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Abstract: Based on a new kind of analytical approach, namely the Optimal Auxiliary Functions Method
(OAFM), a new analytical procedure is proposed to solve the problem of the annular axisymmetric
stagnation flow and heat transfer on a moving cylinder with finite radius. As a novelty, explicit analytical
solutions were obtained for the considered complex problem. First, the Navier–Stokes equations
were simplified by means of similarity transformations that depended on different parameters and
some combinations of these parameters, and the problem under study was reduced to six nonlinear
ordinary differential equations with six unknowns. The OAFM proves to be a powerful tool for
finding an accurate analytical solution for nonlinear problems, ensuring a fast convergence after
the first iteration, even if the small or large parameters are absent, since the determination of the
convergence-control parameters is independent of the magnitude of the coefficients that appear in the
nonlinear differential equations. Concerning the main novelties of the proposed approach, it is worth
mentioning the presence of some auxiliary functions, the involvement of the convergence-control
parameters, the construction of the first iteration and much freedom to select the procedure for
determining the optimal values of the convergence-control parameters.
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1. Introduction

It is known that analytical techniques play a very important role in the solution of real-world
problems. Most of the engineering problems are modelled by nonlinear partial differential equations or
nonlinear ordinary differential equations. In the last years, much attention has been devoted to using
and developing new methods to determine approximate analytical solutions of nonlinear equations that
appear in the study of Newtonian or non-Newtonian fluids. The investigation of axisymmetric flow is
of great significance in engineering and industrial processes. For instance, Gorla [1] was concerned
with the boundary layer flow of laminar incompressible fluid in the vicinity of an axisymmetric
stagnation point for a variation with time of the free stream on a circular cylinder. The unsteady
viscous flow in the vicinity of an axisymmetric stagnation point of an infinite cylinder was investigated
by Takhar et al. [2], when the free stream velocity and the velocity of the cylinder varied arbitrarily
with time. Furthermore, the self-similar solution was obtained when the velocity of the cylinder
and the free stream velocity varied inversely as a linear function of time. Laminar stagnation flow,
axisymmetrically and obliquely impinging on a generator of a circular cylinder, was formulated by
Widman and Putkaradze [3] as an exact solution of the Navier–Stokes equations. The outer stream was
composed of a rotational axial flow superposed onto an irrotational radial stagnation flow normal to a
cylinder. Revnic et al. [4] studied the steady axisymmetric stagnation flow and heat transfer on a thin
infinite cylinder in the cases of constant wall temperature and constant wall heat flux. An analytic
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solution for the flow of a second-grade fluid over of a radially stretching sheet was presented by
Ahmad et al. [5] in the form of a series. The stagnation flow in the annular domain between two
cylinders was studied by Hong and Wang [6]. Fluid was injected in wand radially from a fixed outer
cylinder towards and axially translating and rotating an inner cylinder like the convective cooling of a
moving rod. Hayat and Nawaz [7] considered the MHD flow analysis of a viscous fluid between two
radially stretching sheets. The fluid was electrically conducting, the sheets were not conducting and an
incompressible fluid saturated the porous medium. A system of two singular equations was presented
by Doo et al. [8] and the equivalence between the 3D axisymmetric inviscid stagnation flows related to
Navier–Stokes equations was established. Nadeem et al. [9] discussed the axisymmetric stagnation
flow of a micro-polar nanofluid in a moving cylinder with heat transfer. Shahzadet al. [10] reported an
exact solution for the axisymmetric two-dimensional flow and heat transfer of an elastically conducting
viscous fluid over a nonlinear radially stretching porous sheet within a porous medium. Hayat et al. [11]
investigated the heat transfer effects in the axisymmetric flow of an incompressible third-grade fluid
between the stretching surfaces. The steady laminar incompressible flow and heat transfer of a viscous
fluid between two circular cylinders for two different types of thermal boundary conditions were
studied by Mastroberardino [12]. Dual solutions were found for the study of axisymmetric stagnation
point flow and heat transfer of a viscous and incompressible fluid due to a permeable moving flat
plate with partial sleep by Rosca et al. [13]. The flow of an electrically conducting fluid in the vicinity
of an axisymmetric stagnation point on a moving cylinder under the influence of a magnetic field
was studied by Hazarika and Sarmah [14], and the normal impingement of the rotational stagnation
point on a liquid layer was studied by Weidman [15]. Khanet al. [16] analysed the two-dimensional
axisymmetric flow and heat transfer of a modified second-grade fluid over an isothermal nonlinear
radially stretching sheet. The unsteady MHD axisymmetric flow of Carreau nanofluid over a radially
stretching sheet was investigated by Azamet al. [17].

Nadeemet al. [18] considered the steady MHD flow of nanofluids between two concentric circular
cylinders with the consideration of a heat generation/absorption effect. The floor was assessed
with respect to constant surface temperature and constant heat flux thermal boundary conditions.
Mahapatua and Sidui [19] studied heat transfer in non-axisymmetric Homann stagnation point flows
towards a stretching sheet. They showed that, under certain conditions, there is a new family of
axisymmetric viscous stagnation point flow depending on the ratios of shear-to-strain rate at the plate.

The main objective of current investigations was to examine the stagnation flow in the annular
region between two cylinders with heat transfer using the Optimal Auxiliary Functions Method
(OAFM). The Navier–Stokes equations were simplified by means of similarity transformations so
that the problem under study was reduced to six nonlinear ordinary differential equations further
investigated with the OAFM. The accuracy of the results obtained by our approach was proven by
numerical simulations developed to validate analytical approximate solutions. Our procedure was
independent of the presence of small or large parameters in the governing equations or initial/boundary
conditions, since the determination of the convergence-control parameters was independent of the
magnitude of the involved coefficients. The procedure was based on the construction of the linear
operators and auxiliary functions in combination with the presence of several initially unknown
convergence-control parameters. These parameters were optimally determined by means of rigorous
mathematical procedures. New explicit and accurate analytical solutions were finally obtained using
only the first iteration, which illustrates the power and efficiency of the proposed approach.

2. Equations of Motion

In this section, we consider steady laminar incompressible flow between two cylinders [5,9].
The vertical inner cylinder of radius R is rotating with angular velocity and is moving with velocity
W in the axial z direction. The inner cylinder is enclosed by an outer cylinder of radius bR. The flow
isaxisymmetric about the z-axis and the fluid is injected radially with velocity U from the outer cylinder
towards the inner cylinder.
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In Figure 1 is shown the geometry of the problem. The cylindrical coordinates are (r,θ,z) and the
corresponding velocity components are given by (u,v,w).
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where ρ is the density, p is the pressure, ν is the kinematic viscosity, δ is the electrical conductivity, 
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Figure 1. Geometry of the problem: R is the radius of the inner cylinder, bR is the radius of the outer
cylinder, Ω is the angular velocity of the inner cylinder and w is the velocity in the axial direction.

Supposing that end effects can be ignored, the constant property continuity equation, the constant
property Navier–Stokes equations with r, θ and z components of momentum and the energy
conservation equations are as follows:
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where ρ is the density, p is the pressure, ν is the kinematic viscosity, δ is the electrical conductivity, B0 is
the constant magnetic field applied in the z-direction, ϕ is the porosity, k0 is the permeability of the
porous medium, cp is the specific heat, T is the temperature and λ is the thermal diffusivity.

Let us define the following similarity transformations and non-dimensional variables:

u = −U f (η)η−
1
2 , v = ΩRh(η) , w = 2U f ′(η)ξ+ Wg(η) (6)

η = r2R−2 , ξ = zR−1 (7)

Using the above transformations, Equation (1) is automatically satisfied. Supposing that the
temperature of the outer cylinder is held constant at Tb and the temperature of the inner cylinder at Ts,
and considering the temperature T of the following form:
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T(η) = Tb + (Ts − Tb)
[
ξ2K(η) + ξq(η) + s(η)

]
(8)

then eliminating pressure between Equations (2) and (4), six similarity equations are derived from
Equations (2)–(5) and (8):

η f (IV)(η) + 2 f (III)(η) + Re
[

f (η) f (III)(η) − f ′(η) f ′′ (η) − (M + Φ) f ′(η)
]
= 0 (9)

ηg′′ (η) + g′(η) + Re[ f (η)g′(η) − f ′(η)g(η) −Φ f (η)] = 0 (10)

4ηh′′ (η) + 4h′(η) −
h(η)
η

+ Re
(
4 f (η)h′(η) +

2 f (η)h(η)
η

)
= 0 (11)

ηK′′ (η) + K′(η) + RePr[ f (η)K′(η) − 2 f ′(η)K(η)] + 4PrEcη f
′′2(η) + RePrEcM f 2(η) = 0 (12)

ηq′′ (η) + q′(η) + RePr[ f (η)q′(η) − αg(η)K(η)] + 4αPrEcη f ′′ (η)g′(η) + RePrEcM f 2(η) = 0 (13)

2ηs′′ + 2s′ + K(η) + RePr[2 f (η)s′(η) − αg(η)q(η)] + PrEc
[

2 f 2(η)
η2 + 8 f ′2(η)−

−
4 f (η) f ′(η)

η + 2α2ηg′2(η) + β2
(
2ηh′2(η) − 2h(η)h′(η) + h2(η)

2η

)]
+ RePrEcM f 2(η) = 0

(14)

where Re = 1
2 URν−1 is the cross flow Reynolds (Re) number, M =

σB2
0

ρR is the Hartman number, Φ =
νϕ
ρλR

is the porosity parameter, Pr = νρpλ−1 is the Prandl number, Ec =
U2

cp(Ts−Tb)
is the Eckert number and

α = W
U and β = ΩR

U are velocity ratios.
The boundary conditions are no slip on the inner cylinder and uniform injection on the outer

cylinder as follows:

f (1) = 0 , f ′(1) = 0 , f (b) =
√

b , f ′(b) = 0 (15)

g(1) = 1 , g(b) = 0 , h(1) = 1 , h(b) = 0 (16)

For the heat problem, the boundary conditions are as follows:

k(1) = 0 , k(b) = 0 , q(1) = 1 , q(b) = 0 , s(1) = 1 , s(b) = 0 (17)

In the following section, we develop some approximate solutions using the OAFM.

3. Basics of the Optimal Auxiliary Functions Method (OAFM)

We use the fundamental concept of OAFM developed in [20–22] and considering the general
nonlinear differential equation

D[F(η)] + F f (η) = 0 , η ∈ H (18)

with initial/boundary conditions

B
(
F,
∂F
∂η

)
= 0 (19)

where D is a general differential operator, Ff(η) is an unknown function, H is the domain of interest,
B is a boundary operator and F(η) is an unknown function at this stage. In most of the cases, an exact
solution for strongly nonlinear equations of types (1) and (2) is hard to find [23].

Supposing that the approximate analytical solution F̃(η) of Equations (18) and (19) is of the
following form:

F̃(η) = F0(η) + F1(η, Ci) , i = 1, 2, . . . , p (20)

the initial approximation F0(η) and the first approximation F1(η,Ci) are determined as follows.
We chosethe initial approximation F0 in order to satisfy the initial/boundary conditions
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B
(
F0,

∂F0

∂η

)
= 0 (21)

and a linear operator L[F(η)] thatsatisfies the following equation:

L[F0(η)] + F f (η) = 0 (22)

The operator D[F(η)] can be divided into two parts, namely L and N, where L is the linear operator
and N is the nonlinear operator, and therefore Equation (18) can be rewritten in the following form:

L[F(η)] + N[F(η)] + F f (η) = 0 (23)

Inserting Equation (20) into Equation (23), we obtain the following:

L[F0(η)] + L[F1(η, Ci)] + N[F0(η) + F1(η, Ci)] + F f (η) = 0 (24)

Taking into consideration Equation (22), the first approximation F1(η, Ci) is determined from the
nonlinear differential equation

L[F1(η, Ci)] + N[F0(η) + F1(η, Ci)] = 0 (25)

with the corresponding initial/boundary conditions

B
(
F1(η, Ci),

∂F1(η, Ci)

∂η

)
= 0 (26)

where Ci, i = 1,2, . . . , p are unknown parameters at this moment.
The nonlinear term which appears into Equation (25) can be expanded as follows:

N[F0(η) + F1(η, Ci)] = n[F0(η)] +
∑
k≥1

F1(η, Ci)

k!
N(k)[F0(η)] (27)

To accelerate the convergence of the first approximation F1(η, Ci) and therefore of the approximate
solution F̃(η), and also to avoid the difficulties that can appear in solving the nonlinear differential
Equation (25), we propose another expression such that Equation (25) can be rewritten as follows:

L[F1(η, Ci)] +

p∑
k=1

Ci fi(η) = 0 , B
(
F1, ∂F1

∂η

)
= 0 (28)

where Ci are arbitrary unknown parameters and fi(η) are functions depending on the initial
approximation F0(η), on the functions which appear in N[F0(η)], or are combinations of such expressions.
These auxiliary functions fi are very important and are not unique, and it should be emphasized that we
have much freedom to choose such auxiliary functions. Using the previous considerations, for instance
if F0(η) and N[F0(η)] are polynomial functions, then fi are sums of polynomial functions; if F0(η) and
N[F0(η)] are exponential (logarithmic) functions, then fi are sums of exponential (logarithmic) functions,
respectively; if F0(η) are trigonometric functions and N[F0(η)] are polynomial functions, then fi are sums
of combinations of trigonometric and polynomial functions, and so on. In conclusion, the auxiliary
functions are of the same form like F0(η) and N[F0(η)]. In other words, F0(η) and N[F0(η)] are “source”
for the auxiliary functions fi.

Now, the unknown parameters Ci can be optimally identified via rigorous methods, and we
have much freedom to choose between the last square method, Ritz method, collocation method,
Galerkin method, or Kantorowich method or by minimizing the square residual error:
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J(C1, C2, . . . , Cp) =

∫
(H)

R2(η, Ci)dη , i = 1, 2, . . . p (29)

where
R(η, Ci) = D[F(η)] + F f (η) (30)

and F̃(η) is given by Equations (22), (28) and (29). The values of the parameters Ci are obtained from
the following system:

∂J
∂C1

=
∂J
∂C2

= . . . =
∂J
∂Cp

= 0 (31)

In this way, the approximate analytical solution F̃(η) is well determined after identification of the
optimal values of the initial unknown convergence-control parameters Ci.

4. Application of the Optimal Auxiliary Functions Method

We remark that Equation (9) is decoupled from the other equations, and Equations (10) and (11)
are decoupled from Equations (12)–(14). At first, we apply the OAFM for Equations (9)–(11). For these
equations, the approximate analytic solutions are of the following form:

f̃ (η) = f0(η) + f1(η, Ci) (32)

g̃(η) = g0(η) + g1(η, C j) (33)

h̃(η) = h0(η) + h1(η, Ci) (34)

At this moment, we should emphasize that the linear operator L and the initial approximation F0

given from Equation (22) are not unique. In the following, we present only three possibilities to choose
the linear operators and the initial known function Ff(η) for Equations (9)–(11).

Case 4a
L( f ) = η f (IV) + 2 f ′′′ , F f f ( η) = 0 (35)

L(g) = ηg′′ + g′ , F f g( η) = 0 (36)

L(h) = ηh′′ + h′ , F f h( η) = 0 (37)

Equations (21) and (27) can be rewritten as follows:

L( f0) = 0 , f0(1) = f ′0(1) = f ′0(b) = 0 , f0(b) =
√

b (38)

L(g0) = 0 , g0(1) = 1 , g0(b) = 0 (39)

L(h0) = 0 , h0(1) = 1 , h0(b) = 0 (40)

From Equations (38)–(40), we obtain the following:

f0(η) =

√
b[(η− 1)2 ln b + (2b− 2)(η− 1− η ln η)]

(b− 1)[2b− 2− (b + 1) ln b]
(41)

g0(η) = 1−
ln η
ln b

(42)

h0(η) = 1−
ln η
ln b

(43)

Case 4b
L( f ) = η f (IV) , F f f ( η) = 0 (44)
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L(g) = g′′ , F f g( η) = 0 (45)

L(h) = h′′ , F f h( η) = 0 (46)

In this case, the initial approximations are as follows:

f0(η) =

√
b

(b− 1)3 (η− 1)2(3b− 1− 2η) (47)

g0(η) =
η− b
1− b

(48)

h0(η) =
η− b
1− b

(49)

Case 4c

L( f ) = f (IV) +
2

b− 1
f ′′ , F f f ( η) = −

8
√

b

(b− 1)5 (2η− 3b + 1)e
2(b−η)

b−1 (50)

L(g) = g′′ −
4

(b− 1)2 g , F f g( η) = −
4b

e2(b− 1)3 e
2(b−η)

b−1 (51)

L(h) = h′′ −
4

(b− 1)2 h , F f h( η) = −
4b

e2(b− 1)3 e
2(b−η)

b−1 (52)

The initial approximations are obtained in the following form:

f0(η) =
√

b
(
η− 1
b− 1

)2

e
2(b−η)

b−1 (53)

g0(η) =
b− η
b− 1

e
2(b−η)

b−1 (54)

h0(η) =
b− η
b− 1

e
2(b−η)

b−1 (55)

In what follows, we consider only Case 4a. The nonlinear operators are obtained from
Equations (9)–(11), (35)–(37):

N( f ) = Re
[

f f (III) − f ′ f ′′ − (M + Φ) f ′
]
= 0 (56)

N(g) = Re[ f g′ − f ′g−Φ f ′] = 0 (57)

N( f ) = −
h(η)
4η

+ Re
(

f h′ +
2 f h
2η

)
= 0 (58)

Inserting the initial approximations given by Equations (41)–(43) into Equations (56)–(58),
it follows that

N( f0) = 2bRe
(b−1)2[2b−2(b+1) ln b]2

[(3b− 1) ln b− 2 ln b+2(b−1)2

η +
ln η+2−2b

η2 −

−
4(b−1) ln η

η + (2b− 2) ln b + 2b− 2− 2 ln2 bη] − Re(M+Φ)
√

b[2η ln b−2b−2(b−1) ln η]
(b−1)[2b−2−(b+1) ln b]

(59)

N(g0) =
√

bRe
(b−1)[2b−2−(b+1) ln b] [

ln b+2−2b
η ln b − 2(η− 1) ln η− 2(b− 1) ln2 η

ln b + η−

−2(Φ + 1) ln bη+ 2b−2+2(Φ+1) ln b
ln b + 2(Φ + 1)(b− 1) ln η− (2b−2) ln η

ln b ]
(60)

N(h0) =
ln η

4η ln b
−

1
4η

+
√

bRe[(η− 1)2 ln b + 2(b− 1)(η− 1− η ln η)]
(
1−

ln η
ln b
−

1
η ln b

)
(61)
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The auxiliary functions corresponding to the first approximation f 1(η) from Equation (32) are
obtained from Equations (41) and (59):

fi ∈
[

1
η

,
1
η2 ,

ln η
η

, ln η, η2, η, η ln η, . . .
]

(62)

In this way, the first approximation is defined by Equation (28), which becomes the following:

η f (IV)
1 + 2 f ′′′1 + C1 + C2η+ C3η

2 + C4η ln η = 0 , f (1) = f ′1 = f1(b) = f ′1(b) = 0 (63)

With respect to Equation (63), we can also write the following:

η f (IV)
1 + 2 f ′′′1 + C1 +

C2

η
+ C3 ln η+ C4η+ C5η

2 = 0 (64)

or

η f (IV)
1 + 2 f ′′′1 + C1η+ C2η

2 +
C3

η
+

C4

η2 +
C5 ln η
η

= 0 (65)

and so on.
Using only Equation (63), the solution is the following:

f̃ (η) = αη(1− ln η) + βη2 + γη+ δ−
1
12

C1η
3
−

1
72

C2η
4
−

1
240

C3η
5 +

( 17
864

η4
−

1
72
η4 ln η

)
C4 (66)

where
α = b−1

2(b−1)−(b+1) ln b

[
−

(b−1)2

12 C1 −
b3
−b2
−b+1

36 C2 −
3b4
−2b3

−2b2
−2b+3

240 C3+

+
(

11b3
−17b2

−17b+11
432 + −b4+2b3

36(b−1) ln b
)
C4

]
β = ln b

2(b−1)α+
b+1

8 C1 +
b2+b+1

36 C2 +
b3+b2+b+1

96 C3 +
[

b3 ln b
36(b−1) −

7(b2+b+1)
216

]
C4

γ = − ln b
b−1α−

b
4 C1 −

b2+b
18 C2 −

b3+b2+b
48 C3 +

[
−

b3 ln b
18(b−1) +

7(b2+b)
108

]
C4

δ = ln b−2b+2
2(b−1) α+ 3b−1

24 C1 +
2b2+2b−1

72 C2 +
5b3+5b2+5b−3

480 C3+

+
[

b3 ln b
36(b−1) −

28b2+28b−11
864

]
C4

(67)

The auxiliary functions fi to the first approximations g1 from Equation (33) are the following:

fi ∈
[
η, ln η,

1
η

, η ln η, ln2 η, . . .
]

(68)

The first approximation g1 is obtained from Equation (28):

g1
′′ + g1

′ + C5η+ C6η
2 + C7η ln η+ C8η ln η = 0 , g(1) = g1(b) = 0 (69)

such that

g1(η) =
(
1− η2 + b2

−1
ln b ln η

)C5
4 +

(
1− η3 + b3

−1
ln b ln η

)C6
9 +

+
(

b ln b+2−2b
ln b ln η+ 2η− 2− η ln η

)
C7 +

(
b2 ln η+1−b2

ln b ln η+ η2
− 1− η2 ln η

)
C8
4

(70)

Using the methods given above, the first approximation h1 can be obtained from the following:

ηh1
′′ + h1

′ + C9η+ C10η
2 + C11 ln η+ C12η ln η = 0 , h(1) = h1(b) = 0 (71)

with the solution as follows:
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h1(η) =
(
1− η2 + b2

−1
ln b ln η

)C9
4 +

(
1− η3 + b3

−1
ln b ln η

)C10
9 +

+
(

b ln b+2−2b
ln b ln η+ 2η− 2− η ln η

)
C11 +

(
b2 ln η+1−b2

ln b ln η+ η2
− 1− η2 ln η

)
C12

4
(72)

The approximate analytical solutions of Equations (9)–(11), (15) and (16) are obtained from
Equations (32), (33), (41), (42), (66), (70) and (34), (43), (72), respectively:

f̃ (η) = αη(1− ln η) + βη2 + γη+ δ− 1
12 C1η3

−
1

72 C2η4
−

−
1

240 C3η5 +
(

17
864η

4
−

1
72η

4 ln η
)
C4 + f0(η)

(73)

where α, β, γ and δ are given by Equation (67).

g̃(η) = 1− ln η
ln b +

(
1− η2 + b2

−1
ln b ln η

)C5
4 +

(
1− η3 + b3

−1
ln b ln η

)C6
9 +

+
(

b ln b+2−2b
ln b ln η+ 2η− 2− η ln η

)
C7 +

(
b2 ln η+1−b2

ln b ln η+ η2
− 1− η2 ln η

)
C8
4

(74)

h̃(η) = 1− ln η
ln b +

(
1− η2 + b2

−1
ln b ln η

)C9
4 +

(
1− η3 + b3

−1
ln b ln η

)C10
9 +

+
(

b ln b+2−2b
ln b ln η+ 2η− 2− η ln η

)
C11 +

(
b2 ln η+1−b2

ln b ln η+ η2
− 1− η2 ln η

)
C12

4
(75)

For Equations (12)–(14), the linear operator is the same:

L(K) = L(q) = L(s) = L(x) = ηx′′ + x′ (76)

and the nonlinear operators are, respectively, as follows:

N(K) = RePr[ f K′ − 2 f ′K] + 4PrEcη f
′′2 + RePrEcM f 2 (77)

N(q) = RePr
[

f q′ − f ′q− αgk + MEc f 2
]
+ 4αPrEcη f ′′ g′ (78)

N(s) = 1
2 K + RePr

[
f q′ − f ′q + 1

2αgq + 1
2 EcM f 2

]
+

+PrEc
[

f 2

η2 + 4 f ′2 − 2 f f ′

η + α2ηg′2+β2
(
ηh′2 − hh′ + h2

4η

)] (79)

The approximate analytical solutions of Equations (12)–(14) are as follows:

K̃(η) = K0(η) + K1(η, Ci) (80)

q̃(η) = q0(η) + q1(η, C j) (81)

s̃(η) = s0(η) + s1(η, Ci) (82)

where the initial approximations K0, q0 and s0 can be obtained from the following equations:

ηK′′ 0 + K′0 = 0 , K0(1) = K0(b) = 0 (83)

ηq′′ 0 + q′0 = 0 , q0(1) = q0(b) = 0 (84)

ηs′′ 0 + s′0 = 0 , s0(1) = 1, s0(b) = 0 (85)

Solving Equations (83)–(85), one obtains the following solution:

K0(η) = q0(η) = 0 , s0(η) = 1− ln η
ln b (86)

Substituting Equation (86) into Equations (77)–(79), we obtain successively the following:

N(K0) =
bPrEc

(b− 1)2[2b− 2− (b + 1) ln b]2

{
MRe[(η− 1)2 ln b + (2b− 2)(η− 1− η ln η)]

2
+

16
η
(η ln b + 1− b)2

}
(87)
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N(q0) =
λPrEc

(b−1)2[2b−2−(b+1) ln b]2

{
MRe[(η− 1)2 ln b + (2b− 2)(η− 1− η ln η)]

2
−

−
8α
√

b
(b− 1)[2b− 2− (b + 1) ln b](η ln b + 1− b)

} (88)

N(K0) =
RePr

√
b

(b−1)[2b−2−(b+1) ln b] ln b

[
(η−1)2

η ln b + (2b− 2)
(
1− 1

η − ln η
)
+

+ PrEcb
(b−1)2[2b−2−(b+1) ln b]2

{[
(η−1)2

η ln b+ (2b− 2)
(
1− 1

η − ln η
)]2

+ 16[(η− 1) ln b− 16(b− 1) ln η]2−

−4
[
(η−1)2

η ln b + (2b− 2)
(
1− 1

η − ln η
)]
[η− 1− (b− 1) ln η]

}
+ α2

(
η−

2η ln η
ln b + η

ln2 η
ln b

)
+

+β2
(

4−4 ln η+ln2 η

4η ln2 b
+ 1

4η +
2−ln η
2η ln b

)
+

RePrMEcb[(η−1)2 ln b+(2b−2)(η−1−η ln η)]2]
2(b−1)2[2b−2−(b+1) ln b]2

} (89)

From Equations (87) and (88), the auxiliary functions fi can be written as follows:

fi ∈
[
η4, η3, η2, η, η ln η, η2 ln η, η2 ln2 η,

1
η

, ln η, . . .
]

(90)

and from Equation (89), these auxiliary functions are as follows:

fi ∈
[
η,

1
η

,
1
η2 , η ln η, ln2 η, η ln2 η,

ln η
η

, . . .
]

(91)

The first approximations K1, q1and s1 are obtained from the following equations:

ηK1
′′

+ K1
′ + C13η+ C14η

2 + C15 ln η+ C16η ln η = 0 , K1(1) = K1(b) = 0 (92)

ηq1
′′ + q1

′ + C17η+ C18η
2 + C19 ln η+ C20η ln η = 0 , q1(1) = q1(b) = 0 (93)

ηs1
′′ + s1

′ + C21
1
η2 + C22η ln2 η+ C23η+ C24 = 0 , s1(1) = s1(b) = 0 (94)

From the above equations, we obtain the following:

K1(η) =
C13

4

(
1− η2 + b2

−1
ln b ln η

)
+ C14

9

(
1− η3 + b3

−1
ln b ln η

)
+

+C15
(

b ln b+2−2b
ln b ln η+ 2η− 2− η ln η

)
+

C16
4

(
b2 ln b−b2+1

ln b ln η+ η2
− 1− η2 ln η

) (95)

q1(η) =
C17

4

(
1− η2 + b2

−1
ln b ln η

)
+

C18
9

(
1− η3 + b3

−1
ln b ln η

)
+

+C19
(

b ln b+2−2b
ln b ln η+ 2η− 2− η ln η

)
+ C20

4

(
b2 ln b−b2+1

ln b ln η+ η2
− 1− η2 ln η

) (96)

s1(η) =
(
1− 1

η −
b−1

b ln b ln η
)
C21 +

(
3
8 + 2b2 ln2 b−4b2 ln b+3b2

−3
8 ln b ln η−

−
2η2 ln2 η−4η2 ln η+3η2

8

)
C22 +

(
1−η2

4 + b2
−1

4 ln b ln η
)
C23 +

(
1− η+ b−1

ln b ln η
)
C24

(97)

The approximate analytical solutions of Equations (12)–(14) are, respectively, as follows:

K̃(η) = C13
4

(
1− η2 + b2

−1
ln b ln η

)
+ C14

9

(
1− η3 + b3

−1
ln b ln η

)
+

+C15
(

b ln b+2−2b
ln b ln η+ 2η− 2− η ln η

)
+

C16
4

(
b2 ln b−b2+1

ln b ln η+ η2
− 1− η2 ln η

) (98)

q̃(η) = C17
4

(
1− η2 + b2

−1
ln b ln η

)
+

C18
9

(
1− η3 + b3

−1
ln b ln η

)
+

+C19
(

b ln b+2−2b
ln b ln η+ 2η− 2− η ln η

)
+ C20

4

(
b2 ln b−b2+1

ln b ln η+ η2
− 1− η2 ln η

) (99)

s̃(η) = 1− ln η
ln b +

(
1− 1

η −
b−1

b ln b ln η
)
C21 +

(
3
8 + 2b2 ln2 b−4b2 ln b+3b2

−3
8 ln b ln η−

−
2η2 ln2 η−4η2 ln η+3η2

8

)
C22 +

(
1−η2

4 + b2
−1

4 ln b ln η
)
C23 +

(
1− η+ b−1

ln b ln η
)
C24

(100)
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5. Numerical Results

In order to emphasize the effectiveness of the method and to prove the accuracy of the obtained
results, we considered a specific set of numerical values for the physical parameters involved in the
governing equations, i.e., b = 2, Ec = 0.1, M = 1, Φ = 1, α = 1, β = 1 and Pr = 0.7. Moreover, in order to
investigate the influence of the Re number, we considered 3 different Re numbers, namely 1, 4 and 7.

In this situation, following the procedure described for determining the optimal values of the
convergence-control parameters (which ensure the convergence of the solution), for Re = 1 we obtain
the following optimal values using the collocation method:

C1 = 1403.5606580130336, C2 = −804.2283347147892, C3 = −599.9275548052959,
C4 = 1871.8001233771774, C5 = 325.6753295253647, C6 = −67.77144388196257,
C7 = −543.8963537244399, C8 = 89.43063711778753, C9 = −161.23249058301138,
C10 = 34.84776686951173, C11 = 259.5686396395336, C12 = −43.73424584471891
C13 = 384.08384057024324, C14 = −347.15205596692687, C15 = −744.3978622088022,
C16 = 832.622899026811, C17 = −22.878035371196603, C18 = 15.424368137434392,
C19 = 67.67949004152135, C20 = −44.871875430381564, C21 = −18.35411789181781,
C22 = 8.203667057969469, C23 = −22.283213322660515, C24 = 40.41496454921898

(101)

Taking into account the above values of the convergence-control parameters, the approximate
solutions of the similarity functions f, g and h as well as the approximate solutions of the velocity
profiles f′, g′ and h′ are graphically presented in Figures 2–7 in comparison with corresponding
numerical integration results obtained using a fourth-order Runge–Kutta method combined with a
shooting approach. This comparison emphasizes the accuracy of the proposed solutions obtained
through the OAFM. Moreover, in Figures 8–10, we graphically present the variation of K, q and s,
corresponding to the heat transfer problem.
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5. Numerical Results 

In order to emphasize the effectiveness of the method and to prove the accuracy of the obtained 
results, we considered a specific set of numerical values for the physical parameters involved in the 
governing equations, i.e., b = 2, Ec = 0.1, M = 1, Φ = 1, α = 1, β = 1 and Pr = 0.7. Moreover, in order to 
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Taking into account the above values of the convergence-control parameters, the approximate 
solutions of the similarity functions f, g and h as well as the approximate solutions of the velocity 
profiles f’, g’ and h’ are graphically presented in Figures 2–7 in comparison with corresponding 
numerical integration results obtained using a fourth-order Runge–Kutta method combined with a 
shooting approach. This comparison emphasizes the accuracy of the proposed solutions obtained 
through the OAFM. Moreover, in Figures 8–10, we graphically present the variation of K, q and s, 
corresponding to the heat transfer problem. 
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Figures 2–10 emphasize a very good accuracy of the proposed approximate results, compared to
the numerical integration ones obtained through a fourth-order Runge–Kutta method in combination
with a shooting approach.

In order to analyse the influence of the Re number, we graphically present in Figures 11–13 the
variation of f, g and h for three different values of Re, i.e., Re = 1, Re = 4 and Re = 7.
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The effects of the Re number on the velocity profiles are demonstrated in Figures 11–13. It was
found that an increase in the velocity profile f can be observed with an increase in Re (Figure 11),
whereas a decrease in the velocity profiles g and h can be observed with an increase in Re (Figures 12
and 13).

A monotonically increasing behaviour of the similarity function f can be observed in Figure 2,
and a monotonically decreasing behaviour of the functions g, h and s can be observed in Figures 4, 6
and 10, while the functions K and q have an arbitrary behaviour (Figures 8 and 9).

6. Conclusions

In this paper, we investigated the problem of the stagnation flow in the annular region between
two cylinders with heat transfer by using a new and efficient approach, namely the Optimal Auxiliary
Functions Method (OAFM). The Navier–Stokes equations were simplified by means of similarity
transformations that depend on different parameters and some combinations of these parameters,
and the problem under study was reduced to six nonlinear ordinary differential equations with six
unknowns. The model consisting of six nonlinear differential equations was investigated through
the OAFM. Numerical developments proved that the analytical results obtained using the OAFM
are in very good agreement with numerical results obtained by using a fourth-order Runge–Kutta
method combined with a shooting approach, which validates the proposed method of solution and
the obtained results. The effects of the Re number on the velocity profiles were demonstrated and the
behaviour of the solutions for similarity functions and velocity profiles was emphasized.

The proposed procedure is completely different in comparison with any other techniques
known in the literature. Some new and remarkable features of the proposed solution approach,
which leadsto excellent results, could be emphasized, such as the presence of some auxiliary functions,
the involvement of the convergence-control parameters that are initially unknown, the construction
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of the first iteration and much freedom to select the procedure for the optimal determination of the
values of convergence-control parameters.

As a novelty, in comparison with other procedures known in the literature, every nonlinear
differential equation in the proposed procedure is reduced to two linear differential equations and the
construction of these two linear differential equations is not unique. We have much freedom to choose
the auxiliary functions (specific to our approach), which contain some convergence-control parameters.
The auxiliary functions depend on the initial approximation and on some terms from the nonlinear
operator, while the convergence-control parameters, which are in fact the key of the solution, lead to a
high precision since their values are optimally determined using rigorous mathematical procedures.
The accuracy of the results obtained using the proposed approach increases as the number of the
convergence-control parameters increases. As a consequence of these novel aspects, new explicit and
accurate analytical solutions are obtained to annular axisymmetric stagnation flow and heat transfer
on a moving cylinder with finite radius using the OAFM. To the best of the authors’ knowledge, this is
for the first time when such explicit analytical solutions are presented for the investigated problem.

It is noteworthy that the applicability and efficiency of the proposed approach do not depend
on the presence of small or large parameters in the governing equations or in the initial/boundary
conditions, because the determination of the convergence-control parameters is independent of the
magnitude of the coefficients that appear in the nonlinear differential equations. The optimal values
of the initially unknown convergence-control parameters are rigorously determined, and the first
iteration ensures very accurate results. The possibility of optimally controlling the convergence of the
solutions by means of the auxiliary functions makes this method very effective in practice.

Future investigations will be directed to the study of nanoparticle concentration and the variation
of microrotation, in which case, obviously, another set of convergence-control parameters will be
needed. This is, in fact, the main disadvantage of the proposed method of solution, since in each
particular case another set of convergence-control parameters should be determined in order to obtain
the solution.
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