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Abstract: The 1,3-dipolar cycloaddition reaction is one of the most rapid, and efficient protocols
to access, and construct highly divergent heterocycle chiral auxiliaries. Free catalyst synthesis
of spirooxindole scaffold incorporating sulphone moiety via one pot–three component reaction
of 6-chloro-isatin, L-proline, and the phenylvinylsulphone as dienophile is presented. The new
regioisomer and diastereomer was isolated by precipitation without the tedious purification step,
and then characterized via NMR and single crystal X-ray diffraction analysis. Using Hirshfeld
analysis, the analysis of molecular packing was performed. It depended mainly on strong O . . . H and
N . . . H interactions, and weak H . . . H, C . . . H, and Cl . . . H interactions as well. DFT calculations
were used to optimize the experimental X-ray structure, which was found well matched with the
calculated one. Reactivity descriptors based on the energies of the highest occupied (HOMO) and
lowest unoccupied (LUMO) molecular orbitals were calculated. Additionally, the donor–acceptor
interactions which stabilized the system via σ–σ*, π→π*, n→σ* and n→π* electron delocalization
processes were also computed using NBO calculations. The net interaction energies are 49.96, 235.38,
179.66 and 107.06 kJ/mol, respectively. Additionally, the calculated NMR chemical shifts correlated
well with the experimental data (R2=0.99).

Keywords: spirooxindole; sulphone; 1,3-dipolar cycloaddition reaction; regioisomer; diastereomer;
Hirshfeld analysis

1. Introduction

The design and discovery of new and applicable materials are of great interest in the scientific
community. Specifically, asymmetric synthesis is a type of chemical synthesis that has been proven
to offer requisite materials in enantioselective and diastereoselective forms. In modern chemistry
particularly, enantioselective synthesis is important in the field of pharmaceuticals and agriculture
chemistry in which the different forms of the enantiomers or diastereomers of the specific molecules
have different efficacy due to unique and exploitable properties in optically pure forms [1].

Spirooxindole is a privileged structure and has been studied extensively by chemists and
pharmacists. Spirooxindoles have exceptional structural topographies in 3D and are known to be
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the best privileged chemotypes for sundry biological targets (Figure 1). This interesting scaffold has
been found in diverse natural as well as synthetic compounds [2]. Examples of naturally occurring
compounds proven to have preventative activity against human cancer are the spirotryprostatins
A and B [3]. Indeed, spirooxindole alkaloids were proven to act as neuroprotective agents (such as
anticonvulsant, antipyretic, and antihypertensive medicine). For example, rhynchophylline is an
N-methyl-D-aspartate receptor antagonist [4]. Furthermore, mitraphylline has an in vivo controlling
effect against the cytokines linked with most inflammation processes. Thus, mitraphylline can be
employed as a template in anti–inflammatory therapy [5]. Welwitindolinone A isonitrile is a marine
alkaloid incorporating the spirooxindole motif structure and has been shown to have anti-fungal
efficacy [6].
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Figure 1. Biologically active compounds based on the spirooxindole scaffold. 
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The 1H NMR and 13C-NMR spectra of 4  were recorded on a JEOL 400-MHz spectrometer 
(JEOL, Ltd, Tokyo, Japan) at ambient temperature. The solvent used was DMSO-d6; the chemical 
shifts (δ) were given in ppm. Single-crystal X-ray data of compound 4 were collected on a 
Rigaku Oxford Diffraction Supernova diffractometer at 120 K. The crystallographic details 
are provided as supplementary material. Crystal Explorer 17.5 program was used for the 
Hirshfeld analysis [27]. 

Figure 1. Biologically active compounds based on the spirooxindole scaffold.

On the other hand, many synthesized spirooxindole family members have been proven to have
significant biological activities (e.g., anti–inflammatory, anticancer, analgesic, bromodomain inhibitor,
antimicrobial, antimalarial, antioxidant, antiviral, antidiabetic, antiatherosclerotic, and insecticidal
activities) and unique spatial architectures. Additionally, spirooxindole received the remarkable
attention of many pharmacologists and chemists [6–23].

The most rapid and efficient method to construct highly complex heterocyclic chiral auxiliaries
without a tedious purification process is the 1,3-dipolar cycloaddition reaction [24–26]. Thus, we employed
this fascinating approach for the synthesis of a new spirooxindole having a sulphone moiety in
enantioselective and diastereoselective fashion. Indeed, the conformational constrained rings in the
synthesized compound were investigated and assigned.

2. Materials and Methods

The 1H NMR and 13C-NMR spectra of 4 were recorded on a JEOL 400-MHz spectrometer (JEOL,
Ltd, Tokyo, Japan) at ambient temperature. The solvent used was DMSO-d6; the chemical shifts (δ) were
given in ppm. Single-crystal X-ray data of compound 4 were collected on a Rigaku Oxford Diffraction
Supernova diffractometer at 120 K. The crystallographic details are provided as supplementary material.
Crystal Explorer 17.5 program was used for the Hirshfeld analysis [27].
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2.1. Synthesis of the Spirooxindole-Based Phenylsulphone ((1′R,3R,7a′R)-6-Chloro-1′-(phenylsulfonyl)-
1′,2′,5′,6′,7′,7a′-hexahydrospiro[indoline-3,3′-pyrrolizin]-2-one 4)

A mixture of phenylvinlysulphone (168 mg, 1.0 mmol), 6-chloro-isatin (181 mg, 1.0 mmol),
and L-proline (115 mg, 1.0 mmol) in methanol (10 mL) was refluxed in an oil bath for appropriate time
8 h. After completion of the reaction as evident from TLC, the reaction was kept at room temperature
overnight, and the solid crystalline product was filtered off without any further purification.

1H NMR (400 MHz, DMSO-D6) δ 10.45 (s, 1H), 7.94 (d, J = 7.8 Hz, 2H), 7.76 (t, J = 7.4 Hz, 1H), 7.66
(t, J = 7.6 Hz, 2H), 7.43 (d, J = 8.1 Hz, 1H), 7.04 (d, J = 7.8 Hz, 1H), 6.81 (s, 1H), 4.47 (dt, J = 11.3, 8.0 Hz,
1H), 4.00 (q, J = 7.9 Hz, 1H), 3.33 (d, J = 12.2 Hz, 1H), 2.78 (td, J = 9.1, 6.4 Hz, 1H), 2.56–2.45 (m, 2H),
2.37–2.22 (m, 1H), 2.08–1.83 (m, 2H), 1.71–1.56 (m, 1H); 13C NMR (101 MHz, DMSO-d6) δ 179.55, 144.93,
139.29, 135.14, 134.96, 130.44, 128.52, 127.64, 125.12, 122.17, 110.52, 104.52, 69.35, 68.96, 62.52, 53.28,
34.56, 32.64.

2.2. X-ray Structure Determinations

The crystal of 4 was immersed in cryo-oil, mounted in a loop, and measured at a temperature of
120 K. The X-ray diffraction data were collected on a Rigaku Oxford Diffraction Supernova diffractometer
using Mo Kα radiation. The CrysAlisPro [28] software package was used for cell refinement and data
reduction. An analytical absorption correction (CrysAlisPro [28]) was applied to the intensities before
structure solution. The structure was solved by intrinsic phasing (SHELX [29]) method. Structural
refinement was carried out using SHELXL [29] software with SHELXLE [30] graphical user interface.
The NH hydrogen atom was located from the difference Fourier map and refined isotropically. All other
hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C–H
= 0.95–1.00 Å and Uiso = 1.2 Ueq (parent atom). The crystallographic details are summarized in Table 1.

2.3. Computational Methods

All DFT calculations were performed using the Gaussian 09 software package [31,32] utilizing
the B3LYP/6-31G(d,p) method. Natural bond orbital analyses were performed using the NBO 3.1
program as implemented in the Gaussian 09W package [33]. The self-consistent reaction field (SCRF)
method [34,35] was used to model the solvent effects, including the polarizable continuum model
(PCM), when calculating the optimized geometry in solution. Then, the NMR chemical shifts for the
protons and carbons were computed using the GIAO method in the same solvent (DMSO) [36].

3. Results

3.1. Synthesis of the Spirooxindole-Based Phenylsulphone 4

The design and construction of a new material with a significant application for the scientific
community is a challenge. In this context we employed the one pot–multi component 1,3-dipolar
cycloaddition approach for the synthesis of spirooxindole-based phenylsulphone as a new material [37].
The synthetic route is depicted in Scheme 1. The cycloadduct was obtained via reaction of
phenylvinylsulphone as dienophile with the generated azomethine ylide by reaction of 6-chloro-isatin
with the secondary amino acid (L-proline) under thermal condition. The target compound was
afforded in a high chemical yield with regioselective and diastereoselective fashion. The chemical
architecture was assigned based on a number of spectrophotomeric tools including single crystal X-ray
diffraction analysis plus 1H NMR, and 13C NMR spectral analysis. The result of 1HNMR analysis
exhibited the characteristic peaks of the assigned protons as follows: the secondary amine functionality
peaks were shown as singlet at δ 10.45 ppm; the aromatic protons corresponding to the benzene and
oxindole rings were located in the chemical shift region between δ 7.94 and 6.81 ppm; the aliphatic
shielded protons belonging to the hexahydro-1H-pyrrolizine appeared in the upfield region with the
range of δ 4.47–1.56 ppm. The 13C-NMR spectra were consistent with the expected carbons of the
chemical feature in the synthesized compound. The stereochemical and regio-specific outcomes of the
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reaction were confirmed by HNMR and X-ray single diffraction analysis. Based on the experimental
results and similar previous reports, a plausible mechanism for the regio- and diastereoselective
spirooxindole-based phenylsulphone 4 presented in Scheme 1 might be proposed.

First, the generation of the stabilized azomethine ylide 6a by a set of chemical reactions including
condensation was followed by thermal decarboxylation reactions of the 5-chloroisatin with the
L-proline. Subsequently, the generated azomethine ylide reacted with the dipolarophile 1 via
the 1,3-dipolar cycloaddition reaction affording the desired cycloadduct in a completely regio- and
stereoselective manner. The highly cycloadduct formation may be directed by the presence of stabilizing
secondary orbital interactions between the 2-oxindoline and the sulphone function of the dipolarophile.
This method/multicomponent reaction can be extendable for other starting materials/products.
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3.2. X-ray Structure of 4

The structure of the new material 4 crystallized in the monoclinic crystal system and space group
I2/a with one molecule per asymmetric unit and Z = 8. The structure details and refinement parameters
are listed in Table 1. The X-ray structure at 50% probability level along with atom numbering is given in
Figure 2, while the bond distances and angles are listed in Table 2 and Table S1 (Supplementary data),
respectively. The molecular structure of the new material 4 comprised one intramolecular C7–H7...O3
interaction with a donor–acceptor distance of 3.001(2) Å (Table 3). The C7–H7...O3 interaction is
emphasized by the turquoise dotted line in Figure 3 (left part), while the red dotted line represents the
intermolecular contacts.
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Table 1. Crystal data.

4

empirical formula C20H19ClN2O3S
fw 402.88

temp (K) 120(2)
λ(Å) 0.71073

cryst syst Monoclinic
space group I2/a

a (Å) 22.2636(6)
b (Å) 7.70240(10)
c (Å) 24.3057(6)
β (deg) 116.521(3)
V (Å3) 3729.42(17) Å3

Z 8
ρcalc (Mg/m3) 1.435 Mg/m3

µ(Mo Kα) (mm–1) 0.341 mm–1

No. reflns. 10411
Unique reflns. 5073

GOOF (F2) 1.037
Rint 0.0147

R1
a (I ≥ 2σ) 0.0333

wR2
b (I ≥ 2σ) 0.0831

CCDC 2020273
a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = [Σ[w(Fo

2
− Fc

2)2]/Σ[w(Fo
2)2]]1/2.
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Table 2. Selected bond lengths (Å) for the new material 4.

Cl(1)–C(17) 1.7395(13)

S(1)–O(2) 1.4402(10)
S(1)–O(1) 1.4450(10)
S(1)–C(1) 1.7652(13)
S(1)–C(7) 1.7873(12)

O(3)–C(14) 1.2208(15)
N(1)–C(11) 1.4912(16)
N(1)–C(13) 1.4986(15)
N(1)–C(8) 1.5055(15)
N(2)–C(14) 1.3606(16)
N(2)–C(15) 1.4052(16)
N(2)–H(2) 0.913(18)

Table 3. Hydrogen-bond geometry (Å, ◦).

D–H···A D–H H···A D···A D–H···A

N2–H2...N1#1 0.913(2) 1.963(2) 2.862(1) 168.0(2)
C7–H7...O3 1.00 2.37 3.001(2) 120.5
C16–H16...O3#1 0.95 2.41 3.106(2) 129.0

Symmetry codes: #1; −x + 1 ,y − 1/2, −z + 1/2.

The molecular packing of the new material 4 was controlled mainly by the strong N2–H2...N1
hydrogen bond and weak C16–H16...O3 interaction listed in Table 2 and shown as red dotted lines in
Figure 3 (left part). The donor–acceptor distances for these interactions were 2.862(1) and 3.106(2) Å,
respectively. In addition, the right part of this figure shows the packing of the different molecular units
along the ab-direction.

3.3. Hirshfeld Analysis of Molecular Packing

The different maps resulting from Hirshfeld calculations are presented in Figure 4. With the aid of
fingerprint plots, quantitative analysis of the different contacts was performed, and the percentage
contribution of each contact is shown in Figure 5. The molecules were packed in the crystal via strong
Cl . . . H (10.2%), O . . . H (21.9%), and N . . . H (3.7%) contacts. The shortest Cl . . . H and N . . . H
interactions were Cl1 . . . H11B (2.857 Å) and N1 . . . H2 (1.870 Å), respectively. There were many O . . . H
contacts, with interaction distances ranging from 2.330 Å to 2.575 Å. The most important O . . . H
interactions were O2 . . . H2A (2.565 Å), O2 . . . H5 (2.575 Å), O3 . . . H16 (2.330 Å), O3 . . . H4 (2.538 Å),
and O1 . . . H19 (2.382 Å). The relevance of these interactions is indicated from the decomposed dnorm

maps shown in Figure 6. The Cl . . . H contacts appeared as white regions, indicating weak interactions,
while the more important N . . . H and O . . . H contacts appeared as red spots in the dnorm maps.
In addition to these contacts, the packing was controlled by some weak H . . . H (40.7%), C . . . H
(17.9%), and C . . . C (2.1%) interactions.
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3.4. DFT Studies

The optimized geometry of the new material 4 is presented in Figure 7 along with structure
matching between the computed molecular geometry with the experimental one. With the high
correlation coefficients (R2 = 0.98) between the calculated and experimental geometric parameters
(Figure 8), the calculated structure agreed very well with the experimental one. A list of the calculated
and experimental geometric parameters is given in Table S2 (Supplementary materials).
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The partial atomic charges on the basis of natural population analysis are listed in Table 4.
Interestingly, the sulphur atom of the SO2 moiety had the highest positive charge (2.216 e). In contrast,
the corresponding oxygen atoms were the most electronegative. Generally, all hydrogen sites as well as
carbon atoms attached to N or O atoms had positive partial charges. The electron density distribution
over molecular electrostatic potential (MESP) shown in Figure 9 confirmed the high electron density
related to all O-sites, while the opposite was true for the NH proton. These sites represented the most
favored sites for hydrogen bonding interactions as hydrogen bond acceptor and hydrogen bond donor,
respectively. Additionally, the compound was polar (3.965 Debye) and the dipole moment vector was
in the direction of the sulphone group.

Table 4. Natural atomic charges of the new material 4 a.

Atom Charge Atom Charge Atom Charge

Cl1 0.0020 H 17 0.2481 H 32 0.2020

S2 2.2162 C 18 −0.2195 C 33 −0.4776

O3 −0.9644 H 19 0.2682 H 34 0.2623

O4 −0.9524 C 20 −0.5068 H 35 0.2630

O5 −0.5983 H 21 0.2960 C 36 0.0524

N6 −0.5097 C 22 −0.0639 C 37 0.7268

N7 −0.6325 H 23 0.2621 C 38 0.1914

H8 0.4439 C 24 −0.4907 C 39 −0.2913

C9 −0.3220 H 25 0.2645 H 40 0.2604

C 10 −0.2168 H 26 0.2526 C 41 −0.0222

H 11 0.2671 C 27 −0.4692 C 42 −0.2735

C 12 −0.2300 H 28 0.2403 H 43 0.2605

H 13 0.2492 H 29 0.2501 C 44 −0.1958

C 14 −0.2167 C 30 −0.2589 H 45 0.2517

H 15 0.2464 H 31 0.2428 C 46 −0.0759

C 16 −0.2318
a Atom numbering refer to Figure 7.
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In addition, the HOMO and LUMO frontier molecular orbitals are important for the molecule
reactivity [38–44]. Their energies were calculated to be −5.842 and −1.081 eV, respectively. Hence,
the calculated ionization potential (I) and electron affinity (A) were 5.842 and 1.081 eV, respectively.
Additionally, the hardness, electrophilicity index, and chemical potential were 4.761, 1.258, and−3.461 eV,
respectively. Since, the HOMO was located over the two fused ring systems, while the LUMO was
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localized over the fused aromatic π-system, the HOMO→LUMO excitation represented mixed n–π*
and π–π* transitions with an energy of 4.761 eV.

3.5. NBO Analysis

The stabilization energies (E(2)) resulting from the electron delocalizations among natural
orbitals [45,46] are listed in Table 5. The σ–σ* electron delocalization processes were the weakest where
the maximum E(2) value was 5.62 eV (σ(C39–C41)→σ*(N7–C38)) and the net σ–σ* interaction energy
was 49.96 kcal/mol. On other hand, the maximum E(2) values for the n→σ*, π→π*, and n→π* electron
delocalizations were 23.29, 23.62, and 55.29 kcal/mol for n(O4)→σ*(S2–O3), π(C14–C16)→π*(C9–C18),
and n(N7)→ π*(O5–C37) interactions, respectively. The net stabilization energy was higher for π→π*
(235.38 kcal/mol) than for the n→σ* (179.66 kcal/mol) and n→π* (107.06 kcal/mol) interactions.

Table 5. The E(2) (kcal/mol) values for the charge transfer interactions in the new material 4 a.

Donor NBO Acceptor NBO E(2) Donor NBO Acceptor NBO E(2)

σ→σ* π→π*

BD (1) C9–C10 BD*(1) C9–C18 4.29 BD (2) C9–C18 BD*(2) C10–C12 20.61
BD (1) C9–C18 BD*(1) C9–C10 4.29 BD (2) C9–C18 BD*(2) C14–C16 17.09
BD (1) C36–C37 BD*(1) C44–C46 4.29 BD (2) C10–C12 BD*(2) C9–C18 19.55
BD (1) C38–C39 BD*(1)Cl1–C41 4.31 BD (2) C10–C12 BD*(2) C14–C16 21.02
BD (1) C38–C39 BD*(1) C38–C46 4.68 BD (2) C14–C16 BD*(2) C9–C18 23.62
BD (1) C38–C46 BD*(1) C38–C39 4.15 BD (2) C14–C16 BD*(2) C10–C12 18.94
BD (1) C39–C41 BD*(1) N7–C38 5.62 BD (2) C38–C39 BD*(2) C41–C42 22.22
BD (1) C42–C44 BD*(1) C36–C46 5.11 BD (2) C38–C39 BD*(2) C44–C46 16.53
BD (1) C42–C44 BD*(1)Cl1–C41 4.71 BD (2) C41–C42 BD*(2) C38–C39 15.95
BD (1) C44–C46 BD*(1) C38–C46 4.13 BD (2) C41–C42 BD*(2) C44–C46 19.37
BD (2) C44–C46 BD*(1) N6–C36 4.38 BD (2) C44–C46 BD*(2) C38–C39 22.64

BD (2) C44–C46 BD*(2) C41–C42 18.29

n→σ* n→π*

LP (2) O3 BD*(1) S2–C9 13.08 LP (1) N7 BD*(2) O5–C37 55.29
LP (2) O3 BD*(1) S2–C20 15.29 LP (1) N7 BD*(2) C38–C39 39.34
LP (3) O3 BD*(1) S2–O4 22.48 LP (3)Cl1 BD*(2) C41–C42 12.43
LP (3) O3 BD*(1) S2–C9 6.45
LP (3) O3 BD*(1) S2–C20 4.24
LP (2) O4 BD*(1) S2–C9 13.03
LP (2) O4 BD*(1) S2–C20 15.61
LP (3) O4 BD*(1) S2–O3 23.29
LP (3) O4 BD*(1) S2–C9 6.98
LP (2) O5 BD*(1) N7–C37 27.9
LP (2) O5 BD*(1) C36–C37 22.37
LP (1) N6 BD*(1) C33–C36 4.96
LP (1) N6 BD*(1) C36–C37 3.98

a Atom numbering refer to Figure 7.

3.6. NMR Spectra

The chemical shifts (C.S) of 1H and 13C were computed and the results are listed in Table S3
(Supplementary materials) in comparison with the experimental data. It is clear from Figure 10
that there was a good relation between the experimental and calculated C.S values. The correlation
coefficients were very close to 1.
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and corroborated by the X-ray diffraction study performed on 4. Using Hirshfeld analysis, the O . . . H
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included in the molecular packing, which support the crystal stability. Based on the dnorm map, the N
. . . H and O . . . H contacts are the most significant interactions. The calculated structure matched well
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49.96, 235.38, 179.66, and 107.06 kcal/mol, respectively, using NBO calculations.
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