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Abstract: In this article, we introduce a power-skew-elliptical (PSE) distribution in the
bivariate setting. The new bivariate model arises in the context of conditionally specified distributions.
The proposed bivariate model is an absolutely continuous distribution whose marginals are univariate
PSE distributions. The special case of the bivariate power-skew-normal (BPSN) distribution is studied
in details. General properties of the BPSN distribution are derived and the estimation of the unknown
parameters by maximum pseudo-likelihood is discussed. Further, a sandwich type matrix, which is a
consistent estimator for the asymptotic covariance matrix of the maximum likelihood (ML) estimator
is determined. Two applications for real data of the proposed bivariate distribution is provided for
illustrative purposes.

Keywords: skew-elliptical distribution; exponentiated distribution; maximum pseudo-likelihood;
asymmetric data; bivariate distribution

1. Introduction

Family of distributions that unify the main characteristics of other families are not very common
in distributions theory. In this sense, an asymmetric family widely used in many situations and
different areas of knowledge is the skew-normal (SN) distribution of [1], that is characterized because
it has a wide range of asymmetry. Another well-known family in this same area is the fractional
order statistical distribution, also known as exponentiated distribution or power-normal distribution
introduced by [2], which is characterized by having a wide range of kurtosis. The unification of these two
families was studied by [3] and was called power-skew-normal distribution. The resulting family contains,
such as special cases the normal, skew-normal and power-normal distributions, and the ranges of
asymmetry and kurtosis are greater than any of these three families of distributions. This type of
unification of distribution families is important in the literature of distribution theory because it
introduces great flexibility to the resulting models.

This model was extended to the case of elliptical distributions and was considered the case of
the Birnbaum-Saunders (BS) family by [4], resulting in a large unification of useful distributions
for example, to model the lifetime in survival analysis or applications in reliability theory. The model
is called Birnbaum-Saunders power skew elliptical (BSPSE), and it contains as special cases as a
large number of extensions of the lifetime Birnbaum-Saunders model, for both elliptical distributions
and skew-elliptical families. In the univariate case, this type of results suggests that multivariate
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distributions constructed of unifications of distributions, it will induce multivariate models with
great flexibility.

In this paper, we study a new family of bivariate distributions whose conditional densities follow
a power-skew-elliptical distribution, which extends the power-skew normal model to the case of
bivariate distributions, becoming a new alternative to the existing asymmetric bivariate models in
literature such as the bivariate skew-normal distribution by [5] and the conditionally specified bivariate
skewed distribution of [6].

A brief description of the some elliptical distributions is presented below.

1.1. Elliptical Distributions

A continuous one-dimensional random variable is said to have an elliptical distribution, if its
distribution function is symmetric with support in the real number set. Specifically, a random variable
X has a symmetric distribution if its probability density function (PDF) is given by

f (x) =
c
η

g
(

z2
)

, (1)

for some non-negative function g(u), with u > 0 and corresponds to the kernel of the PDF such
that

∫ ∞
0 u−

1
2 g(u)du = 1/c, where z = (x− ξ)/η and c is a normalizing constant. The function g(·)

is known as the density-generating function. An elliptically distributed random variable X with
location and scale parameters ξ and η, respectively, and density-generating function, say g is denoted
by X ∼ EC(ξ, η; g). If ξ = 0 and η = 1, then X has spherical distribution, which is denoted as
X ∼ EC(0, 1; g).

Properties of this family have been studied in [7–11], among others. Particular cases of the X ∼
EC(0, 1; g) distribution are the Pearson type VII distribution, the type Kotz distribution, the Student-t
distribution with ν degrees of freedom, the Cauchy distribution and the normal distribution,
among others. The density-generating function of the generalized normal, Cauchy, Student-t,
type I logistic, type II logistic and power exponential are, respectively, given by g(u) =

(2π)−1/2 exp(−u/2), g(u) = {π(1 + u)}−1, g(u) = νν/2B(1/2, ν/2)−1(ν + u)−(ν+1)/2, where ν > 0
and B(·, ·) is the beta function, g(u) = c exp(−u)(1 + exp(−u))−2, where c ≈ 1.484300029 is the
normalizing constant obtained from

∫ ∞
0 u−1/2g(u)du = 1, g(u) = exp(−

√
u)(1 + exp(−

√
u))−2 and

g(u) = c(k) exp(− 1
2 u1/(1+k)), −1 < k ≤ 1, where c(k) = Γ(1 + (k + 1)/2)21+(1+k)/2.

1.2. Skew-Elliptical Distribution

An extension of the elliptical model to the asymmetric case is the standard elliptical asymmetric
(skew-elliptical) model defined as

hY(y; λ) = 2 f (y)F (λy); y, λ ∈ R, (2)

where f (·) is given in Equation (1), F (·) is its respective cumulative distribution function (CDF), and λ

is an asymmetry parameter. We use the notation Y ∼ SE(0, 1; g, λ). The CDF for this model is given by

HY(y) = 2
∫ y

−∞
f (t)F (λt)dt. (3)

Skew-elliptical distributions are discussed in [12–16], among others.
To follow we present some distributions belonging to this family.
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1.2.1. Skew-Normal Distribution

A particular case of model in Equation (3) is the SN distribution introduced by [1], which is
obtained by letting f (·) = φ(·) and F (·) = Φ(·), that is, the PDF and CDF of the standard
normal distribution. The PDF and CDF of the SN model are given by

h(x) = fSN(x) = 2φ(x)Φ(λx); x ∈ R, (4)

and
H(x) = FSN(x) = Φ(x)− 2T(x, λ); x ∈ R, (5)

respectively, where T(·, ·) is the Owen’s function, see [17] for more details.

1.2.2. Skew-Student-t Distribution

The skew-Student-t (SST) distribution (or skew-Pearson type IV) has the PDF given by

h(x) = fSST(x) = 2
Γ
(

v+1
2

)
√

2πΓ
( v

2
) (1 +

x2

v

) v+1
2

1
2
+ λxΓ

(
v + 1

2

) F2−1

(
1
2 , v+1

2 ,− 3
2 ,− λ2x2

v

)
√

vπΓ
( v

2
)

 , (6)

where v > 0 represents the degrees of freedom and F2−1(·, ·, ·, ·) is the hypergeometric function,
see [18].

1.2.3. Skew-Cauchy Distribution

A continuous random variable X following skew-Cauchy (SC) distribution has PDF given by

h(x) = fSC(x) =
2
π

(
1 + x2

)−1
[

1
2
+

1
π

arctan(λx)
]

. (7)

1.2.4. Skew-Logistic Distribution

The PDF of the skew-logistic (SLOG) distribution is given by

h(x) = fSLOG(x) =
2 exp(−x)

(1 + exp(−x))2
1

1 + exp(−λx)
. (8)

1.2.5. Skew-Laplace Distribution

The skew-Laplace (SL) distribution has PDF given by

h(x) = fSL(x) =

{
1
2 exp

(
(1 + λ)x

)
, if x < 0,

exp(−x)
(
1− 1

2 exp(−λx)
)
, if x ≥ 0.

(9)

1.3. Power-Skew-Elliptical Distribution

An alternative to the SN distribution of [1], was studied by [2] by introducing the fractional order
statistical model, also known as alpha-power (AP) model, which has PDF given by

fAP(z; α) = αh(z){H(z)}α−1, z ∈ R, (10)

whereH(·) is an absolutely continuous CDF with PDF h(·), and α > 0 is a parameter that controls the
distributional shape. The caseH(·) = Φ(·) is called the power-normal (PN) distribution and has PDF
given by

fPN(z; α) = αφ(z){Φ(z)}α−1, z ∈ R, (11)



Symmetry 2020, 12, 1327 4 of 20

The PN model is denoted by Z ∼ PN(α) and is considered an alternative distribution for modeling
data with asymmetry and kurtosis above (or below) the expected for the normal distribution. If PDF
h(·) in model (10) has the form as in Equation (2), then the model is called PSE and its PDF is given by

fPSE(z; λ, α) = αh(z; λ){H(z; λ)}α−1, z ∈ R. (12)

We will use the notation Z ∼ PSE(0, 1; g, λ, α). The case of this family of distributions for
h(·; λ) = fSN(·, λ) and H(·; λ) = FSN(·, λ) was studied by [3] and it is called power-skew-normal
distribution which is denoted by PSN(λ, α). Some contributions to this family have been made
by [19–22], among other.

Some additional works on distributions include those of [23,24], which the possibility of applying
the analytical expressions for the calculation of the correct detection probability of the signal time
window at synchronization has been proved.

The rest of the paper is organized as follows: Section 2 we introduce the new bivariate
power-skew-elliptical family of distributions, several properties are derived and we consider the
ML method for estimating the model parameters. In Section 3, we study the particular case of the
bivariate BPSN model. ML estimation of the model is discussed and a reparameterization of the BPSN
model is presented and we derive the information matrix. In Section 4, two applications is presented
illustrating the good performance of the approaches developed in the paper.

2. Bivariate Power-Skew-Elliptical Distribution

In this section, we extend the PSE model to the bivariate case, this new model is a great
extension because it is the bivariate unification of two families of distributions, on the one hand,
the skew-elliptical family and on the other hand, the alpha-power family. The unification will generate
a distribution with great flexibility in both asymmetry and kurtosis.

For the construction of bivariate power-skew-elliptical (BPSE) family of distributions, we will
use the approach discussed in [25] which is based on conditional distributions. According to [25] a
two-dimensional random vector (X1, X2) is conditionally specified, if for any random variable X2,
the random variable X1 | X2 = x2 is a member of a parametric family. Suppose that the joint
PSE distribution function HBPSE(x1, x2), of the random vector (X1, X2) is such that, the conditional
distribution of X1 given X2 = x2 and the conditional distribution of X2 given X1 = x1 are members of
the PSE family of distributions with respect to a Lebesgue measure. We denote this by writing

X1 | X2 = x2 ∼ PSE1(θ1; g, λ1, ω(x2)) (13)

and
X2 | X1 = x1 ∼ PSE2(θ2; g, λ2, τ(x1)), (14)

where ω, τ are positive dependence functions which are to be determined.
In such case, we have conditionals in a given exponential family and we can identify the

corresponding joint density. We can argue as follows. If hX1(x1) and hX2(x2) are marginal densities for
a joint PSE density hBPSE(x1, x2) with conditional densities given by Equations (13) and (14), then it
follows that

hBPSE(x1, x2) = τ(x1)hX1(x1)h2(x2; λ2){H2(x2; λ2)}τ(x1)−1,

= ω(x2)hX2(x2)h1(x1; λ1){H1(x1; λ1)}ω(x2)−1. (15)

Following [26] the solutions for dependence functions are given by

ω(x2) = α1 − α12 ln[H2(x2; λ2)] (16)
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and
τ(x1) = α2 − α12 ln[H1(x1; λ1)], (17)

with α1, α2, positive real constants and α12 = α21 ≥ 0.
Then, by using theorems in [27] and ([28], Chap. 2), we have that

hBPSE(x1, x2) = c(λ, α)h1(x1; λ1)h2(x2; λ2){H1(x1; λ1)}α1−1{H2(x2; λ2)}α2−1

× exp{α12 ln[H1(x1; λ1)] ln[H2(x2; λ2)]}, (18)

where λ1, λ2 ∈ R, the constants α1, α2 > 0 and α12 ≥ 0 in order to guarantee
∫
R
∫
R h(x1, x2)dx1dx2 < ∞,

and c(λ, α) is a normalizing constant with λ = (λ1, λ2)
> and α = (α1, α2, α12)

>.
The independence case, where the joint distribution is the product of two PSE densities, is followed

by taking α12 = 0, with c(λ, α) = α1α2.
Different conditional bivariate skew-elliptical distributions can be obtained from the

generating function g(·), such as presented above, skew-normal, skew-Cauchy, skew-Student-t,
skew-logistic and skew-Laplace, among others. This new family, which we will denote by BPSEg

generates a large number of bivariate distributions according to generating function g(·), in addition
to those already mentioned, one could also talk about the distributions: special case, type Kotz, Bessel,
and the many representations of the Pearson family of distributions different to the Cauchy and
the Student-t. Thus, we define a broad flexible family of asymmetric bivariate distributions.

According to Equations (16) and (17), it follows that conditional distributions are given by

hX1|X2
(x1 | x2) = ω(x2)h1(x1; λ1){H1(x1; λ1)}α1−1 exp{α12 ln[H1(x1; λ1) ln[H2(x2; λ2)]]}, (19)

and

hX2|X1
(x2 | x1) = τ(x1)h2(x2; λ2){H2(x2; λ2)}α2−1 exp{α12 ln[H1(x1; λ1) ln[H2(x2; λ2)]]}, (20)

and hence, it follows that (19) and (20) belong to the exponentiated families of densities (13) and (14),
where hi(·) andHi(·), for i = 1, 2, are known density and distribution functions, respectively, while the
marginal densities are given by

hX1(x1) = c(λ, α)
h1(x1; λ1){H1(x1; λ1)}α1−1

α2 − α12 ln[H1(x1; λ1)]
(21)

and

hX2(x2) = c(λ, α)
h2(x2; λ2){H2(x2; λ2)}α2−1

α1 − α12 ln[H2(x2; λ2)]
(22)

It follows that the CDFs of the conditioned PDFs given in Equations (19) and (20) are given by

HX1|X2
(x1 | x2) = {H1(x1; λ1)}α1−α12 ln[H2(x2;λ2)] , (23)

and
HX2|X1

(x2 | x1) = {H2(x2; λ2)}α2−α12 ln[H1(x1;λ1)] . (24)

The rth moment can be calculated by using

E
[
Xr

1 | X2 = x2
]
= (α1 − α12 ln[H2(x2; λ2)])

∫ 1

0
[H−1

1 (v1; λ1)]
rvα1−1−α12 ln[H2(x2;λ2)]

1 dv1,

E
[
Xr

2 | X1 = x1
]
= (α2 − α12 ln[H1(x1; λ1)])

∫ 1

0
[H−1

2 (v2; λ2)]
rvα2−1−α12 ln[H1(x1;λ1)]

2 dv2.
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whereH−1
i (·; ·) is the inverse function of the CDFHi(·; ·), i = 1, 2. To study the correlation between

X1 and X2, we can compute the measure

ρX1X2 =
E
[
X1X2

]
−E

[
X1
]
E
[
X2
]

σX1 σX2

=
σX1X2

σX1 σX2

,

where

σX1X2 =
∫ 1

0

∫ 1

0
H−1

1 (v1; λ1)H−1
2 (v2; λ2)v

α1−1
1 vα2−1

2

×
[

v−α12 ln(v2)
1 − 1

(α2 − α12 ln(v1))(α1 − α12 ln(v2))

]
dv1dv2,

σ2
X1

=
∫ 1

0

[H−1
1 (v1; λ1)]

2vα1−1
1

α2 − α12 ln(v1)
dv1 −

{∫ 1

0

H−1
1 (v1; λ1)v

α1−1
1

α2 − α12 ln(v1)
dv1

}2

,

σ2
X2

=
∫ 1

0

[H−1
2 (v2; λ2)]

2vα2−1
2

α1 − α12 ln(v2)
dv2 −

{∫ 1

0

H−1
2 (v2; λ2)v

α2−1
2

α1 − α12 ln(v2)
dv2

}2

.

Moreover, we can consider

ρ̂X1X2 =
σ̂X1X2

σ̂X1 σ̂X2

.

as an estimator of ρX1,X2 .

Statistical Inference for the Bpse Model

The normalization constant c(λ, α) in the joint PDF h(x1, x2) makes difficult the parameters
estimation by maximizing the likelihood function. As alternative, we will follow the proposal
of [29] for the parameters estimation of multivariate distributions, that is, we will maximize
the pseudo-likelihood function. The pseudo-likelihood function is defined as the product of
conditional functions. In this case, as in the ML method, the logarithm of the product of conditional
distributions is maximized and this eliminates the logarithm of the normalization constant c(λ, α)

within the estimation process, which, as in this case will contain multiple integrals in its structure.
Another important characteristic of this estimation process is that the maximum pseudo-likelihood
estimators vector of the model parameters is consistent and converges asymptotically to a multivariate
normal distribution.

Hence, given a random sample of vectors (x11, x21), (x12, x22), · · ·, (x1n, x2n), with bivariate
joint distribution PSE, the pseudo-likelihood function based on the conditional densities of the
BPSE distribution, is given by

Lp(β) = hX1|X2
(x1 | x2)hX2|X1

(x2 | x1), (25)

where β = (θ1, θ2, λ1, λ2, α1, α2, α12), with θ1 and θ2 being the parameters of the hX1|X2
(x1 | x2) and

hX2|X1
(x2 | x1) distributions, respectively. Thus, the maximum pseudo-likelihood estimator of β is

defined as the value β0 of β which maximizes the pseudo-likelihood function.
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The log-pseudo-likelihood function is defined as the logarithm of the pseudo-likelihood function
and for BPSE model it is expressed by

`P(β) =
n

∑
i=1

2

∑
j=1

ln(αj −
2

∑
k=1
k 6=j

αjk ln[Hk(xki; θk, λk)]) +
n

∑
i=1

2

∑
j=1

ln
[

hj(xji; θj, λj)
]

+
n

∑
i=1

2

∑
j=1

(αj − 1) ln
[
Hj(xji; θj, λj)

]
+

n

∑
i=1

2

∑
j=1

2

∑
k=1
k 6=j

αjk ln[Hj(xji; θj, λj)] ln[Hk(xki; θk, λk)]. (26)

The pseudo-score function is defined as the partial derivatives of the log-pseudo-likelihood
function with respect to each of the parameters model, this is denoted by

Up(β) =
(
Up(θ1), Up(θ2), Up(λ1), Up(λ2), Up(α1), Up(α2), Up(α12)

)>.

In accordance with [30], the pseudo likelihood estimator β̃ of β is consistent, asymptotically
normally distributed with covariance matrix given by

Σ(β̃) =
1
n

Γ−1(β)Ψ(β)Γ−1(β).

Cheng, C. and Riu, J. [31] consider a sandwich type estimator, which is consistent for the
asymptotic covariance matrix to estimate Σ(β̃) which is given by

Σ̂(β̃) =
1
n

Γ̂
−1
n (β̃)Ψ̂n(β̃)Γ̂

−1
n (β̃)>,

where

Γ̂n(β) = − 1
n

n

∑
i=1

∂

∂β>
Ui(β)

∣∣∣∣
β̃

and Ψ̂n(β) =
1
n

n

∑
i=1

Ui(β)Ui(β)>
∣∣∣∣
β̃

,

with Ui(β) = ∂
∂β `P(β), is the score vector for the pseudo-likelihood function.

The structure of the Γ and Ψ matrices are going to depend on the PDF in the BPSE model,
specifically of the g(·) generating function. The non-singularity of Σ must be treated in each particular
case, as well as its possible solution in case of singularity of this matrix.

3. Bivariate Power-Skew-Normal Model

In this section, we study the bivariate PSE distribution when density functions h1(x1; λ1) and
h2(x2; λ2) correspond to the SN density of [1], that is,

hi(xi; λi) = fSN(xi; λi) = 2φ(xi)Φ(λixi) and Hi(xi; λi) = FSN(xi; λi) = Φ(xi)− 2T(xi; λi).

In this case, the BPSN probability density function is given by

hBPSN(x1, x2) = c(λ, α) fSN(x1; λ1) fSN(x2; λ2){FSN(x1; λ1)}α1−1{FSN(x2; λ2)}α2−1

× exp{α12 ln[FSN(x1; λ1)] ln[FSN(x2; λ2)]}, (27)
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with λ1, λ2 ∈ R, and α1, α2, α12 > 0. The normalization constant can be written by using the
transformation vj = FSN(xj; λj) for j = 1, 2 as

c(λ, α) = c(α) =
(∫ 1

0

∫ 1

0
vα1−1

1 vα2−1
2 exp(α12 ln(v1) ln(v2))

)−1

.

This standard BPSN model will be denoted by BPSN(λ1, λ2, α1, α2, α12). For λ1 = λ2 = 0
the bivariate conditional exponentiated normal model, studied by [26] is obtained, while for λ1 =

λ2 = α12 = 0, the bivariate joint distribution of independent power-skew-normal random variables
is obtained; and for λ1 = λ2 = α12 = 0 and α1 = α2 = 1, the bivariate joint distribution of independent
normal random variables is obtained. Note that, if α1 = α2 = 1, then it would have a type of bivariate
conditional SN distribution.

The location-scale extension of the BPSN model can be written as

hBPSN(x1, x2) =
c(λ, α)

η1η2
fSN(z1; λ1) fSN(z2; λ2){FSN(z1; λ1)}α1−1{FSN(z2; λ2)}α2−1

× exp{α12 ln[FSN(z1; λ1)] ln[FSN(z2; λ2)]}, (28)

where zj = (xj − ξ j)/ηj, with −∞ < ξ j < ∞ and ηj > 0, for j = 1, 2. We will denote it by
BPSN

(
(ξ1, η1), (ξ2, η2), λ1, λ2, α1, α2, α12

)
. Figure 1 presents the contour graphs of the BPSN model for

some selected values of the parameters.
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Figure 1. Graphs of contorns for the BPSN model (a) BPSN ((0,1), (0,1), 1.25, 2.75, 2.25, 1.75, 0.75),
(b) BPSE ((0,1), (0,1), −1.25, −2.75, 2.25, 1.75, 0.75) and (c) BPSE ((0,1), (0,1), 1.25, 2.75, 2.25, 3.75, 1.25).

Table 1 shows the correlation coefficients of the BPSN model for values λ1 ranging from −2.5
to 2.5 and from 0.5 to 0.5; λ2 ranging from −1.5 to 2.0 and from 0.5 to 0.5; α1 = 3.25, α2 = 2.75 and
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α12 = 0.5. It can be observed that BPSN model is very flexible in terms of correlation, since ρ ∈
(−0.9933, 1.0), which contains the correlation coefficients of the bivariate conditional exponentiated:
normal, logistic and Student-t models, for some values of α1 ∈ (0.5,10), α2 ∈ (0.25, 10) and α12 ∈
(0.5, 2.5), see [26], for more details. According to [26], for bivariate conditional exponentiated normal
model with α1, α2 ∈ (0.4, 100) and α12 ∈ (0.2, 100), the range of possible values for the correlation
coefficient is on interval (−0.8634, 0.9247). Likewise, the range of possible values for the correlation
coefficient for the BPSN model contains the respective range of possible values of the bivariate
conditional exponentiated model studied by [28] which is (0.20, 0.60) for α12 ∈ (0, 1000), and finally
this range also contains the range of possible values for the correlation coefficient of the conditionally
specified bivariate skewed model of [6], which is (−0.63662, 0.63662).

Table 1. Correlation coefficient for the BPSN distribution.

λ2/λ1 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0

−2.5 0.8033 0.3730 −0.2686 −0.6699 −0.8444 −0.9252 −0.9680 −0.9933
−2.0 0.7518 0.3559 −0.2385 −0.6124 −0.7759 −0.8519 −0.8924 −0.9164
−1.5 0.6025 0.2984 −0.1661 −0.4625 −0.5938 −0.6556 −0.6888 −0.7087
−1.0 0.2105 0.1324 −0.0046 −0.1014 −0.1479 −0.1713 −0.1845 −0.1927
−0.5 −0.2853 −0.0921 0.1722 0.3245 0.3855 0.4117 0.4246 0.4317

0 −0.5511 −0.2190 0.2543 0.5385 0.6573 0.7105 0.7377 0.7534
0.5 −0.6643 −0.2756 0.2846 0.6244 0.7679 0.8327 0.8662 0.8856
1.0 −0.7183 −0.3035 0.2971 0.6631 0.8185 0.8888 0.9254 0.9467
1.5 −0.7478 −0.3193 0.3031 0.6834 0.8451 0.9186 0.9569 0.9791
2.0 −0.7657 −0.3291 0.3062 0.6951 0.8609 0.9362 0.9755 0.9985
2.5 −0.7776 −0.3358 0.3081 0.7026 0.8709 0.9476 0.9876 1.0000

3.1. Statistical Inference

We consider a random sample of vectors following a BPSN distribution. The corresponding
log-pseudo-likelihood function for the parameter vector β =

(
(ξ1, η1), (ξ2, η2), λ1, λ2, α1, α2, α12

)>,
is given by

`P(β) =
n

∑
i=1

ln(α1 − α12 ln[FSN(z2i; λ2)]) +
n

∑
i=1

ln [ fSN(z1i; λ1)]

+
n

∑
i=1

ln(α2 − α12 ln[FSN(z1i; λ1)]) +
n

∑
i=1

ln [ fSN(z2i; λ2)]

+
n

∑
i=1

(α1 − 1) ln [FSN(z1i; λ1)] +
n

∑
i=1

(α2 − 1) ln [FSN(z2i; λ2)]

− 2
n

∑
i=1

α12 ln[FSN(z1i; λ1)] ln[FSN(z2i; λ2)], (29)

where zji = (xji − ξ j)/ηj. Then, the pseudo-score function which is denoted by

Up(β) =
(
Up(ξ1), Up(η1), Up(ξ2), Up(η2), Up(λ1), Up(λ2), Up(α1), Up(α2), Up(α12)

)>.

has elements given by

UP(ξ j) =
α12

ηj

n

∑
i=1

W(1)ji

[αj − α12 ln(FSN(zji; λj))]
+

1
ηj

n

∑
i=1

[
zji −

√
2
π

λjW(2)ji

]

− 1
ηj

n

∑
i=1

[(αj − 1)− 2α12 ln(FSN(zj′i; λj′))]W(1)ji, j = 1, 2,
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UP(ηj) =
α12

ηj

n

∑
i=1

zjiW(1)ji

[αj − α12 ln(FSN(zji; λj))]
+

1
ηj

n

∑
i=1

[
z2

ji − 1−
√

2
π

λjzjiW(2)ji

]

− 1
ηj

n

∑
i=1

[(αj − 1)− 2α12 ln(FSN(zj′i; λj′))]zjiW(1)ji, j = 1, 2,

UP(λj) =

√
2
π

α12

1 + λ2
j

n

∑
i=1

W(3)ji

[αj − α12 ln(FSN(zji; λj))]
+

√
2
π

n

∑
i=1

zjiW(2)ji

−
√

2
π

1
1 + λ2

j

n

∑
i=1

[(αj − 1)− 2α12 ln(FSN(zj′i; λj′))]W(3)ji, j = 1, 2,

UP(αj) =
n

∑
i=1

1
[αj − α12 ln(FSN(zji; λj))]

+
n

∑
i=1

ln(FSN(zji; λj)), j = 1, 2,

and

UP(α12) =
n

∑
i=1

2

∑
j=1

− ln(FSN(zji; λj))

[αj − α12 ln(FSN(zji; λj))]
− 2

n

∑
i=1

ln(FSN(z1i; λ1)) ln(FSN(z2i; λ2))

where W(1)ji =
fSN(zji ;λj)

FSN(zji ;λj)
, W(2)ji =

φ
(√

1+λ2
j zji

)
fSN(zji ;λj)

, W(3)ji =
φ
(√

1+λ2
j zji

)
FSN(zji ;λj)

.

The solution to the system of non-linear equations Up(ξ1) = 0, Up(η1) = 0, Up(ξ2) =

0, Up(η2) = 0, Up(λ1) = 0, Up(λ2) = 0, Up(α1) = 0, Up(α2) = 0, Up(α12) = 0, leads to
pseudo-likelihood estimates of the parameter vector of the BPSN model, this system must be solved
by using iterative numerical algorithms.

For estimating the covariance matrix, we have from [31] that, thte Ψ(·) matrix will be estimated
from the pseudo-score function given above, while the Γ(·) component of the Σ(·) matrix, we will
write it in the form Γ = (γβ j β j′

) = − 1
n K where K = (κβ j β j′

) is a matrix of second derivatives of the
pseudo-likelihood function, with respect to the parameters of the model, the elements κβ j β j′

of this
matrix are presented in the Appendix A.

3.2. Reparameterization for the Bpsn Model

As well known in the literature of distributions theory, the SN model has a singular
information matrix for λ = 0, however, it has been proposed to perform a reparameterization
of the model parameters, [32], this problem is presented by several extensions of the SN model,
including for example, the power-skew-normal model whose information matrix is singular for λ = 0
and α = 1, here, [33] present a reparameterization of the models parameters for this case.

Another solution to the problem of the singularity of the SN model when λ = 0 was presented
by [1], which consists of a representation of the form Y = µ + σ

Z−E[Z]√
Var[Z]

, where µ ∈ R and

σ > 0 are parameters of the random variable Y, and Z ∼ SN(λ). This representation is called
centered parametrization, since E[Y] = µ and Var[Y] = σ2. The new representation has parameters
vector θ = (µ, σ, γ1)

>, where −0.9953 ≤ γ1 ≤ 0.9953 represents the asymmetry coefficient of the
random variable Y. Under this representation, the information matrix of the new parameters vector
turns out to be non-singular. Thus, the information matrix is written in the form DIλD> where Iλ is the
information matrix of the model with parameters vector (ξ, η, λ)> and D is a matrix of derivatives of
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the parameters vector (ξ, η, λ)> with respect to the parameters vector θ. Under this reparameterization,
we have the relationship

ξ = µ− cσγ1/3
1 , η = σ

√
1 + c2γ2/3

1 and λ =
cγ1/3

1√
b2 + c2(b2 − 1)γ2/3

1

, (30)

with b =
√

2
π and c = {2/(4− π)}1/3.

Also it has that, when λ → 0, the information matrix converges to the diagonal matrix Σc =

diag(σ2, σ2/2, 6). This guarantees the existence and uniqueness of the MLE of ξ and η, for each fixed
value of λ, see [1].

The BPSN model also inherits the singularity problem in the matrix Γ(·) for values close to λ1 =

λ2 = 0 and α1 = α2 = 1, specifically, for values close λ1 = 0, the columns corresponding to the elements
kξ1β j and kλ1β j , where β j is related to the rest of the parameters, are linearly dependent. The same way,
it happens for values close λ2 = 0. This situation also occurs in the pseudo-score function, leading to
problems to guarantee the existence and uniqueness of the pseudo-estimated values. This leads to
the non-existence of the inverse of the Γ(·) matrix and therefore, the covariance matrix Σ(·) can not
be calculated.

Following [1], we define Yj = µj + σj
Zj−E[Zj ]√

Var[(Zj)]
for j = 1, 2, where Zj ∼ SN(λj), then we arrive

to representation of the BPSN with parameters vector θ = (µ1, µ2, σ1, σ2, γj1, γj2, α1, α2, α12)
> where,

for j = 1, 2, it has −0.9953 ≤ γj1 ≤ 0.9953. As showed by [1], this representation can be written in the
form Yj = ξ j + ηjZ, for j = 1, 2, that is, Yj ∼ SN(ξ j, ηj, λj) where

ξ j = µj − cσjγ
1/3
j1 , ηj = σj

√
1 + c2γ2/3

j1 and λj =
cγ1/3

j1√
b2 + c2(b2 − 1)γ2/3

j1

, (31)

for j = 1, 2. We denote it by SNc(µj, σj, γj1). Here, the new bivariate centered power-skew-normal
model (BPSNc) is defined just as the PDF defined by model in Equation (28), where ξ j, ηj and λj
are defined as in Equation (31). Given the relationship in Equation (31), ML estimates for the vector
θ = (µ1, µ2, σ1, σ2, γj1, γj2, α1, α2, α12)

> can be obtained from the estimates of the original model,
that is, the estimates of maximum pseudo-likelihood for α1, α2 and α12 are the same as the model
without reparametrizating, while for the parameters subvector (µ1, µ2, σ1, σ2, γj1, γj2)

>, it can be
obtained by using the inverse relationships of (31), that is, from:

µj = ξ j + bσjδj, σj = ηj

[
1 + ηj(1− b2)

]1/2

(1 + λ2
j )

1/2
, γj1 =

4− π

2
(bλj)

3
[
1 + λ2

j (1− b2)
]−3/2

, (32)

where δj = λj/
√

1 + λ2
j . From (32), if λj ≈ 0, then γj1 ≈ 0, where γj1 corresponds to the asymmetry

coefficient of the random variable Yj. In this way, it is important to analyze the magnitude of the
sample asymmetry coefficient of each variable.

The covariance matrix of [31] is obtained in the same way as in BPSN model, however, it can be
demonstrated that the covariance matrix in the BPSNc model lets herself be written as

Σc(θ̃) =
1
n

(
DΓ(β)D>

)−1
DΨ(β)D>

(
DΓ(β)D>

)−1
.

where D =
∂β

∂θ
.

It can be shown that D is a block-diagonal matrix, given by

D = diag(D1, D2, I3),
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where I3 is an identity matrix of dimension 3× 3, and Dj for j = 1, 2 is the derivative matrix of the
parameter vector (ξ j, ηj, λj)

> with respect to the vector (µj, σj, γ1j)
>. The elements of this matrix can

be found in their general form in ([34], p. 68). When γ1j → 0, then DjΓ(βj)D
>
j tends to the diagonal

matrix diag(σ2
j , σ2

j /2, 6) which is non-singular, see [1,34].

According to [1], rewriting β = (β1, β2, α)>, where βj = (ξ j, ηj, λj)
>, it can be shown that the

DjΓ(βj)D
>
j sub matrices for j = 1, 2, of the DΓ(β)D>matrix are non-singular and therefore, the rows

of the DΓ(β)D> matrix are linearly independent, that is, this matrix is invertible, which guarantees the
existence of the Σc(θ̃) matrix. The estimator of the covariance matrix Σc(θ̃) is obtained by replacing β

and θ by their respective estimators.

4. Numerical Illustrations

4.1. Illustration 1

We consider an illustration where we study the fit of the BPSN model for a data set studied
in [35]. We pooled together, the 50 Iris-setosa data points, the 50 Iris-versicolor data points and
the 50 Iris-virginica data points, to get a total sample size of n = 150. Descriptive statistics for
the data set are presented in Table 2. Quantities

√
b1 and b2 correspond to sample asymmetry and

kurtosis coefficients.

Table 2. Summary statistics for the data set.

Variable xj sj

√
bj1 bj2

x1 5.843 0.828 0.308 −0.605
x2 3.057 0.435 0.312 0.138

Table 2 shows that variables x1 and x2 present high asymmetry, so a BPSN model could fit this
data set. Under normality assumption, hypothesis tests for the asymmetry coefficient of x1 and x2,
(H0 :

√
β j1 = 0, j = 1, 2.) show test statistics 7.716 and 7.815, respectively, values well above the

percentile of χ2
(1) distribution, at level 5% whose value is 3.84, which indicates that the asymmetry

in each variable is very important. Likewise, the univariate normality tests of [36] show p-values of
0.0225 and 0.0202, concluding that the distributions are asymmetric.

The bivariate normality tests of [37–40] yielded test statistics (with p-values in parentheses),
of 2.8909 (0.0000), 9.3258 (0.0094) and 62.2958 (0.0000), respectively, hence, it is concluded that the
bivariate observations vector does not follow a bivariate normal distribution. Thus, an asymmetric
bivariate distribution, such as the BPSN model may be useful to fit this data set. Hence, the bivariate
normal distribution is not a tenable model for the data under study, and an alternative model that
is able to incorporate some degree of asymmetry would probably fit the data better. We fitted the
conditional bivariate skew-normal model (see, [6]), the bivariate power-normal (BPN) model and the
BPSN model. To compare fitted model, we make use of the Akaike Information Criterion (AIC), by [41]
and the corrected AIC (CAIC) [42]. These measures are defined as follows

AIC = −2`(θ̂) + 2p and CAIC = −2`(θ̂) +
2n(p + 1)
n− p− 2

.

We used the optim fuction of statistical package [43] for fitting the bivariate model. To choose
the initial values in the iterative estimation process, for α1, α2, α12, in the BPSN model we use the
transformation Yj = − ln

(
FSN(z1i; λj)

)
for j = 1, 2 which yields the bivariate exponential conditionals

model discussed in detail by [28].

fY1Y2(y1, y2) = k(α1, α2, α12) exp (−α1y1 − α2y2 − α12y1y2) (33)
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This transformation leads to obtaining estimates by the method of the moments of α1, α2 and α12,
which are consistent and asymptotically normal, see [28]. These estimators are given by:

α̃1 =
γ̃

y1(γ̃ + I(γ̃− 1))
, α̃2 =

γ̃

y2(γ̃ + I(γ̃− 1))
and α̃12 =

γ̃(γ̃− 1)
y1y2(γ̃ + I(γ̃− 1))

,

where γ̃ = I
1+ρY1Y2 I c with ρY1Y2 = cor(y1, y2) and I = cv(y1)cv(y2), where cor is the usual Pearson

correlation between Y1 and Y2, and cv(y) =
√

S2
y/y.

For the initial points of λ1, λ2, and the location-scale parameters, we fit the univariate SN
distributions by using the selm function of [43], the moment estimators of these parameters given
in [44], and the values of the means and standard deviations of the bivariate normal model. Finally with
the obtained values for ((ξ̃1, η̃1), (ξ̃2, η̃2), λ̃1, λ̃2, α̃1, α̃2, α̃12), the iterative estimation process is started.

Table 3 presents ML estimates, AIC and CAIC values for BCSN, BPN and BPSN models, which is
the one corresponding to the best (smallest AIC or CAIC) model fitting, which clearly indicates a better
fit for BPSN model. Contour plots for the BPN, bivariate conditional skew-normal (BCSN) and BPSN
distributions are presented in Figure 2.

Table 3. Estimated parameters (standard errors), of the BCSN, BPN and BPSN models.

Estimate BCSN BPN BPSN

ξ̂1 5.867 (0.055) 3.746 (0.136) 4.119 (0.163)
ξ̂2 3.055 (0.035) 1.655 (0.082) 2.572 (0.159)
η̂1 0.794 (0.043) 1.384 (0.058) 1.417 (0.204)
η̂2 0.438 (0.026) 0.808 (0.055) 2.146 (0.390)
λ̂1 −0.224 (0.110) 11.147 (3.685)
λ̂2 −3.200 (0.504)
α̂1 9.358 (0.613) 2.127 (0.192)
α̂2 14.746 (0.374) 18.260 (3.158)
α̂12 2.671 (0.715) 5.016 (1.473)
AIC 555.10 551.71 549.00

CAIC 557.68 554.73 552.59

Initially, the BPN model is compared to the BPSN model by the hypothesis tests

H0 : (λ1, λ2) = (0, 0) versus H1 : (λ1, λ2) 6= (0, 0).

by using the likelihood ratio statistic,

Λ =
LBPN(θ̂)

LBPSN(θ̂)

where LBPN(·) and LBPSN(·) are the pseudo-likelihood function of the BPN ans BPSN model,
respectively. We obtain

−2 log(Λ) = −2
(
`BPN(θ̂)− `BPSN(θ̂)

)
= 6.704

which is greater than the value of the χ2
2,95% = 5.99. Then the BPSN model is a good alternative for

fitting the data set. This result suggests the importance of the parameters λ1 and λ2 in the good fit
of the BPSN model, the effect of these two parameters can be seen in the graph (c) of the Figure 2.
The contour graphs in the Figure show that the BPSN model manages to better capture the distribution
of the data set under consideration, since more points are contained within the contours of the BPSN
distribution compared to the BCSN and BPN models.
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Another hypothesis of special interest is the significance of the parameter vector (α1, α2, α12),
in this particular case there is interest in the hypothesis set

H0 : (α1, α2, α12) = (1, 1, 0) versus H1 : (α1, α2, α12) 6= (1, 1, 0)

So, under H0, we have the independent bivariate SN distribution for (X1, X2). An appropriate test
follows by using a statistic of type Wald which follows from the asymptotic normality of the maximum
pseudo-likelihood estimator β̂ . This statistic can be defined as

Wn = (Aβ̂−m)>
(
Σ̂3(β̂)

)−1
(Aβ̂−m),

where Σ̂3(β̂) is a submatrix of Σ̂(β̃) corresponding to the vector (α1, α2, α12), A = (03×6 I3) and
m = (1, 1, 0)> , which, under the null hypothesis follows a χ2 distribution with 3 degrees of freedom.

Thus, we obtained that Wn = 1229.17 with pvalue = 0.0000, that is, the null hypothesis is rejected,
indicating that the exponentiated component is significant in the model, thus, both components of
the unification, skew and power, are significant in the good fit of the BPSN model.
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Figure 2. Contour plot of bivariate distributions for Iris data set: (a) BCSN model, (b) BPN model and
(c) BPSN model.

The multivariate Kolmogorov-Smirnov test of goodness of fit proposed by [45], in special for the
case of a bivariate distribution, which we denote by BKS (bivariate Kolmogorov-Smirnov), the statistic
is given by

dn = sup
(x1,x2)∈R2

∣∣Fn(x1, x2)−F (x1, x2)
∣∣

where Fn is the empirical distribution function of the sample, and F is some specified
distribution function. When F distribution is unknown, the Kolmogorov-Smirnov statistic is
defined by

dn(F ) = max
{

D1, D2},

where
D1 sup

(x1,x2)∈R2

∣∣Gn(y1, y2)− y1 × y2
∣∣

by using the transformation y1 = FX1(x1) and y2 = FX2|X1
(x2 | x1), and

D2 sup
(x1,x2)∈R2

∣∣Gn(y2, y1)− y2 × y1
∣∣

by using the transformation y2 = FX2(x2) and y1 = FX1|X2
(x1 | x2), where Gn is the empirical

distribution function of the sample. For the special case of the BPSN model,

dn(BPSN) = max
{

0.05907079 , 0.07485913
}
= 0.07485913,
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which is less than 0.1464, which is the critical value of Table 1 given by [45], at level of 5%. Therefore,
it is concluded that, the BPSN model fits well with the iris data set.

It should be noted that, the BPSN model is compared to other models, in particular a model of the
skew-normal family of [1] proposed by [6], and a model of the power-normal family of [2] studied
by [26]. Our proposal better fitted the data set studied in [35]. This allows us to conclude that the
BPSN model is a viable alternative to those existing in the literature when the data set presents degrees
of asymmetry that are not captured by the multivariate normal model.

4.2. Illustration 2

In the second application we use data on measurements on air-pollution variables recorded at
12:00 noon in the Los Angeles area on different days, available in [46]. For this application, we use
the variables x = Wind and y = NO2. For air pollutant concentrations, it is usually assumed
that the data are uncorrelated and independent and thus do not require the diurnal or cyclic trend
analysis [47]. The concentration of average air pollutants has been used in epidemiological surveillance
as an indicator of the atmospheric contamination and its associated adverse effects in humans,
causing diseases such as bronchitis.

The bivariate normality test of Royston returns a test statistic value of 13.55147 with p-value =
0.001141065, whereas the generalized Shapiro-Wilk test for multivariate normality returns a test
statistic value of MVW = 0.94391, with p-value = 0.01166 rejecting the hypothesis of normality of the
observations vector. Thus, a model like the BPSN is an alternative to fit the vector of observations.

In this case, the maximum pseudo-likelihood estimates for the parameter vector is given by ξ̂1 =

5.8000(0.3802), ξ̂2 = 2.8274(0.6279), η̂1 = 4.9416(0.5998), η̂2 = 6.1694(0.6590), λ̂1 = −1.8609(0.1185),
λ̂2 = −0.5184(0.1263), α̂1 = 10.14438(5.0364124), α̂2 = 11.3732(6.5075) and α̂12 = 15.4635(8.4410).

For the hypothesis

H0 : (α1, α2, α12) = (1, 1, 0) versus H1 : (α1, α2, α12) 6= (1, 1, 0)

nosotros obtuvimos que Wn = 196.6627 with pvalue = 0.0000, es decir, se rechaza la hipótesis nula,
indicando que la componente exponenciada es significativa en el modelo. For the The multivariate
Kolmogorov-Smirnov test of goodness of fit,

dn(BPSN) = max{0.1619804, 0.1066137} = 0.1619804,

which is less than the values 0.2789 (for n = 40) and 0.2512 (for n = 50), then the BPSN model presents
a good fit for the environmental pollution data in the city of Los Angeles. Contour plots for the
bivariate PSN distributions is presented in Figure 3.
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Figure 3. Contour plots for the bivariate PSN distributions.
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5. Concluding Remarks

In this article, on the basis of conditionally specified distributions, we have introduced a new
bivariate PSE distribution which is very general, quite flexible and widely applicable. The new
bivariate model is an absolutely continuous bivariate distribution whose marginals are univariate
PSE distributions. We have derived several properties of the bivariate PSE distribution and special
attention is centered in the particular case of de bivariate PSN distribution. The estimation of the
unknown parameters of the new bivariate model is approached by using the proposal of [29] by
maximization of the pseudo-likelihood function and the observed information matrix is determined.
LR tests for some hypotheses of interest are also considered. As remarked, the new bivariate PSN
model proposed in this article can be skewed and correlated, and therefore is much more flexible than
other bivariate skew models available in the literature for analysing bivariate data. This is supported
in the application to real data which is verified that the new bivariate PSN model provides consistently
a better fit than the bivariate model proposed by [6].
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Appendix A

The elements of the K matrix can be written as:

κξ jξ j =
α12

η2
j

n

∑
i=1

 zjiW(1)ji −
√

2
π λjW(3)ji + W2

(1)ji

[αj − α12 ln(FSN(zji; λj))]
−

α12W2
(1)ji

[αj − α12 ln(FSN(zji; λj))]2


− 1

η2
j

n

∑
i=1

[
1 +

√
2
π

λ3
j zjiW(2)ji +

2λ2
j

π
W2

(2)ji

]

− 1
η2

j

n

∑
i=1

[(αj − 1)− 2α12 ln(FSN(zj′i; λj′))]

[
zjiW(1)ji −

√
2
π

λjW(3)ji + W2
(1)ji

]
,

κξ jηj =
α12

η2
j

n

∑
i=1

 (z2
ji − 1)W(1)ji −

√
2
π λjzjiW(3)ji + zjiW2

(1)ji

[αj − α12 ln(FSN(zji; λj))]
−

α12zjiW2
(1)ji

[αj − α12 ln(FSN(zji; λj))]2


+

1
η2

j

n

∑
i=1

[
−2zji +

√
2
π

λj(1− λ2
j z2

ji)W(2)ji −
2λ2

j zji

π
W2

(2)ji

]

− 1
η2

j

n

∑
i=1

[(αj − 1)− 2α12 ln(FSN(zj′i; λj′))]

[
(z2

ji − 1)W(1)ji −
√

2
π

λjzjiW(3)ji + zjiW2
(1)ji

]
,
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κξ jλj =

√
2
π

1
1 + λ2

j

α12

ηj

n

∑
i=1

[
(1 + λ2

j )zjiW(3)ji + W(1)jiW(3)ji

[αj − α12 ln(FSN(zji; λj))]
−

α12W(1)jiW(3)ji

[αj − α12 ln(FSN(zji; λj))]2

]

+
1
ηj

√
2
π

n

∑
i=1

[
(λ2

jiz
2
ji − 1)W(2)ji +

√
2
π

λjzjiW2
(2)ji

]

−
√

2
π

1
1 + λ2

j

1
ηj

n

∑
i=1

[(αj − 1)− 2α12 ln(FSN(zj′i; λj′))][(1 + λ2
j )zjiW(3)ji + W(1)jiW(3)ji],

κξ jαj =
−1
ηj

n

∑
i=1

[
α12

[αj − α12 ln(FSN(zji; λj))]2
+ 1

]
W(1)ji,

κξ jα12 =
1
ηj

n

∑
i=1

[
αj

[αj − α12 ln(FSN(zji; λj))]2
+ 2 ln(FSN(zj′i; λj))

]
W(1)ji,

κηjηj =
α12

η2
j

n

∑
i=1

 (z2
ji − 2)zjiW(1)ji −

√
2
π λjz2

jiW(3)ji + z2
jiW

2
(1)ji

[αj − α12 ln(FSN(zji; λj))]
−

α12z2
jiW

2
(1)ji

[αj − α12 ln(FSN(zji; λj))]2


1
η2

j

n

∑
i=1

[
1− 3z2

ji +

√
2
π

λjzji(2− λ2
j z2

ji)W(2)ji −
2
π

λ2
j z2

jiW
2
(2)ji

]

− 1
η2

j

n

∑
i=1

[(αj − 1)− 2α12 ln(FSN(zj′i; λj′))]

[
(z2

ji − 2)zjiW(1)ji −
√

2
π

λjz2
jiW(3)ji + z2

jiW
2
(1)ji

]
,

κηjλj =

√
2
π

1
1 + λ2

j

α12

ηj

n

∑
i=1

[
z2

ji(1 + λ2
j )W(3)ji + zjiW(1)jiW(3)ji

[αj − α12 ln(FSN(zji; λj))]
−

α12zjiW(1)jiW(3)ji

[αj − α12 ln(FSN(zji; λj))]2

]

−
√

2
π

1
ηj

n

∑
i=1

zjiW(2)ji

[
1− λ2

j z2
ji −

√
2
π

λjzjiW(2)ji

]

−
√

2
π

1
1 + λ2

j

1
ηj

n

∑
i=1

[(αj − 1)− 2α12 ln(FSN(zj′i; λj′))][z
2
ji(1 + λ2

j ) + zjiW(1)ji]W(3)ji,

κηjαj = −
1
ηj

n

∑
i=1

[
α12zji

[αj − α12 ln(FSN(zji; λj))]2
+ zji

]
W(1)ji,

κηjα12 =
1
ηj

n

∑
i=1

[
αjzji

[αj − α12 ln(FSN(zji; λj))]2
+ 2zji ln(FSN(zj′i; λj))

]
W(1)ji,

κλjλj =

√
2
π

α12

(1 + λ2
j )

2

n

∑
i=1


[
−λj(1 + λ2

j )z
2
ji − 2λj +

√
2
π W(3)ji

]
W(3)ji

[αj − α12 ln(FSN(zji; λj))]
−
√

2
π

α12W2
(3)ji

[αj − α12 ln(FSN(zji; λj))]2


+

√
2
π

n

∑
i=1

[
−λjz3

jiW(2)ji −
√

2
π

z2
jiW

2
(2)ji

]

−
√

2
π

1
(1 + λ2

j )
2

n

∑
i=1

[(αj − 1)− 2α12 ln(FSN(zj′ i; λj′ ))]

[
−λj(1 + λ2

j )z
2
ji − 2λj +

√
2
π

W(3)ji

]
W(3)ji,

κλjαj = −
√

2
π

1
1 + λ2

j

n

∑
i=1

[
α12

[αj − α12 ln(FSN(zji; λj))]2
+ 1

]
W(3)ji,
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κλjα12 =

√
2
π

1
1 + λ2

j

n

∑
i=1

[
αj

[αj − α12 ln(FSN(zji; λj))]2
+ 2 ln(FSN(zj′i; λj))

]
W(3)ji,

καjαj = −
n

∑
i=1

1
[αj − α12 ln(FSN(zji; λj))]2

,

καjα12 =
n

∑
i=1

ln(FSN(zji; λj))

[αj − α12 ln(FSN(zji; λj))]2
,

κα12α12 = −
n

∑
i=1

2

∑
j=1

ln2(FSN(zji; λj))

[αj − α12 ln(FSN(zji; λj))]2
,

καjαj′ = 0, καjλj′
= 0, καjηj′ = 0, καjξ j′

= 0,

κλjλj′
= − 4

π

α12

(1 + λ2
j )(1 + λ2

j′)

n

∑
i=1

W(3)jiW(3)j′i,

κλjηj′
= −2

√
2
π

1
ηj′

α12

1 + λ2
j

n

∑
i=1

zj′iW(3)jiW(1)j′i,

κλjξ j′
= −2

√
2
π

1
ηj′

α12

1 + λ2
j

n

∑
i=1

W(3)jiW(1)j′i,

κηjηj′ = −
2α12

ηjηj′

n

∑
i=1

zjizj′iW(1)jiW(1)j′i,

κηjξ j′
= − 2α12

ηjηj′

n

∑
i=1

zjiW(1)jiW(1)j′i,

κξ jξ j′
= − 2α12

ηjηj′

n

∑
i=1

W(1)jiW(1)j′i.
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