thick black curves) for 〈kRG〉 ≥ 10.
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Figure 7. (a,b) Average first variable Zagreb index
〈

Mα
1 (GRG)

〉
as a function of the connection radius r of

RG graphs of size nRG = 1000. Here we show curves for α ∈ [−2, 2] in steps of 0.2 (from bottom to top).
The red (blue) curve in (a) corresponds to α = 0 [α = 1]. The red dashed lines in (b) are Equation (21).
The blue dashed line in (b) marks 〈kRG〉 ≈ 10. (c)

〈
Mα

1 (GRG)
〉

as a function of the connection radius r
of RG graphs of four different sizes nRG. (d)

〈
Mα

1 (GRG)
〉

/nRG as a function of the average degree 〈kRG〉.
Same curves as in panel (c). The inset in (d) is the enlargement of the cyan rectangle.
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Figure 8. (a,b) Average second variable Zagreb index
〈

Mα
2 (GRG)

〉
as a function of the connection

radius r of RG graphs of size nRG = 1000. Here we show curves for α ∈ [−2, 2] in steps of 0.2 (from
bottom to top). The red (blue) curve in (a) corresponds to α = 0 [α = 1]. The red dashed lines in
(b) are Equation (22). The blue dashed line in (b) marks 〈kRG〉 ≈ 10. (c)

〈
Mα

2 (GRG)
〉

as a function of
the connection radius r of RG graphs of four different sizes nRG. (d)

〈
Mα

2 (GRG)
〉

/nRG as a function
of the average degree 〈kRG〉. Same curves as in panel (c). The inset in (d) is the enlargement of the
cyan rectangle.
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Figure 9. (a,b) Average general sum-connectivity index 〈χα(GRG)〉 as a function of the connection
radius r of RG graphs of size nRG = 1000. Here we show curves for α ∈ [−2, 2] in steps of 0.2 (from
bottom to top). The red (blue) curve in (a) corresponds to α = 0 [α = 1]. The red dashed lines in
(b) are Equation (23). The blue dashed line in (b) marks 〈kRG〉 ≈ 10. (c) 〈χα(GRG)〉 as a function of
the connection radius r of RG graphs of four different sizes nRG. (d) 〈χα(GRG)〉 /nRG as a function
of the average degree 〈kRG〉. Same curves as in panel (c). The inset in (d) is the enlargement of the
cyan rectangle.
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Figure 10. (a,b) Average general inverse sum indeg index 〈ISIα(GRG)〉 as a function of the connection
radius r of RG graphs of size nRG = 1000. Here we show curves for α ∈ [−2, 2] in steps of 0.2 (from
bottom to top). The red (blue) curve in (a) corresponds to α = 0 [α = 1]. The red dashed lines in
(b) are Equation (24). The blue dashed line in (b) marks 〈kRG〉 ≈ 10. (c) 〈ISIα(GRG)〉 as a function of
the connection radius r of RG graphs of four different sizes nRG. (d) 〈ISIα(GRG)〉 /nRG as a function
of the average degree 〈kRG〉. Same curves as in panel (c). The inset in (d) is the enlargement of the
cyan rectangle.
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Figure 11. (a,b) Average general first geometric-arithmetic index 〈GAα(GRG)〉 as a function of the
connection radius r of RG graphs of size nRG = 1000. Here we show curves for α ∈ [−2, 2] in steps
of 0.4 (from bottom to top). The red curve in (a) corresponds to α = 0. The red dashed lines in (b)
are Equation (25). The blue dashed line in (b) marks 〈kRG〉 ≈ 10. The magenta dashed line in (a)
proportional to f (r) is shown to guide the eye. (c) 〈GAα(GRG)〉 as a function of the connection radius r
of RG graphs of four different sizes nRG. (d) 〈GAα(GRG)〉 /nRG as a function of the average degree 〈kRG〉.
Same curves as in panel (c).
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3.3. Scaling Properties of General Indices on Random Geometric Graphs

In Figures 7c–11c we show 〈X(GRG)〉 as a function of the connection radius r of RG graphs of four
different sizes nRG. The panorama is equivalent to that observed in the previous section for ER random
graphs: the blocks of curves, characterized by the different graph sizes, display similar curves but
displaced on both axes.

Finally, in Figures 7d–11d we plot 〈X(GRG)〉 /nRG as a function of 〈kRG〉 showing that all indices
are now properly scaled, as anticipated in Section 3.1. Moreover, following Equations (21)–(25),
for 〈kRG〉 ≥ 10 we have that 〈

Mα
1 (GRG)

〉
nRG

≈ 〈kRG〉α , (26)〈
Mα

2 (GRG)
〉

nRG

≈ 〈kRG〉1+2α

2
, (27)

〈χα(GRG)〉
nRG

≈ 〈kRG〉1+α

21−α
, (28)

and
〈ISIα(GRG)〉

nRG

≈ 〈kRG〉1+α

21+α
. (29)

While
〈GAα(GRG)〉

nRG

≈ 〈kRG〉
21+2α

(30)

is indeed valid for all 〈kRG〉.

4. Discussion and Conclusions

In this paper, within a random matrix theory (RMT) approach, we have performed a thorough
statistical study of general indices on two models of random networks. In addition to well-known
general indices (the first and second variable Zagreb indices, Mα

1 (G) and Mα
2 (G), and the general

sum-connectivity index, χα(G)) we have introduced general versions of the inverse sum indeg index
ISIα(G) and the first geometric-arithmetic index GAα(G); see Equations (3) and (4), respectively.
As models of random networks we have used Erdös–Rényi (ER) random networks GER(nER, p) and
random geometric (RG) graphs GRG(nRG, r). It is important to stress that we do not analize the
information obtained from the different general indices we use here, instead we focus only on their
computational properties. Furthermore, we left for a future investigation the analytical study of the
general indices we have introduced in the present work: ISIα(G) and GAα(G).

We have found that the average value of the indices, normalized to the network size, scale with the
average degree 〈k〉 of the corresponding random network models. This means that 〈k〉 fixes the average
value of any index for different combinations of network parameters; i.e., the relevant parameter of
both network models is 〈k〉 and not the specific values of the model parameters. This result highlights
the relevance of 〈k〉 in random network studies. Moreover, the similarity between Equations (13)–(17)
and Equations (26)–(30) allow us to relate the index average values of the two random network models
we study here; that is,

〈X(GER)〉
nER

≈ 〈X(GRG)〉
nRG

if 〈kER〉 = 〈kRG〉 . (31)

To verify Equation (31) in Figure 12 we show four normalized indices 〈X(G)〉 /n as a function of
〈k〉 for both ER random networks and RG graphs; note that we use networks of different sizes. Indeed,
we observe that 〈X(GER)〉 /nER ≈ 〈X(GRG)〉 /nRG to a good numerical accuracy.

With Equation (31) we give a step forward in the scaling of topological indices since we have
found a scaling law that covers different network models. Clearly, an open question we plan to address
in a future investigation is whether Equation (31) could be extended to other random network models.
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Finally, we want to recall that in complex systems research there is a continuous search of
measures that could serve as complexity indicators. In particular, RMT has provided us with a
number of measures able to distinguish between (i) integrable and chaotic (i.e. non-integrable) and (ii)
ordered and disordered quantum systems [27,28]. Such measures are computed from the eigenvalues
and eigenvectors of quantum Hamiltonian matrices. Examples of eigenvalue-based measures are
the distribution of consecutive eigenvalue spacings, the spectrum rigidity and the ratios between
consecutive eigenvalue spacings; while the inverse participation ratios and Shannon entropies are
popular eigenvector-based measures [27,28]. It is interesting to notice that all these RMT measures
have also been successfully applied to study networks and graphs since they can be computed from
the eigenvalues and eigenvectors of adjacency matrices; see e.g., [29–31] and the references therein.
Therefore, these measures are able to distinguish between networks composed by mostly isolated
vertices and mostly connected networks. Furthermore, through scaling studies of RMT measures it has
been possible to locate the percolation transition point of random graphs models [29,30]. It is worth
mentioning that the scaling study of average topological indices performed in this paper has followed
a statistical RMT approach; that is, from a detailed numerical study we have been able to identify the
average degree as the universal parameter of our random network models: i.e. the parameter that fixes
the average values of the topological indices.

Moreover, recently, it has been shown for RG graphs that there is a a huge correlation between
the average-scaled Shannon entropy (of the adjacency matrix eigenvectors) and two average-scaled
topological indices [32]: the Randić index R(G) and the harmonic index H(G). We believe that this
is a remarkable result because it validates the use of average topological indices as RMT complexity
measures; already suggested in Refs. [24,25] for ER random networks. Now, it is important to stress
that not every index could be used as a complexity measure. From our experience, we conclude
that good candidates should fulfill a particular requirement: they should be almost constant in the
trivial regimes (just as RMT measures are). For example, a useful complexity measure for random
networks should be constant in the regime of mostly isolated vertices as well as above the percolation
transition. Indeed, this is a property that both 〈R(G)〉 and 〈H(G)〉 have: 〈R(G)〉 ≈ 〈H(G)〉 ≈ 0 for
mostly isolated vertices while 〈R(G)〉 /n ≈ 〈H(G)〉 /n ≈ 1/2 once the network is well above the
percolation transition.

Therefore, a straightforward application of our study on general topological indices is the
identification of specific indices as complexity measure candidates. Recall that we particularly require,
for an average-scaled topological index to work as complexity measure, that 〈X(G)〉 /n ≈ const. for
large enough 〈k〉. In fact, from Equations (13)–(17) or Equations (26)–(30) we can see that the above
condition is fulfilled for Mα

1 (G), Mα
2 (G), χα(G) and ISIα(G) for specific values of α: α = 0, α = −1/2,

α = −1 and α = −1, respectively. In contrast, note that GAα(G) does not saturate for any α, so we
discard it as possible complexity measure. Thus, in Figure 13 we plot

〈
M0

1(G)
〉

/n,
〈

M−1/2
2 (G)

〉
/n,

〈χ−1(G)〉 /n and 〈ISI−1(G)〉 /n as a function of the average degree 〈k〉 for ER random networks and
RG graphs. From the behavior of the average-scaled indices reported in Figure 13 we can identify
three regimes: (i) a regime of mostly isolated vertices when 〈k〉 < 1/10, where 〈X(G)〉 /n ≈ 0, (ii) a
regime corresponding to mostly connected networks when 〈k〉 > 10, where 〈X(G)〉 /n ≈ const. > 0,
and (iii) a transition regime in the interval 1/10 < 〈k〉 < 10, which is logarithmically symmetric
around the percolation transition point 〈k〉 ≈ 1. Accordingly, we propose the use of

〈
M0

1(G)
〉

/n,〈
M−1/2

2 (G)
〉

/n, 〈χ−1(G)〉 /n and 〈ISI−1(G)〉 /n as complexity measures for random network models.

(We should remark that the behavior reported in Figure 13 for
〈

M−1/2
2 (G)

〉
/n and 〈χ−1(G)〉 /n was

already expected since they coincide, respectively, with 〈R(G)〉 /n and 〈H(G)〉 /2n; already studied in
Refs. [24,25,32] and used there as measures equivalent to RMT complexity measures.)

We hope that our work may motivate further analytical as well as numerical studies of general
topological indices on random networks.



Symmetry 2020, 12, 1341 14 of 16

0.01 1 100

< k >

10
0

10
5

<
 χ

α
(G

) 
>

/n

0.01 1 100

< k >

10
-5

10
0

10
5

<
 M

α
(G

) 
>

/n
ER graphs

RG graphs

0.01 1 100

< k >

10
0

10
4

10
8

<
 I

S
I α

(G
) 

>
/n

0.01 1 100

< k >

10
-10

10
0

10
10

<
 M

α
(G

) 
>

/n(a) (b)

(c) (d)

1 2
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/n, (c) 〈χα(G)〉 /n and (d) 〈ISIα(G)〉 /n as a function of
the average degree 〈k〉 for ER random networks (red lines) and RG graphs (black lines). We choose
n = 1000 for ER random networks and n = 250 for RG graphs.
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/n, (c) 〈χ−1(G)〉 /n and (d) 〈ISI−1(G)〉 /n as a function
of the average degree 〈k〉 for ER random networks (red lines) and RG graphs (black lines). We choose
n = 1000 for both ER random networks and RG graphs. Magenta dashed lines indicate 〈k〉 = 1/10 and
〈k〉 = 10.
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8. Miličević, A.; Nikolić, S. On variable Zagreb indices. Croat. Chem. Acta 2004, 77, 97–101.
9. Li, X.; Zheng, J. A unified approach to the extremal trees for different indices. MATCH Commun. Math.

Comput. Chem. 2005, 54, 195–208.
10. Li, X.; Zhao, H. Trees with the first smallest and largest generalized topological indices. MATCH Commun.

Math. Comput. Chem. 2004, 50, 57–62.
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