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Abstract: Based on the symmetrical public transportation network data of Xi’an, China obtained by
geographic information system (GIS) technology in 2019, three urban public transportation indexes of
walking accessibility, bus accessibility, and metro accessibility were established, and a real estate price
prediction model was built by using several machine learning algorithms to predict and analysis the
housing price in Xi’an, China. Firstly, the symmetrical road network data and real estate property
data of Xi’an were collected and preprocessed, secondly, the spatial syntax theory and distance
calculation method were applied to establish three indexes of traffic accessibility; finally, taking
the house property data and the calculated traffic accessibility indexes as the characteristic index,
the real estate price prediction model of Xi’an was constructed by using the random forest algorithm
(RF), lightweight gradient lift algorithm (LGBM), and gradient lifting regression tree algorithm
(GBDT). The prediction accuracy of the final model is 89.2% and the root-mean-square error is 1761.84.
The results show that the accessibility of bus and metro to some extent represent the convenience of
public transportation in different areas of urban space. The higher the accessibility index is, the more
convenient the traffic is. The real estate price model has high prediction accuracy and can reflect
the real situation of urban real estate price. The importance of the three accessibility features to the
real estate price prediction model are nearly more than 20%, which indicates that the accessibility of
urban public transportation has an important impact on the change of urban real estate price, and the
development of urban public transportation plays an important role in the real estate economy.

Keywords: urban symmetrical public transportation; GIS Technology; transport accessibility; machine
learning algorithm; housing price prediction

1. Introduction

With the rise of China’s house prices, the issue of house price has gradually become the focus of
the government, consumers, investors, and academic researchers [1]. In urban development, house
price planning is of great significance. When people conduct real estate transactions, most of them are
based on field investigation and qualitative analysis, which is limited by the factors of both parties,
there is no evaluation standard that can reasonably price the house itself, which will lead to unfair
transaction to a certain extent [2]. At present, China’s real estate industry is full of chaos. How to
quantitatively evaluate the price of the house and determine the main factors affecting the price of
the house has become a big problem [3]. The development of public transport in the city can, to a
certain extent, improve the regional economic vitality and promote the development of the real estate
economy [4]. Therefore, under the background of big data, how to use massive data to reasonably
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calculate the characteristic indexes to describe the real operation of public transport and subway in the
city, highlight the traffic convenience of urban space area, and then explore the link between real estate
economy and urban public transport development needs more in-depth research.

Traffic accessibility refers to the expression of the degree of difficulty for an object to move from
one location to another through a certain mode of transportation in urban space. Different modes of
travel can be subdivided into different accessibility, such as walking accessibility, bus accessibility. metro
accessibility, etc. [5]. Domestic and international scholars’ research on traffic accessibility can be traced
back to the 1930s. The classical location theory provides a theoretical basis for accessibility [6]. In 1959,
Hansen proposed the gravity model method to define the concept of traffic accessibility scientifically [7].
On the basis of this, the following scholars proposed the time–space barrier model, isoline model,
competition model, spatial syntax, and other methods to define the traffic accessibility [8]. In the
application of traffic accessibility, in recent years, some researchers have introduced it into real estate
economics to measure the impact of traffic facilities on real estate prices. Kangwon et al. based on
the metro lines in the main urban area of Seoul, South Korea, built the Metro accessibility with the
distance between the residential buildings and the metro, and studied the impact of the metro lines on
the price of houses along the line [9]. Taking Beijing as an example, Ming et al. analyzed the impact of
accessibility of subway, light rail, and urban rail on land use development, and provided theoretical
guidance for urban planning [10]. Deborah et al. calculated the accessibility of public transport and
subway in Guangzhou, and introduced it into the land price prediction model, and obtained good
prediction accuracy [11]. Mitra et al. studied the value of traffic accessibility in underdeveloped countries
and provided suggestions for urban planning of Rajshahi city in Bangladesh [5]. Li et al. took Beijing as
an example, analyzed the relationship between subway accessibility and housing prices, and explored
the impact of transportation on stabilizing housing prices and promoting residents’ employment [12].

In model selection, in 1928, Waugh studied the price and characteristics of Boston vegetables,
proposed the linear function relationship between them, and obtained the earliest Hedonic price model
(HPM) [13]. In the 1960s, Lancaster first applied HPM model to the real estate field, analyzed the
relationship between user demand, house property characteristics and house price, and believed that
all the property characteristics of house included the synthesis of house implied price, which provided
a solid theoretical basis for the development and application of HPM in the real estate industry [14].
In 1974, Rosen solved the problem of commodity heterogeneity through HPM and related technologies,
and established the technical framework of characteristic price analysis in the real estate market [15].
Li Xinru and others used the logarithmic HPM model to predict and analyze the house price when
evaluating the benchmark price of urban land [16]. Gao et al. found that factors including spatial
features can improve the accuracy of HPM model [17].

Since the beginning of the 21st century, thanks to the improvement of computer hardware
technology and the rapid development of software technology, many machine learning algorithms
have emerged in the era of big data. Random forest algorithm (RF), gradient lifting regression tree
algorithm (GBDT), and lightweight gradient lift algorithm (LGBM) have very good performance in
regression prediction and classification prediction. P. Durganjali et al. took the data set of the Kaggle
competition website as an example, respectively constructed the logistic regression model, the stochastic
forest model, the decision tree model, etc. to predict the house price, among which the prediction
accuracy of the stochastic forest model is as high as 86.5% [18]. Dong Qian et al. applied the RF model
to analyze the trend of housing price changes in 16 large and medium-sized cities in China in 2011,
but the research scope was too large and the amount of data was too small to obtain further accurate
conclusions [19]. Yang Bowen and others used GBDT algorithm and RF algorithm to build house price
prediction models based on the house attribute data of California, USA. Although the root mean square
error of the model is low and the prediction accuracy is good, it takes a long time to calculate the data
and takes up more memory. At the same time, the generalization ability of the experimental results is
low due to the small number of samples and feature dimensions [20]. LGBM introduces a histogram
acceleration algorithm on the basis of GBDT to ensure a certain prediction accuracy while increasing



Symmetry 2020, 12, 1329 3 of 21

the speed of the model. Compared with GBDT that needs to load the data set every time it fits the
residuals and consumes memory for a long time, LGBM performs better in terms of running time
and memory usage. It is very suitable for industrial-grade massive data processing [21]. Although
the LGBM model improves the calculation speed and reduces the memory usage, the LGBM model
reduces the accuracy of predicting housing prices [22]. Based on the above considerations, in order
to improve data computing efficiency, reduce memory usage, and improve housing price prediction
accuracy, we merge RF, GBDT, and LGBM, and propose a model fusion model (Stacking) for housing
price prediction in Xi’an, China.

Banerjee D and others summarized a variety of machine learning algorithms, and predicted the
trend of urban housing prices [23]. Vineeth N and other machine learning algorithms are applied to
analyze the house price and its influencing factors [24]. Phan et al. Used machine learning algorithm to
predict the trend of house prices based on the historical transaction prices in Melbourne, Australia [25].

In the study of housing price forecasting model, in addition to model selection, we also need to
consider characteristic factors. Brueckner et al. analyzed the impact of urban planning related factors
under macro policies on real estate prices in 1987 [26]. Evans et al. analyzed the impact on the house
price from the surrounding environmental factors such as the surrounding school distribution and
public infrastructure construction [27]. Malpezzi mainly studies the impact of commercial economic
vitality in urban areas on housing prices [28]. Diaz et al. analyzed the impact of rail transit layout on
real estate prices [29]. Wu Wenjie et al. studied the influence of four factors on house price in terms of
transportation, life, work convenience, and environmental facility convenience [30].

In this paper, taking Xi’an as an example, by collecting and analyzing the data of housing attributes,
urban public transport and subway in Xi’an, the author constructs three kinds of characteristic indexes
of house internal attribute factors, location factors, traffic accessibility factors and surrounding
environment factors, with 20 kinds of characteristics, constructs the house price prediction model
combining with a variety of machine learning algorithms, explores the causes and influencing factors
of house price.

2. Materials and Methods

2.1. Data Source

The data source and data composition were described in this chapter. The data source is the
house property data, house price data and urban symmetrical traffic data in the main urban area of
Xi’an, China. The spatial projection distribution of data in a scalable, comprehensive GIS platform
(ArcGIS) software is shown in Figure 1. The main collection method for the house attribute data is to
capture the information of Lianjia (a house information publishing website), and the collection time is
September 2019. For housing price data, the main collection method is to obtain information from
Anjuke (a housing information service platform), and the collection time is September 2019. The data
of urban symmetrical basic road network, urban bus and metro of urban symmetrical traffic data are
obtained mainly through the application programming interface (API) interface of Gaud map, and the
data collection time is August 2019.
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Figure 1a shows the road network data map of Xi’an City, including urban main roads, 
auxiliary roads and branch roads. Figure 1 b shows the property data of houses in the urban area 
with the road network as the base map. Figure 1 c, d respectively project and mark the bus and 
metro data of Xi’an city. The acquisition of these data provides data support for the later 
construction of characteristic indicators. 

Xi’an housing attribute data is selected from all the housing attribute data in the main urban 
area of Xi’an, including the internal attribute data, location data, etc. In this study, the initial 
housing attribute data collection amount reached 79,452 pieces of data. The amount of data used in 
this study was 29,180 pieces after removing the duplicate data, error data and missing information 
data. It provides a huge data support for the subsequent building of house price forecast model and 
lays a data foundation for the model research by establishing urban housing data table. 

Urban traffic data can be divided into three categories: urban basic road network data table, 
urban bus data table, and urban metro data table. Urban traffic data has such characteristics of large 
amount and wide range. In this study, in order to collect data of Xi’an road network, the number of 
road network nodes has reached 210,000, the number of bus stations has reached 21,099, and for the 
metro data, 89 stations of 4 lines are collected. The collection of these data is mainly to provide data 
support for the establishment of traffic accessibility indicators in the next section for further 
analysis and research. 

Figure 1. Data spatial distribution in Xi’an, China. (a) Urban road network spatial distribution.
(b) Housing spatial distribution. (c) Bus spatial distribution. (d) Metro spatial distribution.

Figure 1a shows the road network data map of Xi’an City, including urban main roads, auxiliary
roads and branch roads. Figure 1b shows the property data of houses in the urban area with the road
network as the base map. Figure 1c,d respectively project and mark the bus and metro data of Xi’an city.
The acquisition of these data provides data support for the later construction of characteristic indicators.

Xi’an housing attribute data is selected from all the housing attribute data in the main urban area of
Xi’an, including the internal attribute data, location data, etc. In this study, the initial housing attribute
data collection amount reached 79,452 pieces of data. The amount of data used in this study was 29,180
pieces after removing the duplicate data, error data and missing information data. It provides a huge
data support for the subsequent building of house price forecast model and lays a data foundation for
the model research by establishing urban housing data table.

Urban traffic data can be divided into three categories: urban basic road network data table, urban
bus data table, and urban metro data table. Urban traffic data has such characteristics of large amount
and wide range. In this study, in order to collect data of Xi’an road network, the number of road network
nodes has reached 210,000, the number of bus stations has reached 21,099, and for the metro data,
89 stations of 4 lines are collected. The collection of these data is mainly to provide data support for the
establishment of traffic accessibility indicators in the next section for further analysis and research.



Symmetry 2020, 12, 1329 5 of 21

2.2. Analysis Framework

From the flow chart of house price prediction (Figure 2), it can be seen that this method has two
advantages: one is to introduce traffic accessibility index, take walking, bus and metro as the carrier of
urban spatial network, and analyze the causes of house price in the whole city. The other is to use a
variety of machine learning algorithms to build a house price prediction model to ensure the prediction
accuracy of the model.
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Figure 2. Flow chart of housing price prediction. 
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at the destination from the starting point. Traffic accessibility plays an important role in road 
network optimization, land use planning, land use evaluation, and location analysis [31]. In this 
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along the road. Figure 3 shows the basic road network and the connected road network after 
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2.3. Data Processing

This chapter will introduce the related technology and theoretical basis of traffic accessibility,
as well as the traffic accessibility evaluation model used in this study. Traffic accessibility refers
to the degree of traffic convenience when residents choose different modes of transportation to
arrive at the destination from the starting point. Traffic accessibility plays an important role in road
network optimization, land use planning, land use evaluation, and location analysis [31]. In this study,
three traffic accessibility methods are based on spatial syntax theory.

2.3.1. Walking Accessibility

Walking accessibility reflects the convenience of people walking in the city. It refers to the
measurement value of all point-to-point mobile walking in the road network calculated by the space
syntax theory when the whole road network is accessible by walking.

First of all, we need to obtain the basic road network map data of Xi’an city. In order to ensure the
connectivity of the map, we need to break the line segment. In this paper, we break the line segment
according to the distance of 100 m. In addition, we also break the line at the intersection of the road.
In this way, all roads in Xi’an are connected. Next, the network topology of road network map is
carried out in ArcGIS software to ensure that any two points on the map can be connected along the
road. Figure 3 shows the basic road network and the connected road network after topology in Xi’an.
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Figure 3. Topologically connected road network diagram.

In Figure 3, six points are randomly selected on the road network map to solve the problem, and it
is found that the path planning along the map route can be achieved. All lines can be connected after
the road network is broken. Next, we need to convert the map to an axis map. The operation of this
step is completed in Depthmap software (British Space Syntax Ltd), and the transformed axis map is
shown in Figure 4.
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After the transformation into the axis map, the integration calculation, that is, the walking
accessibility calculation is needed. The calculation of walking accessibility is affected by the search
radius. In this study, the radius range is selected as 1000–10,000 m, in which every 200 m is calculated.
The calculation formula is as follows:

Wi =
n
[
log2

(
n+2

3 − 1
)
+ 1

]
∑n

j=1 di j
(1)

In Equation (1), Wi represents the walking accessibility of node i, di j represents the shortest path
distance, and n represents the number of summary points in the road network. Finally, the axis map is
transformed into road network map, which is imported into ArcGIS software (American environmental
systems research institute, Inc.), and the attribute table is opened to get the walking accessibility under
different radius. At this time, the calculated pedestrian accessibility index is attached to the road
network map of Xi’an city, then we need to associate it with the housing data and determine the
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optimal radius to get the pedestrian accessibility of each housing location. ArcGIS software will be
used to associate the characteristics of pedestrian accessibility and housing data nextly.

Firstly, the road network map of Xi’an city with walking accessibility index is imported into
ArcGIS software, and the point type data or line segment type data is transformed into trend surface
data by kernel density analysis function, so that the accessibility plane covering the whole road map of
Xi’an city can be obtained. Secondly, the accessibility plane is transformed into grid data, and then
the grid data is transformed into point data to prepare for neighbor analysis. Finally, the grid turning
point data and the house attribute data are analyzed in the neighborhood, and the walking accessibility
indexes under different radii are related to the house attribute data table to get the walking accessibility
characteristics of different radii under each house location.

In the above calculation, there are several groups of walking accessibility values under different
search radius, so it is necessary to determine the optimal search radius. In this paper, the Pearson
correlation coefficient between house price and walking accessibility is calculated to judge, and the
highest coefficient is selected as the best search radius and walking accessibility. In statistics, Pearson
correlation coefficient is used to measure the degree of correlation between two groups of variables [32].
The calculation formula is shown in Equation (2). Figure 5 shows Pearson correlation coefficient
between house price and pedestrian accessibility based on spatial syntax under different radius of
pedestrian accessibility.

p(X,Y) =
1

n− 1

n∑
i=1

(
Xi −X
σX

)(
Yi −Y
σY

)
(2)

In Equation (2), p(X,Y) is Pearson correlation coefficient of X and Y variables, n is total sample, X
and Y are sample mean, σX and σY is the standard deviation of the sample.
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Figure 5. Pearson correlation coefficient graph of house price and walk accessibility under different radii.

In Figure 5, the accessibility under the highest radius of Pearson correlation coefficient is selected,
and the best search radius for pedestrian accessibility is determined as R = 1600 m. Figure 6 shows the
axis diagram under space syntax calculation when R = 1600 m. The pedestrian accessibility under this
radius is retained as the optimal pedestrian accessibility feature of the house. Figure 7 shows the heat
distribution map of Xi’an road network axis and pedestrian accessibility when the search radius is
r = 1600 m.
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2.3.2. Bus Accessibility

The bus accessibility based on spatial syntax refers to the measurement value of the connectivity
of bus stations in urban road network by combining the spatial syntax theory. The calculation method
of bus accessibility and walking accessibility is similar.

Firstly, the road network map of Xi’an city and the collected bus station data are merged in ArcGIS
software, and the intersection of bus station and road network is used as the road node to break the
road network and reconstruct the network topology. Secondly, transform the map into an axis map to
calculate the integration degree under different search radius. The radius range is 1000–10,000 m, and
calculate every 200 m. Next, the axis map is imported into ArcGIS inverted, and then the number of
lines at each bus station is assigned as the weight. Finally, the bus accessibility of each bus station
under different search radius is obtained. The calculation formula of public transport accessibility is
shown in Equation (3).

Bi = li
m
[
log2

(
m+2

3 − 1
)
+ 1

]
∑m

j=1 si j
(3)

In Equation (3), Bi is the bus accessibility of node i, si j represents the shortest path distance between
two bus stations, and m represents the number of bus stations in the road network. li represents the
number of bus lines at station i. In this paper, the definition of bus accessibility, because no specific bus
line operation diagram is obtained, can only be replaced by the basic road network, so there is no way
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to accurately calculate the real route between the station and station, use the shortest distance of the
road network to replace.

At this time, we get that the bus accessibility under different radius is attached to bus station,
and then we need to associate these features with the urban housing features. The association mode
is the same as that in the previous section. Firstly, the calculated data of Xi’an bus station with bus
accessibility index is imported into ArcGIS software, and the core density analysis function is applied
to convert the point type data into trend surface data, so that the bus accessibility plane covering the
whole Xi’an urban area can be obtained. Secondly, the accessibility plane is transformed into grid
data, and then transform the grid data into point data to prepare for neighbor analysis. Finally, the
grid turning point data and the house attribute data are analyzed in ArcGIS, and the bus accessibility
indexes under different radii are related to the house attribute data table to get the bus accessibility
characteristics of different radii under each house location.

Next, we still need to analyze and determine the bus accessibility under the optimal radius.
The Pearson correlation analysis method is still used to calculate the Pearson correlation coefficient
between the house price and the bus accessibility under different radius, and the maximum coefficient
is taken as the bus accessibility under the optimal radius. Figure 8 shows Pearson correlation coefficient
of house price and bus accessibility under different radius.
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In Figure 8, select the bus accessibility under the highest radius of Pearson correlation coefficient,
and then determine the best search radius of bus accessibility as R = 2200 m. Therefore, the
bus accessibility under this radius is retained as the optimal bus accessibility feature of the house.
Figure 9 shows the thermal distribution of bus accessibility in Xi’an when the search radius is r = 2200 m.
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Figure 9. Thermal map of bus accessibility.

2.3.3. Metro Accessibility

The metro accessibility based on spatial syntax is calculated based on Xi’an subway line map
and station data, combined with spatial syntax theory. The calculation process is similar to walking
accessibility and bus accessibility.

Firstly, the Xi’an subway line map is broken at the station, and the connectivity map is obtained
after network topology. Then transform it into an axis map, and the integration degree under different
radii is calculated in the Depthmap software, the radius range is 1000–10,000 m and the global range
and the calculation interval is 200 m once. Next, import the inverse transformation of the axis map
with the integration degree calculation into ArcGIS. Figure 10 shows the metro axis under the global
calculation integration. The calculation results of other radii are similar. Finally, the metro accessibility
of each station under different search radius is obtained.
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Figure 10. Axis map of metro lines.

As can be seen in Figure 10, the distribution of the axis map does not conform to the accessibility
distribution of metro lines in subjective experience. The accessibility should be higher at the passenger
and exchange stations of the four lines, and the integration degree cannot truly reflect the subway
accessibility. It is considered to distinguish the transfer station from the common station and give
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different weight values. Therefore, after the integration degree is calculated, converted back the axis
map to the original map and opened in ArcGIS, the integration degree attribute value of each metro
station will be obtained. Assign the weight of the station again, and the weight is the number of
transfer lines at the station. The metro accessibility under different radius of subway station is obtained.
The calculation formula is shown in Equation (4).

Mi = Ci
k
[
log2

(
k+2

3 − 1
)
+ 1

]
∑k

j=1 ti j
(4)

In Equation (4), Mi represents the metro accessibility of node i, ti j represents the running distance
between two metro stations, and k represents the number of metro stations in the road network.
Ci refers to the number of transfer lines at station i.

Like walking accessibility and bus accessibility, metro accessibility also needs to be related to
house price characteristics, and the method of association still uses the nearest neighbor analysis
function in ArcGIS. Firstly, import the calculated data of Xi’an public transport station with metro
accessibility index into ArcGIS software, and apply the core density analysis function is to convert
the point type data into trend surface data, so that the metro accessibility plane covering the whole
Xi’an urban area can be obtained. Secondly, transform the accessibility plane into grid data, and then
transform the grid data into point data to prepare for neighbor analysis. Finally, the grid turning point
data and the house attribute data are analyzed in ArcGIS, and the metro accessibility indexes under
different radii are related to the house attribute data table to get the metro accessibility characteristics
of different radii under each house location.

Next, we need to determine the optimal search radius. Figure 11 shows Pearson correlation
coefficient of house price and metro accessibility under different radii. Select the radius with the largest
coefficient as the best radius.
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different radii.

It can be seen from Figure 11 that the Pearson correlation coefficient of subway accessibility and
house price is stably distributed with low value, which basically does not change with the change of
radius which is because there are fewer subway lines and the distribution of interval distance between
stations is average, which is not as complex as road network and bus station, so the change is small.
At present, Xi’an has only opened four lines, which cannot completely cover the whole urban space.
Most of the houses are far away from the subway station, so Pearson correlation value is low. In this
paper, the global scope is selected as the final metro accessibility index.
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3. Experimental Results

The walking accessibility, bus accessibility, and metro accessibility indexes are related to the house
property form, and the data used to analyze the house price are obtained. Using the RF, GDBT, LGBM,
and Stacking algorithms of machine learning algorithm to build the housing price prediction model.
First of all, divide the data set into two groups, one group takes the traffic accessibility calculated
by the spatial syntax theory as the traffic characteristic index. Second, the two groups of data sets
are respectively applied to four machine learning algorithms to build the housing price prediction
model, and the optimal model is selected through five indexes, including the prediction accuracy R2,
root mean square error RMSE, model volume, model training time, and prediction time. Finally, the
optimal models under the two sets of data are compared and analyzed to determine the merits of the
traffic accessibility calculation, and the final housing price prediction model is determined, which
provides the model basis for the subsequent application research.

3.1. Real Estate Price Estimation for RF

The process of building a real estate price prediction model based on the random forest algorithm
(RF) is: firstly, the training set data is put into the model, and adjust the parameters of random forest.
Secondly, K-fold cross validation is introduced to judge whether the model is over fitted, and the
average validation accuracy and error of the model are obtained. Finally, save the model, and the
price is predicted with the test set data to get the prediction accuracy of the model. Among them,
Equations (5) and (6) are used to evaluate the accuracy and error of the model.

R2 = 1−

∑m
i=1(yi − ŷi)

2∑m
i=1

(
yi − yi

)2 (5)

RMSE =

√√
1
m

m∑
i=1

(yi − y)2 (6)

m represents the number of samples; yi represents the real value of the i sample; ŷi represents the
predicted value of the i sample; and y represents the mean value of the samples. R2 is used to measure
the prediction accuracy of the algorithm model, the closer the value is to 0, the more inaccurate it is,
and the closer the value is to 1, the more accurate it is. RMSE is the root mean square error, and the
smaller the value is, the better the model is.

First, adjust the model parameters. In the RF algorithm, the mesh parameters of n_estimators
and max_features are adjusted, and the other parameters are the default values. Based on RMSE,
the parameter adjustment diagram is shown in Figure 12.
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In Figure 12, the abscissa represents the number of trees in the random forest, and the ordinate
represents the root mean square error. It can be seen that the error tends to be stable when the
n_estimators is greater than 150, and the effect of the model is better when the max_features = 5.
Therefore, n_estimators = 150 and max_features = 5 are selected as the fixed parameters of the RF model.

Secondly, K-fold Cross Validation is used in the process of model parameter adjustment to prevent
model over fitting. In this paper, K = 10 is selected, and the training set is randomly divided into
10 parts. 9 of them are taken as the training set each time, and the remaining 1 is taken as the verification
set. After training the model for 10 times, the training accuracy and root mean square error of 10 times
are shown in Table 1 below.

Table 1. Results of RF algorithm with K-fold Cross Validation.

K R2 RMSE

1 0.883 1766.033
2 0.855 1982.18
3 0.881 1811.473
4 0.898 1692.132
5 0.891 1740.391
6 0.880 1836.623
7 0.892 1733.959
8 0.878 1897.477
9 0.877 1833.595

10 0.887 1887.743
mean 0.8852 1818.161

According to the results in Table 1, in the 10 verifications of the model, there is no obvious low
prediction accuracy, and the average prediction accuracy of the model reaches 0.8852. This shows that
it has a good prediction ability, and there is no over fitting. Therefore, the current trained RF model is
used as the housing price prediction model, and the model is saved.

Finally, the RF model is tested with 30% of the test set data separated in advance, because the
test set data does not participate in the model training at all, the data results have certain objectivity.
Put the test set data into the RF housing price prediction model, and the final scatter diagram of the
prediction results is shown in Figure 13, the R2 score is 0.891 and the RMSE is 1776.79.
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In Figure 13, the abscissa represents the real value of the house price, and the ordinate represents
the predicted value of the house price. When the point distribution is closer to the center line, the closer
the predicted value is to the real value, the smaller the error between them is, and the higher the
prediction accuracy of the model is. From the prediction results, when the house price is less than
25,000, the points have a good distribution, concentrated near the middle line, and the prediction
results are very good. When the house price is more than 30,000, the distribution of points is relatively
discrete, which shows that the prediction results are general, which is due to the fact that the data
of high house price in the sample is relatively small. From the whole point of view, the points are
basically distributed along the diagonal, which shows that the predicted value is not much different
from the real value, and the prediction result of the model on the test set is good.

3.2. Real Estate Price Estimation for GBDT

The process of building house price prediction model based on gradient lifting regression tree
algorithm (GBDT) is similar to that of random forest. It is also divided into three parts: parameter
adjustment, cross validation and result prediction. There are three parameters to be adjusted in this
model, namely n_estimators, max_features, and learning_rate. The method of parameter adjustment is
the same as that of random forest. Finalize n_estimators = 46, max_features = 15, learning_rate = 0.5,
the model has the best performance. At the same time, through the K-fold Cross Validation, the model
is judged to be over fitted, and the results under the cross validation are shown in Table 2.

Table 2. Results of the gradient lifting regression tree algorithm (GBDT) with K-fold Cross Validation.

K R2 RMSE

1 0.865 1895.195
2 0.833 2126.769
3 0.868 1913.237
4 0.879 1850.641
5 0.864 1939.744
6 0.856 2002.727
7 0.882 1804.318
8 0.858 2042.478
9 0.858 1976.505

10 0.869 2028.498
mean 0.8632 1958.011

According to the results in Table 2, in the 10 verifications of GBDT model, there is no obvious
case of low prediction accuracy, and the average prediction accuracy of the model has reached 0.8632.
This shows that it has a good prediction ability, and there is no over fitting. Therefore, the current
trained GBDT model is used as the housing price prediction model, and save the model. Finally, the
price prediction model based on GBDT algorithm is used to predict the test set data. The predicted
results are shown in Figure 14. The R2 score is 0.863 and the RMSE is 1979.78.
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In Figure 14, scattered points are basically distributed along the middle line, showing a “shuttle”
shape, which shows that GBDT algorithm can make a good prediction of house price. However, from
the perspective of model accuracy, GBDT is not as good as RF in predicting housing prices.

3.3. Real Estate Price Estimation for LGBM

The building process of the housing price prediction model based on lightweight gradient lift
algorithm (LGBM) is to adjust the parameters first. The three parameters to be adjusted are n_estimators,
feature_fraction, and learning_rate, the rest of the parameters use the default value. After adjusting
the parameters by the grid parameter adjustment method, it is found that when n_estimators = 350,
feature_fraction = 0.25, learning_rate = 0.1, the model performs best. The next step is K-fold Cross
Validation. The validation results are shown in Table 3 below.

Table 3. Results of the lightweight gradient lift algorithm (LGBM) with K-fold Cross Validation.

K R2 RMSE

1 0.859 1924.303
2 0.829 2163.15
3 0.857 2051.347
4 0.845 2022.349
5 0.841 1936.352
6 0.846 2060.834
7 0.867 1914.865
8 0.868 2170.805
9 0.849 2024.958

10 0.842 2109.993
mean 0.8503 2037.896

According to the results in Table 3, the price prediction model based on LGBM has not been fitted,
and the average prediction accuracy for the validation set is 0.8503, which is inferior to RF and GBDT
models. Next, send the test set into the model for prediction, and the predicted results are shown in
Figure 15. The R2 score was 0.873 and the RMSE was 1912.71.
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It can be seen from Figure 15 that the prediction result of the model is good, slightly lower than
that of RF. In terms of accuracy and error, it deviates from the researcher’s prediction.

3.4. Real Estate Price Estimation for Stacking

When building the housing price prediction model of stacking algorithm, we need to determine
the number of building layers, basic learners, and meta learners. In this paper, we used a two-tier
model, and take RF, GBDT, and LGBM as the basic learners, and multiple linear regression as the meta
learners to build the housing price prediction model.

Because the first three models are fused, the parameters of the model follow the previous results.
Table 4 shows the results of Stacking algorithm under K-fold (K = 10) Cross Validation.

Table 4. Results of stacking algorithm with K-fold Cross Validation.

K R2 RMSE

1 0.887 1741.581
2 0.857 1974.754
3 0.884 1785.56
4 0.898 1692.202
5 0.891 1736.423
6 0.883 1808.383
7 0.894 1700.266
8 0.882 1866.95
9 0.879 1815.86

10 0.886 1881.999
mean 0.8841 1800.398

According to the results in Table 4, the housing price prediction model based on Stacking has
not been fitted, and it performs well for the prediction of the validation set. After saving the model,
because the meta model is encapsulated by multiple linear regression equation, the function expression
is obtained as shown in Equation (7).

y = 0.776xr f + 0.157xgbdt + 0.095xlgbm − 434.304 (7)
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In Equation (7), y represents the housing price predicted by the Stacking algorithm, xr f represents
the predicted value of RF model, xgbdt represents the predicted value of GBDT model, and xlgbm
represents the predicted value of LGBM model. In the formula, the input features have the same
dimension, so their coefficients can be considered as the proportion of each model in the Stacking
algorithm. The model is used to predict the test set data. The forecast results are shown in Figure 16
below, where the R2score is 0.892 and RMSE is 1761.84.
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According to the prediction results in Figure 16, the accuracy of housing price prediction model
based on stacking is significantly higher than that of GBDT and LGBM single model, slightly higher
than that of RF, and the error is lower. The performance of the model is better, which shows that the
model stacking method can improve the accuracy of the model to a certain extent. However, in the
process of model building, it takes longer.

3.5. Model Comparison

In the previous research, four kinds of house price prediction models are built according to RF
algorithm, GBDT algorithm, GBDT algorithm and Stacking algorithm. Then, four models will be
compared and analyzed to determine the optimal housing price prediction model. Next, we will make
a comparative analysis from five aspects: model accuracy, model error, model scale, model training
time, and model running time. Table 5 shows the comparison of various effects of four models. Among
them, model size refers to the space size of the generated model. Model training time refers to the time
that each model uses 20,426 pieces of training data to build a model. Model running time refers to the
time taken to predict 8754 test set data with the model.

Table 5. Comparison of Model Effect.

Model R2 RMSE Model Scale Train Time(s) Run Time(s)

RF 0.891 1776.79 486 mb 12.298 s 0.644 s
GBDT 0.863 1979.78 0.7 mb 4.705 s 0.049 s
LGBM 0.873 1912.71 0.8 mb 0.437 s 0.043 s

Stacking 0.892 1761.84 488 mb 93.556 s 0.755 s

In terms of model prediction accuracy and error, Stacking algorithm is superior to the other three,
but in terms of real-time performance of model operation, because Stacking algorithm integrates the
other three models, the complexity of the model is higher, so the real-time performance is very poor. The
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prediction accuracy of LGBM algorithm is slightly lower than that of Stacking algorithm, better than
RF and GBDT algorithm, and it is the best in real-time performance. In practical application, although
the prediction accuracy is important, but also we need to ensure the real-time prediction, so we can
consider the housing price prediction model based on RF algorithm. In this paper, the analysis of
housing price is still in the stage of theoretical research, it need to better ensure the accuracy of the
model, so finally choose the housing price prediction model based on the stacking algorithm as the
final model of the follow-up study.

4. Discussion

Although 3.5 determines the best housing price prediction model, and also proves the superiority
of calculating traffic accessibility through spatial syntax, however in order to better explore the impact
of traffic on housing price, the content of this section will analyze the common characteristics of the
model based on the proportion of the characteristics of the four types of machine learning algorithms
previously determined. Figure 17 shows the importance percentage of each of the 20 features of the
four models in the model building process.
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It can be found from the characteristic importance proportion in Figure 17 that in the four models,
the importance proportion of house area is the largest. In addition, the traffic factors, which are
composed of road network accessibility, bus accessibility and metro accessibility calculated by spatial
syntax, also account for a large proportion of the importance of the model. After statistics, the proportion
of traffic factors in the four models is 21.043%, 20.71%, 22.04%, and 21.68% respectively. This shows
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that in the housing price analysis, traffic has a great influence on the housing price, which is one of the
important factors that cannot be ignored.

To sum up, the spatial syntax theory has more advantages than the simple distance calculation.
Three indexes, pedestrian accessibility, public transportation accessibility, and subway accessibility,
which are calculated by space syntax theory, cannot be ignored for the impact of house price, and they
play a very important role in the building process of house price prediction model.

5. Conclusions

In this study, three characteristic indexes of walking accessibility, bus accessibility and metro
accessibility are calculated, which are introduced into the influencing factors of real estate price,
and four machine algorithms are used to predict the real estate price in the whole city, good prediction
results have been obtained. The research results show that the traffic accessibility calculated according
to the space syntax theory can truly reflect the operation of walking, bus and metro in the city, and
accurately represent the convenience of public transport in different areas of the city. The walking
accessibility and traffic accessibility are introduced into the housing price prediction analysis, and the
prediction accuracy of the model reaches 89.2%, At the same time, the important contribution of traffic
accessibility to the model reaches nearly 30%, which shows that urban public transport factors have an
important impact on urban housing prices

In the model selection, only the relevant algorithms of machine learning are selected for
comparative analysis. In recent years, deep learning, neural network, and other model algorithms have
better development. In the follow-up research, more and more extensive algorithms will be considered
to build the housing price prediction model.

In the future, the research will be carried out from three aspects: first, a more detailed description
of the traffic accessibility index. In this paper, the calculation of the bus accessibility index does not
fully reflect the real situation, because the actual operation route data of the bus is not obtained,
so it is only replaced by the shortest path. Secondly, it is believed that the factors affecting the real
estate price are far more than the 24 features mentioned in the paper, we hoped that more influencing
factors can be taken into consideration to further improve the model accuracy and prediction effect.
Thirdly, it is hoped that the development of urban public transport can be cross studied with other
fields, such as location planning of urban business district, medical treatment, school, etc., to explore
more possibilities of urban public transport for promoting the vigorous development of the city.
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