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Abstract: Understanding the hydrogen atom has been at the heart of modern physics. Exploring
the symmetry of the most fundamental two body system has led to advances in atomic physics,
quantum mechanics, quantum electrodynamics, and elementary particle physics. In this pedagogic
review, we present an integrated treatment of the symmetries of the Schrodinger hydrogen atom,
including the classical atom, the SO(4) degeneracy group, the non-invariance group or spectrum
generating group SO(4,1), and the expanded group SO(4,2). After giving a brief history of these
discoveries, most of which took place from 1935–1975, we focus on the physics of the hydrogen atom,
providing a background discussion of the symmetries, providing explicit expressions for all of the
manifestly Hermitian generators in terms of position and momenta operators in a Cartesian space,
explaining the action of the generators on the basis states, and giving a unified treatment of the bound
and continuum states in terms of eigenfunctions that have the same quantum numbers as the ordinary
bound states. We present some new results from SO(4,2) group theory that are useful in a practical
application, the computation of the first order Lamb shift in the hydrogen atom. By using SO(4,2)
methods, we are able to obtain a generating function for the radiative shift for all levels. Students,
non-experts, and the new generation of scientists may find the clearer, integrated presentation of
the symmetries of the hydrogen atom helpful and illuminating. Experts will find new perspectives,
even some surprises.

Keywords: symmetry; hydrogen atom; group theory; SO(4); SO(4,2); dynamical symmetry;
non-invariance group; spectrum generating algebra; Runge-Lenz; Lamb shift

1. Introduction

1.1. Objective of This Paper

This pedagogic review is focused on the symmetries of the Schrodinger nonrelativistic hydrogen
atom exclusively to give it the attention that we believe it deserves. The fundamental results of the
early work are known and do not need to be derived again. However, having this knowledge permits
us to use the modern language of group theory to do a clearer, more focused presentation, and to
use arguments from physics to develop the proper forms for the generators, rather than dealing with
detailed, mathematical derivations to prove results we know are correct.

There are numerous articles about the symmetry of the Schrodinger hydrogen atom,
particularly the SO(4) group of the degenerate energy eigenstates, including discussions from classical
perspectives. The spectrum generating group SO(4,1) and the non-invariance group SO(4,2) have been
discussed, but, in many fewer articles, often in appendices, with different bases for the representations.
For example, numerous papers employ Schrodinger wave functions in parabolic coordinates, not
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with the familiar nlm quantum numbers, often with the emphasis on the details of the mathematical
structures, not the physics, and with the emphasis on the potential role of the symmetry in elementary
particle physics. Generators may be expressed in complex and unfamiliar terms, for example, in terms
of the raising and lowering operators for quantum numbers characteristic of parabolic coordinates.
Other approaches involve regularizing Schrodinger’s equation by, for example, multiplying by r.
The approach results in generators that are not always Hermitian or manifestly Hermitian, and the
need for nonstandard inner products. Indeed, most of the seminal articles do not have the words
“hydrogen atom” in the title but are focused on the prize down the road, understanding what was
called at the time “the elementary particle zoo”.

Yet, these foundational articles and books taken together present the information we have about
the symmetry of the H atom, of which experts in the field are aware. On the other hand, to the
non-expert, the student, or a researcher new to the field, it does not appear that the relevant information
is in a form that is conveniently accessible. Since the hydrogen atom is the most fundamental physical
system with an interaction, whose exploration and understanding has led to much of the progress in
atomic physics, quantum physics, and quantum electrodynamics, we believe that a comprehensive
treatment is warranted and, since most of the relevant papers were published four decades ago,
is timely. Many younger physicists may not be acquainted with these results.

Unlike in a number of the foundational papers, here the operators are all Hermitian, and given in
terms of the canonical position and momentum variables in the simplest forms. The transformations
they generate are clearly explained, and we provide brief explanations for the group theory used in
the derivations.

In most papers, a separate treatment for bound and scattering states in needed. In contrast we are
able to clarify and simplify the exposition since we use a set of basis states which are eigenfunctions of
the inverse of the coupling constant [1], that include both the bound states and the scattering states
in a uniform way, and that employ the usual Cartesian position and momenta, with the usual inner
product, with the exact same quantum numbers nlm as the ordinary bound states; a separate treatment
for bound and scattering states is not required. In addition, we have two equivalent varieties of this
uniform basis, one that is more suitable for momentum space calculations and one more suitable for
configuration space calculations. This advantage again allows us to simplify the exposition.

We focus on the utility of group theoretic methods using our representation and derive expressions
for the unitary transformation of group elements and some new results that allow for us to readily
compute the first order radiative shift (Lamb shift) of a spinless electron, which accounts for about
95% of the total shift. This approach allows for us to obtain a generating function for the shifts for all
energy levels. For comparison, we derive an expression for the Bethe log.

In summary, we present a unified treatment of the symmetries of the Schrodinger hydrogen atom,
from the classical atom to SO(4,2) that focuses on the physics of the hydrogen atom, that gives explicit
expressions for all the manifestly Hermitian generators in terms of position and momenta operators
in a Cartesian space, that explains the action of the generators on the basis states, which evaluates
the Casimir operators characterizing the group representations, and that gives a unified treatment of
the bound and continuum states in terms of wave functions that have the same quantum numbers
as the ordinary bound states. We give an example of the use of SO(4,2) in a practical application,
the computation of the first order radiative shift in the hydrogen atom.

Hopefully, students and non-experts and the new generation of scientists will find this review
helpful and illuminating, perhaps motivating some to use these methods in various new contexts.
Senior researchers will find new perspectives, even some surprises and encouragements.

1.2. Outline of This Paper

In the remainder of Section 1 we give a brief historical account of the role of symmetry in quantum
mechanics and of the work done in order to explore the symmetries of the Schrodinger hydrogen atom.
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In Section 2, we provide some general background observations regarding symmetry groups
and non-invariance groups and discuss the degeneracy groups for the Schrodinger, Dirac,
and Klein-Gordon equations. We also introduce the uncommon (Zα)−1 eigenstates that allow
us to treat the bound and scattering states in a uniform way, using the usual quantum numbers.
In Section 3, the classical equations of motion of the nonrelativistic hydrogen atom in configuration and
momentum space are derived from symmetry considerations. The physical meaning of the symmetry
transformations and the structure of the degeneracy group SO(4) is discussed. In Section 4, we discuss
the symmetries using the language of quantum mechanics. In order to display the symmetries in
quantum mechanics in the most elegant and uniform way we use a basis of eigenstates of the inverse
of the coupling constant (Zα)−1. In Section 5 we discuss these wave functions in momentum and
configuration space, how they transform and their classical limit for Rydberg states.

In Section 6, we discuss the noninvariance or spectrum generating group of the hydrogen atom
SO(4,l) and relate it to the conformal group in momentum space. In Section 7, the enlarged spectrum
generating group SO(4,2) is introduced, with a discussion of the physical meaning of the generators.
All of the physical states together form a basis for a unitary irreducible representation of these
noninvariance groups. We derive manifestly Hermitian expressions in terms of the momentum and
position canonical variables for the generators of the group transformations and obtain the values
possible for the Casimir operators. We discuss the important subgroups of SO(4,2).

In Section 8, we use the group theory of SO(4,2) to determine the radiative shifts in energy levels
due to the interaction of a spinless electron with its own radiation field, or equivalently with the
quantum vacuum. In the nonrelativistic or dipole approximation the level shift contains a matrix
element of a rotation operator of an O(1,2) subgroup of the group SO(4,2). We can sum this over all
states, obtaining the character of the representation, yielding a single integral that is a generating
function for the radiative shift for any level in the nonrelativistic or dipole approximation. A brief
conclusion follows.

1.3. Brief History of Symmetry in Quantum Mechanics and Its Role in Understanding the Schrodinger
Hydrogen Atom

The hydrogen atom is the fundamental two-body system and perhaps the most important tool
of atomic physics and the continual challenge is to continually improve our understanding of the
hydrogen atom and to calculate its properties to the highest accuracy possible. The current QED theory
is the most precise of any physical theory [2]:

The study of the hydrogen atom has been at the heart of the development of modern
physics...theoretical calculations reach precision up to the 12th decimal place...high
resolution laser spectroscopy experiments...reach to the 15th decimal place for the 1S–2S
transition...The Rydberg constant is known to six parts in 1012 [2,3]. Today, the precision is
so great that measurement of the energy levels in the H atom has been used to determine
the radius of the proton.

Continual progress in understanding the properties of the hydrogen atom has been central to
progress in quantum physics [4]. Understanding the atomic spectra of the hydrogen atom drove the
discovery of quantum mechanics in the 1920’s. The measurement of the Lamb shift in 1947 and its
explanation by Bethe in terms of atom’s interaction with the quantum vacuum fluctuations ushered in
a revolution in quantum electrodynamics [5–7]. Exploring the symmetries of the hydrogen atom has
been an essential part of this progress. Symmetry is a concept that has played a broader role in physics
in general; for example, in understanding the dynamics of the planets, atomic, and molecular spectra,
and the masses of elementary particles.

When applied to an isolated system, Newton’s equations of motion imply the conservation of
momentum, angular momentum and energy. But the significance of these conservation laws was
not really understood until 1911 when Emily Nother established the connection between symmetry
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and conservation laws [8]. Rotational invariance in a system results in the conservation of angular
momentum; translational invariance in space results in conservation of momentum; and translational
invariance in time results in the conservation of energy. We will discuss Nother’s Theorem in more
detail in Section 2.

Another critical ingredient of knowledge, on which Nother based her proof, was the idea of an
infinitesimal transformation, such as a infinitesimal rotation generated by the angular momentum
operators in quantum mechanics. These ideas of infinitesimal transformations originated with the
Norwegian mathematician Sophus Lie who was studying differential equations in the latter half of
the nineteenth century. He studied the collection of infinitesimal transformations that would leave a
differential equation invariant [9]. In 1918, German physicist and mathematician Hermann Weyl, in his
classic book with the translated title “The Theory of Groups and Quantum Mechanics”, would refer to
this collection of differential generators leaving an operator invariant as a linear algebra, ushering in a
little of the terminology of modern group theory [10]. Still this was a very early stage in understanding
the role of symmetry in the language of quantum theory. When he introduced the new idea of a
commutator on page 264, he put the word “commutator” in quotes. In the preface Weyl made a
prescient observation: “.. the essence of the new Heisenberg-Schrodinger-Dirac quantum mechanics is
to be found in the fact that there is associated with each physical system a set of quantities, constituting
a non-commutative algebra in the technical mathematical sense, the elements of which are the physical
quantities themselves”.

A few years later Eugene Wigner published in German, “Group Theory and Its Application to
the Quantum Mechanics of Atomic Spectra [11]”. One might ask why was this classic not translated
into English until 1959. In the preface to the English edition, Prof. Wigner recalled: “When the
first edition was published in 1931, there was a great reluctance among physicists toward accepting
group theoretical arguments and the group theoretical point of view. It pleases the author that this
reluctance has virtually vanished..” It was the application of group theory in particle physics in the
early sixties, such as SU(3) and chiral symmetry, which reinvigorated interest in Wigner’s book and
the field in general. In the 1940’s, Wigner and Bargmann developed the representation theory of
the Poincare group that later provided an infrastructure for the development of relativistic quantum
mechanics [11,12].

The progress in understanding the symmetries of the hydrogen atom, in particular, has some
parallels to the history of symmetry in general: there were some decades of interest but after the 1930’s
interest waned for about three decades in both fields, until stimulated by the work on symmetry in
particle physics.

Probably, the first major advance in understanding the role of symmetry in the classical treatment
of the Kepler problem after Newton’s discovery of universal gravitation, elliptical orbits, and Kepler’s
Laws, was made two centuries ago by Laplace when he discovered the existence of three new constants
of the motion in addition to the components of the angular momentum [13]. These additional conserved
quantities are the components of a vector which determines the direction of the perihelion of the motion
(point closest to the focus) and whose magnitude is the eccentricity of the orbit. The Laplace vector
was later rediscovered by Jacobi and has since been rediscovered numerous times under different
names. Today it is generally referred to as the Runge-Lenz vector. However, the significance of this
conserved quantity was not well understood until the nineteen thirties.

In 1924, Pauli made the next major step forward in understanding the role of symmetry in
the hydrogen atom [14]. He used the conserved Runge-Lenz vector A and the conserved angular
momentum vector L to solve for the energy spectrum of the hydrogen atom by purely algebraic means,
a beautiful result, yet he did not explicitly identify that L and A formed the symmetry group SO(4)
corresponding to the degeneracy. At this time, the degree of degeneracy in the hydrogen energy levels
was believed to be n2 for a state with principal quantum number n, clearly greater than the degeneracy
due to rotational symmetry which is (2l + 1). The n2 degeneracy arises from the possible values of
the angular momentum l = 0, 1, 2, . . . n− 1, and the 2l + 1 values of the angular momentum along the
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azimuthal axis m = −l,−l + 1, ...0, 1, 2, l + 1. The additional degeneracy was referred to as “accidental
degeneracy [15].”

Six years after Pauli’s paper, Hulthen used the new Heisenberg matrix mechanics to simplify
the derivation of the energy eigenvalues of Pauli by showing that the sum of the squares L2 + A2

could be used to express the Hamiltonian and so could be used to find the energy eigenvalues [16].
In a one sentence footnote in this three page paper, Hulthen gives probably the most important
information in his paper: Prof. Otto Klein, who had collaborated for years with Sophus Lie, had
noticed that the two conserved vectors formed the generators of the Lorentz group, which we can
describe as rotations in four dimensions, the fourth dimension being time. This is the non-compact
group SO(3,1), the special orthogonal group in four dimension whose transformations leave the
magnitude gµνzµzν = −t2 + x2 + y2 + z2 unchanged [17]. Klein’s perceptive observation triggered the
introduction of group theory to understanding the hydrogen atom.

About a decade later, in 1935, the Russian physicist Vladimir Fock published a major article
in Zeitshrift fur Physik, the journal in which all the key articles about the hydrogen atom cited
were published [18]. He transformed Schrodinger’s equation for a given energy eigenvalue from
configuration space to momentum space, and did a stereographic projection onto a unit sphere,
and showed that the bound state momentum space wave functions were spherical harmonics in
four dimensions. He stated that this showed that rotations in four dimensions corresponded to the
symmetry of the degenerate bound state energy levels in momentum space, realizing the group SO(4),
the group of special orthogonal transformations which leaves the norm of a four-vector U2

0 +U2
1 +U2

2 +

U2
3 constant. By counting the number of four-dimensional spherical harmonics Ynlm in momentum

space (m = −l,−l + 1...0, 1, ...l, where the angular momentum l can equal l = n − 1, n − 2, ...0),
he determined that the degree of degeneracy for the energy level characterized by the principal
quantum number n was n2. It is interesting that Fock did not cite the work by Pauli, implying the four
dimensional rotational symmetry in configuration space. Fock also presented some ideas about using
this symmetry in calculating form factors for atoms.

A year later, the German-American mathematician and physicist Valentine Bargmann showed that
for bound states (E < 0) Pauli’s conserved operators, the angular momentum L and the Runge–Lenz
vector A, obeyed the commutation rules of the SO(4) [12]. His use of commutators was so early in
the field of quantum mechanics, that Bargmann explained the square bracket notation he used for a
commutator in a footnote [19]. He gave differential expression for the operators, adapting the approach
of Lie generators in the calculation of the commutators. He linked solutions to Schrodinger’s equation
in parabolic coordinates to the existence of the conserved Runge–Lenz vector and was thereby able to
establish the relationship of Fock’s results to the algebraic representation of SO(4) for bound states
implied by Fock and Pauli [12]. He also pointed out that the scattering states (E > 0) could provide
a representation of the group SO(3,1). In a note at the end of the paper, Bargmann, who was at the
University in Zurich, thanked Pauli for pointing out the paper of Hulthen and the observation by
Klein that the Lie algebra of L and A was the same as the infinitesimal Lorentz group, which is how
he referred to a Lie algebra. Bargmann’s work was a milestone demonstrating the relationship of
symmetry to conserved quantities and it clearly showed that to fully understand a physical system
one needed to go beyond the usual ideas of geometrical symmetry. This work was the birth, in 1936,
without much fanfare, of the idea of dynamical symmetry.

Little attention was paid to these developments until the 1960’s, when interest arose primarily
because of the applications of group theory in particle physics, particularly modeling the mass spectra
of hadrons. Particle physicists were faced with the challenge of achieving a quantitative description of
hadron properties, particularly the mass spectra and form factors, in terms of quark models. Since
little was know about quark dynamics they turned to group-theoretical arguments, exploring groups
like SU(3), chiral U(3)xU(3), U(6)xU(6), etc. The success of the eight-fold way of SU(3) (special unitary
group in three dimensions) of American physicist Murray Gell-Mann in 1962 brought attention to the
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use of symmetry considerations and group theory as tools for exploring systems in which one was
unsure of the exact dynamics [20].

In 1964, three decades after Fock’s work, American physicist Julian Schwinger published a paper
using SO(4) symmetry to construct a Green function for the Coulomb potential, which he noted was
based on a class he taught at Harvard in 1949 [21]. The publication was a response to the then current
emphasis on group theory and symmetry, which led to, as Israeli physicist Yuval Ne’eman described
it, “’the great-leap-forward’ in particle physics during the years 1961–1966 [22]”. Some of the principal
researchers leading this effort were Ne’eman [23], Gell-Mann [20,24,25], Israeli physicist Y. Dothan [26],
Japanese physicist Yochiri Nambu [27], and English-American Freeman Dyson [28]. Advantage was
taken of the mathematical infrastructures of group theory developed years earlier [10–12,29,30].

Interest was particularly strong in systems with wave equations with an infinite number of
components, which characterize non-compact groups. In about 1965, this interest in particle physics
gave birth to the identification of SO(4,1) and SO(4,2) as Spectrum Generating Algebras that might
serve as models for hadronic masses. The hydrogen atom was seen as a model to explore the infinite
dimensional representations of non-compact groups. The first mention of SO(4,1) was by Barut, Budini,
and Fronsdal [31], where the H atom was presented as an illustration of a system characterized by
non-compact representation, and so comprising an infinite number of states. The first mention of a six
dimensional symmetry, referred to as the “non-compact group O(6)”, appears to be by the Russian
physicists I. Malin and V. Man’ko of the Moscow Physico-technical Institute [32]. In a careful three page
paper, they showed that all of the bound states of the H atom energy spectrum in Fock coordinates
provided a representation of this group, and they calculated the Casimir operators for their symmetric
tensor representation in parabolic coordinates.

Very shortly thereafter, Turkish-American theoretical physicist Asim Barut and his student at
University of Colorado, German theoretical physicist Hagen Kleinert, showed that including the dipole
operator er as a generator led to the expansion of SO(4,1) to SO(4,2), and that all the bound states of
the H atom formed a representation of SO(4,2) [33]. This allowed them to calculate dipole transition
matrix elements algebraically. They give a position representation of the generators based on the use
of parabolic coordinates. The generators of the transformations are given in terms of the raising and
lowering operators for the quantum numbers for solutions to the H atom in parabolic coordinates.
The dilation operator is used to go from one SO(4) subspace with one energy to a SO(4) subspace with
different energy and it has a rather complicated form. They also used SO(4,2) symmetry to compute
form factors [34].

The papers of the Polish-American physicist Myron Bander and French physicist Claude Itzakson
published in 1966, when both were working at SLAC (Stanford Linear Accelerator in California)
provide the first mathematically rigorous and “succinct” review of the O(4) symmetry of the H atom
and provide an introduction to SO(4,1) [35,36], which is referred to as a spectrum generating algebra
SGA, meaning that it includes generators that take the basis states from one energy level to another.
They use two approaches in their mathematical analysis, the first is referred to as “the infinitesimal
method,” based on the two symmetry operators, L and A and the O(4) group they form, and the
other, referred to as the “global method”, first done by Fock, converts the Schrodinger equation to an
integral equation with a manifest four dimensional symmetry in momentum space. They establish the
equivalence of the two approaches by appealing to the solutions of the H atom in parabolic coordinates,
and demonstrate that the symmetry operators in the momentum space correspond to the symmetry
operators in the configuration space. As they note, the stereographic projection depends on the energy,
so the statements for a SO(4) subgroup are valid only in a subspace of constant energy. They then
explore the expansion of the SO(4) group to include scale changes so the energy can be changed,
transforming between states of different principal quantum number, which correspond to different
subspaces of SO(4). To insure that this expansion results in a group, they include other transformations,
which results in the the generators forming the conformal group O(4,1). Their mathematical analysis
introducing SO(4,1) is based on the projection of a p dimensional space (4 in the case of interest) on a
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parabaloid in p + 1 dimensions (5 dimensions). In their derivation they treat bound states in their first
paper [35] and scattering states in the second paper [36].

As we have indicated the interest in the SO(4,2) symmetry of the Schrodinger equation was driven
by a program focused on developing equations for composite systems that had infinite multiplets of
energy solutions and ultimately could lead to equations that could be used to predict masses of elementary
particles, perhaps using other than four dimensions [27,35–40]. In 1969 Jordan and Pratt showed that
one could add spin to the generators A and L, and still form a SO(4) degeneracy group. By defining
J = 1

2(L + A) + S, they showed one could obtain a representation of O(4,1) for any spin s [41].
In their review of the symmetry properties of the hydrogen atom, Bander and Itzakson emphasize

this purpose for exploring the group theory of the hydrogen atom [35]:

The construction of unitary representations of non-compact groups that have the
property that the irreducible representations of their maximal subgroup appear at most
with multiplicity one is of certain interest for physical applications. The method of
construction used here in the Coulomb potential case can be extended to various other
cases. The geometrical emphasis may help to visualize things and provide a global form of
the transformations.

Special attention was also given to solutions for the hydrogen atom from the two body
Bethe-Salpeter equation for a proton and electron interacting by a Coulomb potential, since the
symmetry was that of a relativistic non-compact group [27,40,42,43].

Finally in 1969, five years after it was published, Schwinger’s form of the Coulomb Green’s
function based on the SO(4) symmetry was used to calculate the Lamb shift by Michael Lieber,
one of Schwinger’s students at Harvard [21,44]. A year later, Robert Huff, a student of Christian
Fronsdal at UCLA, focused on the use of the results from SO(4,2) group theory to compute the Lamb
shift [45]. He converted the conventional expression for the Lamb shift into a matrix element containing
generators of SO(4,2), and was able to perform rotations and scale changes to simplify and evaluate
the matrix elements. After clever mathematical manipulation, he obtained an expression for the Bethe
log in terms of a rapidly terminating series for the level shifts. He provided an appendix with a brief
discussion of the fundamental of SO(4,2) representations for the H atom, showing the expressions for
the three generators needed to express the Schrodinger equation.

In the next few years, the researchers published a few mathematically oriented papers [41,46–50],
a short book [51] dealing with the symmetries of the Coulomb problem, and a paper by Barut presenting
a SO(4,2) formulation of symmetry breaking in relativistic Kepler problems, with a 1 page summary of
the application of SO(4,2) for the non-relativistic hydrogen atom [34,52]. Bednar published a paper
applying group theory to a variety of modified Coulomb potentials, which included some matrix
elements of SO(4,2) using hydrogen atom basis states with quantum numbers nlm [53]. There also was
interest in application of the symmetry methods and dynamical groups in molecular chemistry [54]
and atomic spectroscopy [55].

In the 1970’s, researchers focused on developing methods of group theory and on understanding
dynamical symmetries in diverse systems [56–58]. A book on group theory and its applications
appeared in 1971 [59]. Barut and his collaborators published a series of papers dealing with the
hydrogen atom as a relativistic elementary particle, leading to an infinite component wave equation
and mass formula [60–63].

Papers on the classical Kepler problem, the Runge–Lenz vector, and SO(4) for the hydrogen
atom have continued to appear over the years, from 1959 to today. Many were published in the
1970’s [64–70] and some since 1980, including [71–75]. Papers dealing with SO(4,2) are much less
frequent. In 1986 Barut, A. Bohm, and Ne’eman published a book on dynamical symmetries that
included some material on the hydrogen atom [76]. In 1986, Greiner and Muller published the second
edition of Quantum Mechanics Symmetries, which had six pages on the Hydrogen atom, covering only
the SO(4) symmetry [77]. The 2005 book by Gilmore on Lie algebras has 4 pages of homework problems
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on the H atom to duplicate results in early papers [78]. The last papers I am aware of that used SO(4,2)
were applications in molecular physics [79,80] and more general in scope [81]. Carl Wulfman published
a book on dynamical symmetries in 2011, which provides a helpful discussion of dynamical symmetries
for the hydrogen atom [82]. He regularizes the Schrodinger equation, essentially multiplying by r,
obtaining Sturmian wave functions in parabolic coordinates. This approach allows for him to treat
bound and scattering states for SO(4,2) at one time, but requires redefining the inner product, and leads
to a non-Hermitian position operator.

1.4. The Dirac Hydrogen Atom

We have focused our discussion on the symmetries of the non-relativistic hydrogen atom described
by the Schrodinger equation. Quantum mechanics also describes the hydrogen atom in terms of the
relativistic Dirac equation, which we will only discuss briefly in this paper.

The gradual understanding of the dynamical symmetry of the Dirac atom parallels that of the
Schrodinger atom, but it has received much less attention, probably because the system has less
relevance for particle physics and for other applications. It was known that the rotational symmetry
was present and that the equation predicted that the energy depended on the principal quantum
number and the quantum number for the total angular momentum j, but not the spin s or orbital
angular momentum l separately. This remarkable fact meant that, in some sense, angular momentum
contributed the same to the total energy no matter whether it was intrinsic or orbital in origin.
This degeneracy is lifted if we include the radiative interactions which leads to the Lamb shift.

In order to understand the symmetry group for the Dirac equation consider that for a given total
angular momentum quantum number J > 0 there are two degenerate levels for each energy level of
the Dirac hydrogen atom: one level has l = J + 1/2 and the other has l = J − 1/2. Since the l values
differ by unity, the two levels have opposite parity. Dirac described a generalized parity operator K,
which was conserved. For an operator Λ to transform one degenerate state into the other, it follows
that the operator has to commute with J and have parity −1. This means it has to anticommute with K,
and so it is a conserved pseudoscalar operator.

The parity (−1)l+J−1/2 is conserved in time, so the states are parity eigenstates. Using the two
symmetry operators Λ and K, one can build a SU(2) algebra. If we include the O(3) symmetry due
to the conservation of angular momentum, we obtain the full symmetry group SU(2)xO(3) which is
isomorphic to SO(4) for the degeneracy of the Dirac hydrogen atom.

In 1950, M.Johnson and B. Lippman discovered the operator Λ [83]. Further work was done on
understanding Λ by Biedenharn [84]. The Johnson–Lippman operator has been rediscovered and
reviewed several times over the decades [85–87]. It has been interpreted in the non-relativistic limit
as the projection of the Runge–Lenz vector onto the spin angular momentum [87–89]. The SO(4)
group can be expanded to include all states, and then the spectrum generating group is SO(4,1) or
SO(4,2) depending on the assumptions regarding relativistic properties and the charges present [33,38].
We will not discuss the symmetries of the Dirac H atom further.

2. Background

2.1. The Relationship between Symmetry and Conserved Quantities

The nature of the relationship between symmetry, degeneracy, and conserved operators is implicit
in the equation

[H, S] = 0 (1)

where H is the Hamiltonian of our system, S is a Hermitian operator, and the brackets signify a
commutator if we are discussing a quantum mechanical system, or i times a Poisson bracket if we are
discussing a classical system. If S is viewed as the generator of a transformation on H, then Equation (1)
says the transformation leaves H unchanged. Therefore, we say S is a symmetry operator of H and
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leaves the energy invariant. The fact that a non- trivial S exists means that there is a degeneracy.
To show this, consider the action of the commutator on an energy eigenstate |E〉:

[H, S]|E〉 = 0 (2)

or
H(S|E〉) = E(S|E〉). (3)

If S is nontrivial then S|E〉 is a different state from |E〉 but has the same energy eigenvalue. If we
label all such degenerate states by

|E, m〉, m = 1, ..., N (4)

then clearly S|E, m〉 is a linear combination of degenerate states:

S|E, m〉 = Sms|E, s〉. (5)

Sms is a matrix representation of S in the subspace of degenerate states. In a classical Kepler system
S generates an orbit deformation that leaves H invariant. The existence of a nontrivial S therefore
implies degeneracy, in which multiple states have the same energy eigenvalue. We can show that the
complete set of symmetry operators for H forms a Lie algebra by applying Jacobi’s identity to our set
of Hermitian operators Si :

[H, Si] = 0, i = 1, . . . , L. (6)

[Sj, [H, Si]] + [Si, [Sj, H]] + [H, [Si, Sj]] = 0 (7)

so
[H, [Si, Sj]] = 0. (8)

Therefore, the commutator of Si and Sj is a symmetry operator of H. Either the commutator is a
linear combination of all the symmetry operators Si, i = 1, ..., L:

[Si, Sj] = Ck
ijSk (9)

or the commutator defines a new symmetry operator which we label SL+1. We repeat this procedure
until the Lie algebra closes as in Equation (9).

By exponentiation, we assume that we can locally associate a group of unitary transformations

eiSiai
(10)

for real ai with our Lie algebra and so conclude that a group of transformations exists under which
the Hamiltonian is invariant [90]. We call this the symmetry or degeneracy group of H. Our energy
eigenstates states form a realization of this group.

It is possible to form scalar operators, called Casimir operators, from the generators of the group
that commute with all the generators of the group, and, therefore, have numerical values. The values
of the Casimir operators characterize the particular representation of the group. For example,
for the rotation group in three dimensions, the generators are L = (L1, L2, L3) and the quantity
L2 = L(L + 1) commutes with all of the generators. L can have any positive integer value for a
particular representation. The Casimir operator for O(3) is L2. The number of Casimir operators that
characterize a group is called the rank of the group. O(3) is rank 1 and SO(4,2) is rank 3.

Now let us consider Equation (1) in a different way. If we view H as the generator of translations
in time, then we recall that the total time derivative of an operator Si is

dSi
dt

=
i
h̄
[H, Si̇] +

∂Si

∂t
(11)
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where the commutator and the partial derivative give the implicit and explicit time dependence
respectively. Provided that the symmetry operators have no explicit time dependence ( ∂Si

dt = 0),
then Equation (11) implies that Equation (1) means that the symmetry operators S are conserved
in time and dSi

dt = 0. Conversely, we can say that conserved Hermitian operators with no explicit
time dependence are symmetry operators of H. This very important relationship between conserved
Hermitian operators and symmetry was first discovered by German mathematician Emmy Nother in
1917, and is called Nother’s Theorem [8,91–95].

2.2. Non-Invariance Groups and Spectrum Generating Group

As we have discussed, the symmetry algebra contains conserved generators Si that transform one
energy eigenstate into a linear combination of eigenstates all with the same energy. In order to illustrate
with hydrogen atom eigenstates:

Si|nlm〉 = ∑
l′ ,m′

Snl′m′
nlm |nl′m′〉 (12)

where |nlm〉 refers to a state with energy En, angular momentum l(l + 1) and lz = m.
A non-invariance algebra contains generators Di that can be used to transform one energy

eigenstate |nlm〉 into a linear combination of other eigenstates, with the same or a different energy,
different angular momentum l, and different azimuthal angular momentum m:

D|nlm〉 = ∑
n′ ,l′ ,m′

Dn′ l′m′
nlm |n′l′m′〉. (13)

Because the set of energy eigenstates is complete, the action of the most general operator would
be identical to that shown to Equation (13). Therefore this requirement alone is not sufficient to select
the generators needed.

The goal is to expand the degeneracy group with its generators Si into a larger group, so that
some or all of the eigenstates form a representation of the larger group with the degeneracy group as a
subgroup. Thus, we need to add generators Gi, such that the combined set of generators

{Si, Gj; for all i, j} ≡ {Dk; for all k}

forms an algebra that closes
[Di, Dj] = iεijkDk. (14)

This is the Lie algebra for the expanded group. To illustrate with a specific example, consider the
O(4) degeneracy group with six generators [96]. One can expand the group to O(5) or O(4,1) which
has ten generators by adding a four-vector of generators. One component might be a scalar and the
other three a three-vector. The question then is can some or all of the energy eigenstates provide
a representation of O(5)? If so, then this would be considered a non-invariance group. The group
might be expanded further in order to obtain generators of a certain type or to include all states in the
representation. For the H atom the generators Di can transform between different energy eigenvalues
meaning between eigenfunctions with different principal quantum numbers.

Another way to view the expansion of the Lie algebra of the symmetry group is to consider
additional generators Di that are constants in time [97] but do not commute with the Hamiltonian so

dDi
dt

= 0 =
i
h̄
[H, Di̇] +

∂Di

∂t
.

If we make the additional assumption that the time dependence of the generators is harmonic

∂2Di(t)
∂t2 = ωinDn(t).
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then generators Di, and the first and second partial derivatives with respect to time could close under
commutation, forming an algebra. This approach does not tell us what generators to add, but, as we
demonstrate in Section 7.5, it does reflect the behavior of the generators that have been added to form
the spectrum generating group in the case of the hydrogen atom.

We may look for the largest set of generators Di, which can transform the set of solutions into
itself in an irreducible fashion (meaning no more generators than necessary). These generators form
the Lie algebra for the non-invariance or spectrum generating algebra [32,98]. If the generators for the
spectrum generating algebra can be exponentiated, then we have a group of transformations for the
spectrum generating group. The corresponding wave functions form the basis for a single irreducible
representation of this group. This group generates transformations among all the solutions for all
energy eigenvalues and it is called the Spectrum Generating Group [99]. For the H atom, SO(4,1) is a
spectrum generating group or non-invariance group, which can be reduced to contain one separate
SO(4) subgroup for each value of n.

To get a representation of SO(4,1), we need an infinite number of states, which we have for the H
atom. This group has been expanded by adding a five vector to form SO(4,2) because the additional
generators can be used to express the Hamiltonian and the dipole transition operator. The group
SO(p,q) is the group of orthogonal transformations that preserve the quantity X = x2

1 + x2
2 + ... +

x2
p − ...− x2

p+q, which may be viewed as the norm or a p+q-dimensional vector in a space that has a
metric with p plus signs and q minus signs. The letters SO stand for special orthogonal, meaning the
orthogonal transformations have determinant equal to +1.

In terms of group theory, there is a significant difference between a group like SO(4) and
SO(4,1). SO(4) and SO(3) are both compact groups, while SO(4,1) and SO(4,2) are non-compact
groups. A continuous group G is compact if each function f(g), continuous for all elements g of the
group G, is bounded. The rotation group in three dimensions O(3), which conserves the quantity
r2 = x2

1 + x2
2 + x2

3, is an example of a compact group.
For a non-compact group, consider the Lorentz group O(3,1) of transformations to a coordinate

system moving with a velocity v. The transformations preserve the quantity r2 − c2t2. The matrix
elements of the Lorentz transformations are proportional to 1/

√
1− β2, where β = v/c, and are

not bounded as β → 1. Therefore, r and ct may increase without bound, while the difference of the
squares remains constant. Unitary representations of non-compact groups are infinite dimensional,
for example, the representation of the non-invariance group SO(4,1) has an infinite number of states.
Unitary representations of compact groups can be finite dimensional, for example, our representation
of SO(4) for an energy level En has dimension n2.

In the nineteen sixties and later, the spectrum generating group was of special interest in particle
physics, because it was believed it could provide guidance where the precise particle dynamics were
not known. The hydrogen atom provided a physical system as a model. Because the application was in
particle physics, there was less interest in exploring representations in terms of the dynamical variables
for position and momentum.

The expansion of the group from SO(4,1) to SO(4,2) was motivated by the fact that the additional
generators could be used to write Schrodinger’s equation entirely in terms of the generators, and to
express the dipole transition operator. This allowed for algebraic techniques and group theoretical
methods to be used to obtain solutions, calculate matrix elements, and other quantities [33,38].

2.3. Basic Idea of Eigenstates of (Zα)−1

We briefly introduce the idea behind these states, since they are unfamiliar [1]. The full derivation
is given in Section 4. Schrodinger’s equation in momentum space for bound states can be written as[

p2 + a2 − 2mZα

r

]
|a〉 = 0.
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where a2 = −2mE > 0 and Zα is the coupling constant, which we will now view as a parameter.
This equation has well behaved solutions for certain discrete eigenvalues of the energy or a2, namely

a2
n = −2mEn

where En = − 1
2

m(Zα)2

n2 . We can write the eigenvalue condition equivalently as

(
an

mZα
) =

1
n

.

This last equation shows that solutions exist for certain values an of the RMS momentum a.
To introduce eigenstates of (Zα)−1 we simply take a different view of this last equation and say
that instead of quantizing a and obtaining an, we imagine that we quantize (Zα)−1, let a remain
unchanged, obtaining

a
m(Zα)n

=
1
n

.

Accordingly, now we can interpret Schrodinger’s equation as an eigenvalue equation that has
solutions for certain values of (Zα)−1 namely

(Zα)−1
n =

m
an

.

We have the same equation but can view the eigenvalues differently but equivalently. Instead of
quantizing a we quantize (Zα)−1.

This roughly conveys the basic idea of eigenstates of the inverse of (Zα), but this simplified
version does at all reveal the advantages of our reformulation because we have left the Hamiltonian
unchanged. In Section 4, we transform Schrodinger’s equation to an eigenvalue equation in a, so that
the kernel is bounded, which means that there are no states with E > 0, no scattering states, and all
states have the usual quantum numbers. Other important advantages to this approach will also
be discussed.

2.4. Degeneracy Groups for Schrodinger, Dirac and Klein-Gordon Equations

The degeneracy groups for the bound states described by the different equations of the hydrogen
atom are summarized in Table 1. The degeneracy (column 2) is due to the presence of conserved
operators which are also symmetry operators (column 3), forming a degeneracy symmetry group
(column 4). For example, The symmetry operators for the degeneracy group in the Schrodinger
hydrogen atom are the angular momentum L and the Runge–Lenz vector A. In Section 3, it will be
shown that together these are the generators for the direct product SO(3)xSO(3) which is isomorphic to
SO(4). Column 5 gives the particular representations present. These numbers are the allowed values
of the Casimir operators for the group and they determine the degree of degeneracy (last column) and
the corresponding allowed values of the quantum numbers for the degenerate states.

The Casimir operators, which are made from generators of the group, have to commute with all
of the members of the group, and the only way this can happen is if they are actually constants for the
representation. The generators are formed from the dynamical variables of the H atom, so the Casimir
operators are invariants under the group composed of the generators, and their allowed numerical
values reflect the underlying physics of the system and determine the appropriate representations
of the group [9,82,100]. For example, L2 is the Casimir operator for the group O(3) and can have the
values l(l + 1). The relationship between Casimir operators and group representations is true for all
irreducible group representations, including the SO(4) degeneracy group, as well as the spectrum
generating group SO(4,2) [43,53].

For the Schrodinger equation, there are n2 states |nlm〉 that form a representation of the degeneracy
group SO(4) formed by L and A. These states correspond to the principal quantum number n, the n



Symmetry 2020, 12, 1323 13 of 66

different values of the angular momentum quantum number l, and 2l + 1 different values of the z
component of the angular momentum lZ = m.

For the Dirac equation, the 2(2J + 1) dimensional degeneracy group for bound states is realized by
the total angular momentum operator J, the generalized parity operator K, and the Johnson–Lippman
operator Λ, which together form the Lie algebra for SO(4).

For the fully relativistic Klein–Gordon equation, only the symmetry from rotational symmetry
survives, leading to the degeneracy group O(3). If the V2 term, the four-potential term squared is
dropped in a semi-relativistic approximation as we describe in Section 4.3, then the equation can be
rewritten in the same form as the non-relativistic Schrodinger equation, so a Runge–Lenz vector can be
defined and the degeneracy group is again SO(4).

Table 1. In the table L = rxp is the orbital angular momentum; A is the Runge-Lenz vector;
J = L + σ/2 is the total angular momentum; K is the generalized parity operator; Λ is the conserved
pseudoscalar operator.

Degeneracy Groups for Bound States in a Coulomb Potential

Equation Degeneracy Conserved
Quantities

Degeneracy
Group

Representation Dimension

Schrodinger E indep.
of l, lz

A, L SO(4) ( n−1
2 , n−1

2 ) n2

Klein-Gordon E indep.
of lz

L O(3) Casimir
op. is
l(l + 1)

2l + 1

Klein-Gordon
without
V2 term

E indep.
of l, lz

A, L SO(4) ( n−1
2 , n−1

2 ) n2

Dirac E
depends
on J, n
only

Λ, K, J SO(4) (1/2, J) 2(2J+1)

3. Classical Theory of the H Atom

In order to discuss orbital motion and the continuous deformation or orbits we give this discussion
in terms of classical mechanics, but much of it is valid in terms of the Heisenberg representation of
quantum mechanics if the Poisson brackets are converted to commutators, as will be discussed in
Section 4.

For a charged particle in a Coulomb potential, there are two classical conserved vectors: the
angular momentum L, which is perpendicular to the plane of the orbit, and the Runge–Lenz vector A,
which goes from the focus corresponding to the center of mass and force along the semi-major axis
to the perihelion (closest point) of the elliptical orbit. The conservation of A is related to the fact that
non-relativistically the orbits do not precess. The Hamiltonian of our bound state classical system with
an energy E < 0 is [17]

H =
p2

2m
− Zα

r
= E (15)

where m=mass of the electron, r is the location of the electron, p is its momentum, α is the fine structure
constant, and E is the total non-relativistic energy.

The Runge–Lenz vector is

A =
1√
−2mH

(p× L−mZα
r
r
) (16)
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where L is the angular momentum. From Hamilton’s equation, H = E, so

A =
p× L

a
− mZα

a
r
r

(17)

where a is defined by
a =
√
−2mE. (18)

From the virial theorem, the average momentum 〈p2〉 = −2mE so a is the root mean square
momentum. We are discussing bound states so E < 0. It is straightforward to verify that A is conserved
in time:

[A, H] =
dA
dt

= 0. (19)

From the definition of A and the definition of angular momentum

L = r × p (20)

if follows that A is orthogonal to the angular momentum vector

A · L = 0. (21)

Using the fact that A and L are conserved, we can easily obtain equations for the orbits in
configuration and momentum space and the eccentricity, and other quantities, all usually derived by
directly solving the equations of motion.

We will show that A and L are the generators of the group O(4). If we introduce the linear
combinations N = 1

2 (L + A) and M = 1
2 (L − A), we find that N and M commute reducing the

nonsimple group O(4) to SU(2)x SU(2), which we will discuss in Section 4.2 in the language of
quantum mechanics.

3.1. Orbit in Configuration Space

In order to obtain the equation of the orbit one computes

r ·A = rAcosφr = −r
mZα

a
+ r · p× L. (22)

Noting that r · p× l = L2, we can solve for r

r =
L2/mZα

(a/mZα)A cosφr + 1
. (23)

This is the equation of an ellipse with eccentricity e = (a/mZα)A and a focus at the origin
(Figure 1). To find e we calculate A ·A using the identity p× L · p× L = p2L2 and obtain

A2 =
p2L2

a2 −
2mZα

a2
L2

r
+

(
mZα

a

)2
. (24)

Substituting E for the Hamiltonian Equation (15) gives the usual result

a
mZα

A = e =

√
2EL2

m(Zα)2 + 1 . (25)

The length rc of the semi-major axis is the average of the radii at the turning points

rc =
r1 + r2

2
. (26)
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Using the orbit equation we find

rc =
L2

mZα

1
1− e2 (27)

or
rc = −

Zα

2E
=

mZα

a2 . (28)

The energy depends only on the length of the semi-major axis rc, not on the eccentricity.
This important result is a consequence of the symmetry of the problem. It is convenient to parameterize
the eccentricity in terms of the angle ν (see Figure 1) where

e = sin ν (29)

From this definition and from Equations (25), (27), and (28) follow the useful results

L = rca cos ν, A = rca sin ν (30)

which immediately imply

L2 + A2 = (rca)2 =

(
mZα

a

)2
. (31)

This equation is the classical analogue of an important quantum mechanical result first obtained by
Pauli and Hulthen allowing us to determine the energy levels from symmetry properties alone [14,16].
From Figure 1, it is apparent that this equation is a statement of Pythagoras’s theorem for right triangles.

Figure 1. Classical Kepler orbit in configuration space. The orbit is in the 1–2 plane (plane of the
paper). One focus, where the proton charge is located, is the origin. The semi-minor axis is b = rc sin ν.
The semi-major axis is rc.

The energy equation (Equation (15)) and the orbit equation (Equation (23)) respectively may be
rewritten in terms of a , r, and ν :

rc

r
=

p2 + a2

2a2 (32)

r =
rc cos2 ν

1 + sin ν cos φr
. (33)
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3.2. The Period

To obtain the period, we use the geometrical definition of the eccentricity

e =
√

1− (b/rc)2 (34)

where b is the semi-minor axis. Using e = sin ν we find

b = rc cos ν (35)

so from Equation (30), we obtain
L = ab. (36)

From classical mechanics, we know the magnitude of the angular momentum is equal to twice
the mass times the area swept out by the radius vector per unit time. The area of the ellipse is πbrc.
It the period of the classical motion is T, then L = 2mπbrc/T. Therefore, the classical period is

T = 2π
mrc

a
= 2π

√
m(Zα)2

−8E3 . (37)

and the classical frequency ωcl = 2π/T is

ωcl =
a

mrc
. (38)

3.3. Group Structure SO(4)

The generators of our symmetry operations form the closed Poisson bracket algebra of O(4):

[Li, Lj] = iεijkLk , [Li, Aj] = iεijk Ak , [Ai, Aj] = iεijkLk . (39)

The brackets mean i times the Poisson bracket, which is the classical limit of a commutator.
The first bracket says that the angular momentum generates rotations and forms a closed Lie algebra
corresponding to O(3). The second bracket says that the Runge-Lenz vector transforms as a vector
under rotations generated by the angular momentum. The last commutator says that the multiple
transformations generated by the Runge-Lenz vector are equivalent to a rotation. Taken together the
commutators form the Lie algebra of O(4). The connected symmetry group for the classical bound
state Kepler problem is obtained by exponentiating our algebra giving the symmetry group SO(4).
The scattering states with E > 0 form an infinite dimensional representation of the non-compact group
SO(3,1).

We now want to determine the nature of the transformations generated by Ai and Li. Clearly,
L · δω generates a rotation of the elliptical orbit about the axis δω by an amount δω. To investigate the
transformations generated by A · δν we assume a particular orientation of the orbit, namely that it
is in the 1–2 (or x-y) plane and that A is along the 1-axis (see Figure 1). The more general problem is
obtained by a rotation generated by Li. For an example, we choose a transformation with δν pointing
along the 2-axis, so that A · δν = A2δν . The change in A is defined by δA, where

δA = i[A · δν, A]. (40)

From the Poisson bracket relations, we find for this particular case:

δA1 = L3δν , δA2 = 0 , δA3 = −L1δν (41)
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For our orbit, L1 = 0 so δA3 = 0. We perform a similar computation to find δL. We find we can
characterize the transformation by

δA1 = L3δv or δA = Lδν

δL3 = −A1δν or δL = −Aδν

δe =
√

1− e2δν or δ(sin ν) = cos νδν

. (42)

Recalling e = sin ν and Equation (30), we see that these transformations are equivalent to
the substitution

ν −→ ν + δν. (43)

In other words, the eccentricity of the orbit, and therefore A and L are all changed in such a way
that the energy, a and rc (length of the semi-major axis) remain constant. In our example, both L and
A are changed in length but not direction, so the plane and orientation of the orbit are unchanged.
The general transformation A · δµ will also rotate the plane of the orbit or the semi-major axis.

Figure 2 shows a set of orbits in configurations space with different values of the eccentricity
e = sin ν, but the same total energy and the same semimajor axis rc, which is the bold hypotenuse.
The bold vertical and horizontal legs are A/a and L/a and they are related to the hypotenuse rc by
Pythagoras’s theorem. The generator A2ν produces a deformation of the circular orbit into the various
elliptical orbits shown. This classical degeneracy corresponds to the quantum mechanical degeneracy
in energy levels that occurs for different eigenvalues of the angular momentum with a fixed principal
quantum number.

Figure 2. Kepler bound state orbits in configuration space for a fixed energy and different values of the
eccentricity e = sin ν. The bold hypotenuse is the semi-major axis rc, which makes an angle ν with the
vertical 2-axis.

We can visualize all possible elliptical orbits for a fixed total energy or semi-major axis through a
simple device. It is possible to produce an elliptical orbit with eccentricity sin ν as the shadow of a
circle of radius rc which is rotated an amount ν about an axis perpendicular to the illuminating light.
With a complete rotation of the circle, we will see all possible classical elliptical orbits corresponding
to a given total energy. In quantum mechanics only certain angles of rotation would be possible
corresponding to the quantized values of L. As the circle is rotated, we must imagine that the force
center shifts as the sine of the angle of rotation, so that it always remains at the focus [101].
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3.4. The Classical Hydrogen Atom in Momentum Space

We can derive the equation for the classical orbit in momentum space of a particle bound in a
Coulomb potential using the conserved operators L and A. For convenience, we assume that we have
rotated our axes, so that L lies along the 3-axis and A the 1-axis, as shown in Figure 1. We compute

p · A = p1 A =
−mZα

a
p · r

r
≡ −mZα

a
pr (44)

and we employ Equations (28) and (30) to show A = mZα
a sin ν, to obtain [102]

pr = − sin νp1 (45)

which we substitute into the identity

p2
r +

L2

r2 = p2 = p2
1 + p2

2 (46)

Using Equations (30) and (32) we find

1 =

(
2ap1

p2 + a2

)2
+

(
2ap2

p2 + a2

)2 1
cos2 v

(47)

and
p2 − a2 = 2ap2 tan ν (48)

which may also be written as

p2
1 + (p2 − a tan ν)2 =

a2

cos2 ν
. (49)

From Equation (49), we see the orbit in momentum space is a circle of radius a/ cos ν with its
center displaced from the origin a distance a tan ν along the 2-axis. Figure 3 shows the momentum
space orbit that corresponds to the configuration space orbit in Figure 1.

Figure 3. Kepler orbit in momentum space of radius a/ cos ν, with its center at p2 = a tan ν,
corresponding to the orbit in configuration space shown in Figure 1. A circular orbit in configuration
space corresponds to a circular orbit in momentum space centered on the origin with radius a.

As an alternative method of showing the momentum space orbits are circular, we can
compute [103] (

p− a
L× A

L2

)2
= C2. (50)
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Using the lemma

p× A = − L
2a

(p2 − a2), (51)

the fact that L · A = 0, and Equation (30), we find C = a
cos ν . The orbit is a circle of radius a

cosν whose
center lies at a L×A

L2 , in agreement with the previous result.
We now consider what the generators Ai and Li do to the orbit in momentum space. Clearly,

L generates a rotation of the axes. For an Ai transformation, consider the same situation that we
considered in our discussion of the configuration space orbit (see Figures 1 and 3). Because the
generator A2δν changes ν to ν + δν, we conclude that in momentum space this shifts the center of the
orbit along the 2-axis and changes the radius of the circle. However, the distance a from the 2-axis to
the intersection of the orbit with the 1-axis remains unchanged. Figure 4 shows a set of momentum
space orbits for a fixed energy that correspond to the set of orbits in configuration space shown in
Figure 2.

Figure 4. Kepler orbits in momentum space for a fixed energy and RMS momentum a with different
values of the eccentricity e = sin ν corresponding to the orbits in configuration space shown in Figure 2.

3.5. Four-Dimensional Stereographic Projection in Momentum Space

It is interesting that in classical mechanics the bound state orbits in a Coulomb potential are
simpler in momentum space than in configuration space. In quantum mechanics the momentum space
wave functions become simply four-dimensional spherical harmonics if one normalizes the momentum
p by dividing by the RMS momentum a =

√
−2mE and performs a stereographic projection onto a

unit hyper-sphere in a four-dimensional space [18,35]. We will do the analogous projection procedure
for the classical orbits. The three-dimensional momentum space hyperplane passes through the center
of the four-dimensional hypersphere, as shown in Figure 5. The unit vector in the fourth direction is
n̂ = (1, 0, 0, 0). The unit vector Û goes from the center of the sphere to the surface of the hypersphere,
where it is intersected by the line connecting the vector p/a to the north pole of the sphere.
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Figure 5. Stereographic projection in momentum space for a fixed energy, mapping p/a into Û.
The unit vector in the four direction is n̂ and n̂ · Û = cos Θ4.

We find

Ui =
2api

p2 + a2 i = 1, 2, 3. U4 =
p2 − a2

p2 + a2 (52)

or inverting,

pi =
aUi

1−U4
p2 = a2 1 + U4

1−U4
. (53)

Momentum space vectors for which p/a < 1 are mapped onto the lower hyperhemisphere.
The advantage of this projection over one in which the hypersphere is tangent to the hyperplane is
that we may have |n̂| = |Û| = 1. At times it is convenient to describe Û in terms of spherical polar
coordinates in four dimensions. Because Û is a unit vector we define

U4 = cos θ4

U3 = sin θ4 cos θ

U2 = sin θ4 sin θ sin φ

U1 = sin θ4 sin θ cos φ

(54)

where θ and φ are the usual coordinates in three dimensions. By comparison to Equation (52), we have

θ4 = 2 cot−1 p
a

θ = cos−1 p3

p
φ = tan−1 p2

p1
(55)

3.6. Orbit in U space

We want to find the trajectory of the particle on the surface of the hypersphere corresponding
to the Kepler orbits in configuration space or the displaced circles in momentum space. We assume
we have rotated the axes in configuration space so that L is along the 3-axis and A is along the 1-axis,
as shown in Figure 1. The equation for the orbit in three-dimensional momentum space is given by
Equations (48) or (50). Dividing Equation (48) by p2 + a2 immediately gives a parametric equation for
the projected orbit in U space:

U4 = U2 tan ν. (56)

Because the orbit is in the 1–2 plane in configurations space, U3 = 0. The orbit lies in a hyperplane
perpendicular to the 2–4 plane that goes through the origin and makes an angle π/2− ν with the
4-axis, as shown in Figure 6 [104]. The orbit is the intersection of this plane with the hypersphere and it
is therefore a great circle. To derive the exact equation for the projected orbit we express p in Cartesian
components p1 and p2 in Equation (48) and substitute Equation (52) obtaining
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Figure 6. Showing the hyperplane containing the orbit making an angle ν with the U2 plane.
Notice tan ν = A/L as required by Equation (30).

U2
l + U2

2 − 2 tan ν U2(l −U4) = (1−U4)
2. (57)

To interpret this equation, we consider it in a rotated coordinate system. If we perform a
rotation by an amount δν about the 1–3 plane (A2δν is the generator of this rotation), the equations of
transformation may be written [105]

U2 = U′2 cos δν + U′4 sin δν, U3 = U′3
U4 = U′4 cos δν−U′2 sin δν, U1 = U′1.

(58)

This transformation is equivalent to making the substitution ν −→ ν+ δν in the equations relating
to the orbit. For example, Equation (56) becomes

U′4 = U′2 tan (ν + δν). (59)

We choose δν = −ν, which means the orbital plane becomes U′4 = 0. Writing Equation (57) in
terms of the primed coordinates, we find

U′21 + U′22 = 1 (60)

which in the original system is

U2
1 + (U2 cos ν + U4 sin ν)2 = 1. (61)

This is the equation of a great hypercircle (ν, 0) centered at the origin and lying in a hyperplane
making an angle π/2− ν with the 4-axis and an angle π/2− 0 with the 3-axis. If L did not lie along
the 3-axis, but, for example, was in the 1–3 plane, at an angle Θ from the 3-axis, then Equation (61)
would be modified by the substitution

U1 −→ U1cosΘ + U3 sin Θ (62)

which follows, since Ui transforms as a three-vector. The corresponding great circle (ν, Θ) lies in a
hyperplane making an angle π/2− ν with the 4-axis and π/2−Θ with the 3-axis.

The motion of the orbiting particle corresponds to a dot moving along the great circle (ν, 0 or
Θ) with a period T given by the classical period Equation (37). The velocity in configuration space
can be expressed in terms of U4 by using its definition in terms of p2 Equation (53) or in terms of θ4

Equation (55). The particle is moving at maximum velocity when θ4 is a minimum, which occurs at the
perihelion when θ4 = π/2− ν:

max(
p
a
) =

√
1 + e
1− e

=

√
r2

r1
(63)
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and at a minimum velocity when θ4 = π/2 + ν:

min(
p
a
) =

√
1− e
1 + e

. (64)

These values of θ4 correspond to turning points, at which r and p have extreme values. This is
apparent when we use Equation (32) for the total energy to show

U4 =
rc − r

rc
. (65)

When r > rc then p2 < a2, so the particle is moving more slowly than the RMS velocity.
Applying the virial theorem to any orbit we find 〈p2〉 = a2 so as expected a is the RMS momentum
and 〈 1

1−U4
〉 = 1 = 〈rc/r〉.

Figure 7 is a picture of a simple device illustrating the stereographic projection of the orbit in
p/a-space onto the four-dimensional hypersphere in U-space. We assume that the orbit is in the
1–2 plane and that A lies along the 1-axis, so p3 = 0, U3 = 0. Because of this trivial dependence
on p3, we have omitted the 3-axis. The vertical pin or rod represents the unit vector n̂ lying along
the 4-axis. The circumference of the larger circle perpendicular to the 4-axis represents the orbit in
p/a-space. One can see that it is displaced from the origin along the 2-axis. Centered at the origin,
we must imagine a hypersphere of unit radius Û2 = 1. The stereographic projection Û of the vector
p/a is obtained by placing the string coming from the top of n directly at the head of the vector p/a.
The intersection of the string with the unit hypersphere defines Û. As the string is moved along the
orbit in p/a-space, it intersects the hypersphere along a great circle shown by the circumference of the
unit circle making an angle ν with the 1–2 plane. We can see for example, that at the closest approach,
θ4 is a minimum and U4 is a maximum, Û · A = U1 is a minimum, and p/a is a maximum.

Figure 7. Model illustrating the stereographic projection from the 1–2 plane to a 4-d hypersphere.
The pin represents the unit vector n̂ along the 4-axis, normal to the 1–2 plane.

3.7. Classical Time Dependence of Orbital Motion

We can determine the time dependence of the orbital motion by integrating the expression for the
angular momentum L = mr2dφr/dt ∫

dt =
∫ mr2

L
dφr (66)
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where r is given by the orbit equation Equation (33) and we are assuming the orbit is in the 1–2 plane.
After integrating, we can use the equations relating the momentum space and configuration space
variables to obtain the time dependence in p-space and U-space. We obtain

1
r2

c

1
cos ν

L
m

∫ t

0
dt = cos3 ν

∫ φr(t)

0

dφr

(1 + sin ν cos φr)
2 . (67)

The left-hand side of this equation is equal ωclt, where ωcl is the classical frequency. This follows
by substituting Equations (30) and (38)

L = arc cos ν ωcl =
a

mrc
. (68)

The integral on the right side gives [106]

ωclt = −
sin ν cos ν sin φr

1 + sin v cos φr
− tan−1 cos ν sin φr

sin ν + cos φr
(69)

which may be simplified as

ωclt = −
A
L

y
rc
− tan−1 A

L
y

rc − r
(70)

where y = r sin φr .
The relationship between the angle φ ≡ φp in momentum space and φr in configuration space

follows by either differentiating the orbit equation Equation (33) with respect to time and using
L = mr2φ̇r or by simultaneously solving the configuration space orbit, the momentum space orbit
equation Equation (48) and the energy equation Equation (32). We find

sin φr = −p cos φ
cos ν

a
cos φr = p sin φ

cos v
a
− sin ν. (71)

From these equations, the definitions of the Ui, Equation (52), and the orbit and energy equations,
it follows that for the classical orbit in the 1–2 plane

U1 = − r sin φr

rc cos ν

U2 =
r
rc

sin ν + cos φr

cos v
= U4 cot ν

U3 = 0

U4 =
rc − r

rc
.

(72)

Using these results in Equation (69) gives

ωclt = U1 sin ν + tan−1
(

U2

U1 cos ν

)
(73)

which gives the time dependence in U space, and it agrees with the results of [97,107]. We could do
rotations to generalize this result [102]. We can also rewrite the inverse tangent as cos−1 U1 using

U2
1 +

U2
2

cos2ν
= 1. (74)

If we consider the last two equation for circular orbits with e = sin ν = 0 we obtain
tan−1(U2/U1) = φ(t) = ωclt = φr(t) + π/2, and our familiar circle U2

1 + U2
2 = 1 .
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Remark on Harmonic Oscillator

We can find a conserved Runge–Lenz vector for the non-relativistic hydrogen atom because the
elliptical orbit does not precess, as it does for the relativistic atom. The only central force laws that
yield classical elliptical orbits that do not precess are the inverse Kepler force and the linear harmonic
oscillator force [108]. Thus, it seems reasonable that one could construct a constant vector similar to A
for the oscillator, although the force center for the atom is at a focus and for the oscillator it is at the
center of the ellipse. However, it is not readily possible [109]. Instead, one can construct a constant
Hermitian second rank tensor Tij:

Tij =
1

mω0
pi pj + mω0xixj. (75)

This constant tensor is analogous to the moment of inertia tensor for rigid body motion.
The eigenvectors of the tensor will be constant vectors along the principal axes for the particular
orbit being considered. The existence of the conserved tensor leads to the U(3) symmetry algebra of the
oscillator. The generators are λa

ijTij, where the λ’s are are the usual U(3) matrices [22]. The spectrum
generating algebra is SU(3,1).

In another approach, the Schrodinger equation for the hydrogen atom has been transformed into
an equation for a four dimensional harmonic oscillator or two two dimensional harmonic oscillators.
This approach which fits well with parabolic coordinates was used especially in the 1980’s to analyze the
group structure of the atom and relate it to SU(3) [110–119]. We will not discuss this approach further.

4. The Hydrogenlike Atom in Quantum Mechanics; Eigenstates of the Inverse of the
Coupling Constant

In this section we switch from classical dynamics to quantum mechanics and discuss the group
structure and exploit it to determine the bound state energy spectrum directly, as Pauli and followers
did almost a century ago [14,16]. In Section 4.3 we introduce a new set of basis states for the
hydrogenlike atom, eigenstates of the coupling constant. Using these states allows us to display
the symmetries in the most convenient manner and to treat bound and scattering states uniformly.

4.1. The Degeneracy Group SO(4)

The quantum mechanical Hamiltonian is

H =
p2

2m
− Zα

r
= E. (76)

The classical expression for the Runge–Lenz vector needs to be symmetrized to insure the
corresponding quantum mechanical operator A is Hermitian:

A =
1√
−2mH

(
p× L− L× p

2
−mZα

r
r

)
. (77)

We may verify that A and L = r× p both commute with the Hamiltonian H. The commutation
relations of Li and Ai are the same as the corresponding classical Poisson bracket relations for
bound states:

[Li, Lj] = iεijkLk , [Li, Aj] = iεijk Ak , [Ai, Aj] = iεijkLk (78)

and form the algebra of O(4) [35]. We can write the commutation relations in a single equation which
makes the 0(4) symmetry explicit. If we define

Sij = εijkLk Si4 = Ai (79)
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then
[Sab, Scd] = i(δacSbd + δbdSac − δadSbc − δbcSad) a, b = 1, 2, 3, 4. (80)

The Kronecker delta function δab acts like a metric tensor.

4.2. Derivation of the Energy Levels

We can obtain the energy levels by determining which representations of the group SO(4) are
realized by the degenerate eigenstates of the hydrogenlike atom [12,14,35]. The representations of
SO(4) may be characterized by the numerical values of the two Casimir operators for SO(4):

C1 = L · A C2 = L2 + A2 (81)

Once we know the value of C2, then the eigenvalues of H follow from the quantum mechanical
form of Equation (31), namely

L2 + A2 + 1 =
(mZα)2

−2mH
. (82)

In order to determine the possible values of C2, we factor the 0(4) algebra into two disjoint
SU(2) algebras [120], each of which has the same commutation relations as the ordinary angular
momentum operators,

N = 1
2 (L + A) M = 1

2 (L− A). (83)

The commutation relations are

[Mi, Nj] = 0 [Mi, Mj] = iεijk Mk [Ni, Nj] = iεijk Nk. (84)

In analogy with the results for the ordinary angular momentum operators, the Casimir operators are

M2 = j1 (j2 + 1) , j1 = 0, 1
2 , 1, . . .

N2 = j2 (j2 + 1) , j2 = 0, 1
2 , 1, . . .

(85)

The numbers j1 and j2, which may have half-integral values for SU(2) but not O(3), define the
(j1, j2) representation of SO(4). From the definitions of A and L in terms of the canonical variables, it
follows that C1 = L · A = 0 which means j1 = j2 = j, as in the classical case. For our representations,
we find

M2 = N2 = 1
4 (L2 + A2) = j(j + 1), j = 0, 1

2 , 1, .. (86)

and therefore
L2 + A2 + 1 = (2j + 1)2. (87)

Substituting this result into Equation (82) gives the usual formula for the bound state energy
levels of the hydrogen atom:

H′ = −m(Zα)2

2n2 = En (88)

where the principal quantum number n = 2j+1 = 1,2,.. and the prime on H signifies an eigenvalue of
the operator H.

Within a subspace of energy En, the Runge–Lenz vector is

A =
1
an

(
p× L− L× p

2
−mZα

r
r

)
. (89)

where an =
√
−2mEn = mZα

n .
Our considerations of the Casimir operators have shown that the hydrogen atom provides

completely symmetrical tensor representations of SO(4), namely, (j, j) = ( n−1
2 , n−1

2 ), n = 1, 2, . . .
The dimensionality is n2, corresponding to the n2 degenerate states. The appearance of only
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symmetrical tensor representations (j1 = j2) may be traced to L · A vanishing, which is a consequence
of the structure of L and A in terms of the dynamical variables for the hydrogenlike atom. For systems
other than the hydrogenlike atom, it is not generally possible to find the expression for the energy
levels in terms of all the different quantum numbers alone. It worked here, since we could express the
Hamiltonian as a function of the Casimir operators that contained all quantum numbers explicitly.

There are a variety of possible basis states. We could choose basis states for the SO(4)
representation that reflect the SU(2) decomposition, namely eigenstates of M2, N2, M3 and N3 [120].
Another possibility is to have a basis with eigenstates of the Casimir operator C2, and A3, and M3.
This choice fits well with the use of parabolic coordinates [60]. A more physically understandable
choice is to choose the common basis states |nlm〉 that are eigenstates of C2, L2, and L3. For this set of
basis states, we have√

(L2 + A2 + 1)|nlm〉 = n|nlm〉 L2|nlm〉 = l(l + 1)|nlm〉 L3|nlm〉 = m|nlm〉 (90)

We can define raising and lowering operators for m:

L± = L1 ± iL2 (91)

which obeys the commutation relations

[L2, L±] = 0] [L3, L±] = ±L±. (92)

Therefore, we can use L± to change the value of m for the basis states

L±|nlm〉 =
√
(l(l + 1)−m(m± 1)|nl m± 1〉 (93)

for l ≥ 1. We can also use the generators A to change the angular momentum. A general SO(4)
transformation can be expressed as a rotation induced by L, followed by a rotation induced by A3,
followed by another rotation generated by L [121]. Our interest is primarily in changing the angular
momentum l, which is most directly done while using A3, which commutes with L3 and C2, and so
only changes l:

A3|nlm〉 =
(
(n2 − (l + 1)2)((l + 1)2 −m2)

4(l + 1)2 − 1

) 1
2

|n l + 1 m〉+
(
(n2 − l2)(l2 −m2)

4l2 − 1

) 1
2

|n l− 1 m〉. (94)

for l ≥ 1.

4.3. Relativistic and Semi-Relativistic Spinless Particles in the Coulomb Potential and Klein–Gordon Equation

The Klein–Gordon equation (
p2 − (Ẽ−V)2 + m2

)
ψ̃ = 0

where Ẽ is the relativistic total energy, may be solved exactly for a Coulomb potential, V =

−(Zα)/r [122]. The energy levels depend on a principal quantum number and on the magnitude of
the angular momentum but not its direction. The only degeneracy present is associated with the O(3)
symmetry of the Hamilton. For a relativistic scalar particle, there is no degeneracy to be lifted by a
Lamb shift.

If we neglect the V2 term the resulting equation can be written in the form(
p2

2Ẽ
+ V − Ẽ2 −m2

2Ẽ

)
ψ̃ = 0
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This is exactly the same as the nonrelativistic Schrodinger equation with the substitutions

m→ Ẽ E→ Ẽ2 −m2

2Ẽ
.

Thus, we regain the O(4) symmetry of the nonrelativistic hydrogen atom, and can define two
conserved vectors, as indicated in Table 1. It is possible to take the “square root” of this approximate
Klein-Gordon equation (in the same sense that the Dirac equation is the square root of the Klein–Gordon
equation) and get an approximate Dirac equation whose energy eigenvalues are independent of the
orbital angular momentum [123].

4.4. Eigenstates of the Inverse Coupling Constant (Zα)−1

Solutions to Schrodinger’s equation for a particle of energy E = − a2

2m in a Coulomb potential[
p2 + a2 − 2mZα

r

]
|a〉 = 0 (95)

may be found for certain critical values of the energy En = − a2
n

2m where an = mZα
n . The corresponding

eigenstates of the Hamiltonian are |nlm〉 which satisfy Equation (95) with a replaced by an. In addition
to the bound states, because there is no upper bound on p2 in the Hamiltonian, we also have the
continuum of scattering states that have E > 0.

Because the quantity that must have discrete values for a solution to exist is actually a
mZα , as noted

in Section 2.3, we might ask if eigensolutions to Equation (95) exist for certain critical values of Zα

while keeping a and the energy fixed [1]. To investigate such solutions it is convenient to algebraically
transform Equation (95):[

1√
ρ(a)

(
p2 + a2

a
)

1√
ρ(a)

− 1√
ρ(a)

(
2mZα

ar
)

1√
ρ(a)

]√
ρ(a)|a〉 = 0

where

ρ(a) =
p2 + a2

2a2 . (96)

Because ρ(a) commutes with p2, we obtain the eigenvalue equation[( a
mZα

)
− K(a)

]
|a) = 0 (97)

where the totally symmetric and real kernel is

K(a) =

√
2a2

p2 + a2
1
ar

√
2a2

p2 + a2 (98)

and
|a) = (ρ(a))

1
2 |a〉. (99)

As before, solutions to this transformed equation may found for the eigenvalues

K′(a) = (
a

mZα
)′ =

1
n

. (100)

If we hold Zα constant and let a vary, we obtain the usual spectrum an =
√
−2mEn = mZα

n .
For a = an, Equation (99) reduces to the equation for the eigenstates√

ρ(an)|nlm〉 = |nlm; an). (101)
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Alternatively, if we hold a constant, then Zα has the spectrum

(Zα)n =
na
m

(102)

with the corresponding eigenstates of (Zα)−1 being

|nlm; a). (103)

The relationship between the usual energy eigenstates of the energy |nlm〉 and the eigenstates
|nlm; a) of (Zα)−1 is

|nlm〉 = 1√
ρ(an)

|nlm; an), (104)

which requires that both sets of states have the same quantum numbers. Note that the magnitude
(a|K(a)|a) is proportional to 〈1/ar〉n = (1/an)(1/n2a0) where a0 is the Bohr radius for the ground
state, and so is positive and bounded. The kernel K(a) is real and symmetric in p and r and manifestly
Hermitean. Because the kernel K in Equation (98) is bounded, definite, and Hermitian with respect to
the eigenstates |nlm; an) [124] the set of normalized eigenstates

|nlm; a) n = 0, 1, 2....; l = 0, 1, ..n− 2, n− 1; m = −l,−l + 1, ...l − 1, l. (105)

where (
1
n
− K(a)

)
|nlm; a) = 0 (106)

is a complete orthonormal basis for the hydrogenlike atom:(
nlm; a|n′l′m′; a

)
= δnn′δll′δmm′ (107)

∑
nlm
|nlm; a)(nlm; a| = 1. (108)

There are several important points to notice with regard to these eigenstates of the inverse of the
coupling constant:

(1) Because of the boundedness of K, there is no continuum portion in the eigenvalue
spectrum of (Zα)−1, the eigenvalues are discrete. Because K is a positive definite Hermitian operator,
all eigenvalues are positive, real numbers. This feature leads to a unified treatment of all states of
the hydrogenlike atom as opposed to the treatment in terms of energy eigenstates in which we must
consider separately the bound states and the continuum of scattering states.

(2) It follows from Equation (104) that the quantum numbers, multiplicities, and degeneracies
of these states |nlm; a) are precisely the same as those of the usual bound energy eigenstates.
For example, there are n2 eigenstates of (Zα)−1 that have the principal quantum number equal
to n or (Zα) equal to na

m .
(3) A single value of the RMS momentum a or the energy E = −a2

2m applies to all the states in
our complete basis, as opposed to the usual energy eigenstates where each nondegenerate state has a
different value of a. We have made this explicit by including a in the notation for the states: |nlm; a).
Sometimes we will write the states as |nlm), provided the value of a has been specified. This behavior
in which a single value of a applies to all states will prove to be very useful. In essence, it permits
us to generalize from statements applicable in a subspace of Hilbert space with energy En or energy
parameter an to the entire Hilbert space.

(4) By a suitable scale change or dilation, we may give the quantity a any positive value we
desire. This is affected by the unitary operator

D(λ) = ei 1
2 (p·r+r·p)λ (109)
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which transforms the canonical variables

D(λ)pD−1(λ) = e−λ p D(λ)rD−1(λ) = eλr (110)

and the kernel K(a)
D(λ)K(a)D−1(λ) = K(aeλ). (111)

and the eigenvalue equation (
1
n
− K(aeλ)

)
D(λ)|nlm; a) = 0. (112)

Therefore the states transform as

D(λ)|nlm; a) = |nlm; aeλ). (113)

These transformed states form a new basis corresponding to the new value eλa of the
RMS momentum.

The relationship between the energy eigenstates and the (Zα)−1 eigenstates can be written while
using the dilation operator:

|nlm〉 = 1√
ρ (an)

D (λn) |n`m; a) where eλn =
an

a
. (114)

The usual energy eigenstates |nlm〉 are obtained from the eigenstates of (Zα)−1 by first performing
a scale change to ensure that the energy parameter a has the value an and then multiplying by a factor
ρ−1/2. The need for the scale change is apparent from dimensional considerations: from the (Zα)−1

eigenvalue equation, we see that the eigenfunctions are functions of p/a or ar while from the energy
eigenvalue equation the eigenfunctions are functions of p/an and anr. The factor ρ−1/2 was required
in order to convert Schrodinger’s equation to one involving a bounded Hermitean operator.

Using the eigenstates of (Zα)−1 as our basis allows for us to analyze the mathematical and
physical structure of the hydrogenlike atom in the easiest and clearest way.

4.5. Another Set of Eigenstates of (Zα)−1

We may transform Schrodinger’s equation Equation (95) to an eigenvalue equation for (Zα)−1

that differs from Equation (96) by similar methods:(
1
n
− K1(a)

)
|nlm; a) = 0 (115)

where

K1(a) =
1√
ar

2a2

p2 + a2
1√
ar

ρ(a) = n/ar
√

ρ(an)|nlm〉 = |nlm; an) (116)

This kernel, like K(a), is a bounded, positive definite, Hermitian operator so the eigenstates form
a complete basis. The relationship of these basis states to the energy eigenstates is the same as that of
the previously discussed eigenstates of (Zα)−1 Equation (114) but with ρ(a) = n/ar. The n insures
that the two sets of eigenstates have consistent normalization, which may be checked by means of the
virial theorem. The n cancels out when similarity transforming from the basis of energy eigenstates to
the basis of (Zα)−1. Note that, classically, both kernels equal 1/arc.

The first set of basis states of (Zα)−1 with ρ(a) = p2+a2

2a2 is more convenient to use when working
in momentum space and the second set with ρ(a) = n/ar is more convenient in configuration space.

Other researchers have used other approaches to secure a bounded kernel for the Schrodinger
hydrogen atom, for example, by multiplying the equation from the left by r to regularize it [82].
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However, the methods used have not symmetrized the kernels to make them Hermitian, nor are all the
generators of the corresponding groups Hermitian, and they have to redefine the inner product [38,82].

4.6. Transformation of A and L to the New Basis States

We must transform A as given in Equation (89) and L = r × p when we change our basis
states from eigenstates of the energy to eigenstates of the inverse coupling constant. The correct
transformation may be derived by requiring that the transformed generators produce the same linear
combination of new states as the original generators produced of the old states. Thus, because

A|nlm〉 = ∑
l′ ,m′
|nl′m′〉Alm

l′m′ (117)

where the coefficients Alm
l′m′ are the matrix elements of A, we require that the transformed generator a

satisfies the equation
a|nlm) = ∑

l′m′
|nl′m′)Alm

l′m′ . (118)

In other words, since the Runge–Lenz vector A is a symmetry operator of the original energy
eigenstates, a will be a symmetry operator of the new states with precisely the same properties and
matrix elements. Because A is Hermitian, a is Hermitian.

To obtain a differential expression for a acting on the new states, we need to transform the
generator using Equation (114):

a = D−1(λn)

(√
ρ(an)A

1√
ρ(an)

)
D(λn). (119)

The effect of the scale change on the quantity in large parenthesis is to replace an everywhere by a.
By explicit calculation, we find

a =
1
2a

(
rp2 + p2r

2
− r · pp− pp · r

)
− ar

2
(120)

for ρ(a) = (p2 + a2)/2a2. And we obtain

a =
1
2a

(
rp2 + p2r

2
− r · pp− pp · r− r

4r2

)
− ar

2
(121)

for ρ(a) = n/ar.
Both of these expressions for a are manifestly Hermitian. In addition, since there is no dependence

on the principal quantum number these expressions are valid in the entire Hilbert space, and not just
in a subspace spanned by the degenerate states, as was the case when we used the energy eigenstates
as a basis (Equation (89)).

The angular momentum operator is invariant under scale changes and it commutes with scalar
operators. Therefore L is invariant under the similarity transformation 1√

ρ(an)
D(λn) and the expression

for the angular momentum operator with respect to the eigenstates of (Zα)−1 is the same as the
expression with respect to the eigenstates of the energy.

4.7. The 〈U′| Representation

The U′ coordinates provide the natural representation for the investigation of the symmetries of
the hydrogenlike atom in quantum mechanics, as in classical mechanics [125]. Therefore, we briefly
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consider the relevant features of this representation and, in particular, its relationship to the momentum
representation. The eigenstate < U′| of Ub, b = 1,2,3,4, is defined by

〈U′| Ub = U′b 〈U
′| (122)

These states are complete on the unit hypersphere in four dimensions:∫
|U′〉〈U′| d3Ω′ = 1 (123)

where Ω refers to the angles (θ4, θ, φ) defined in Equation (54). The U variables are defined in terms of
the momentum variables and the quantity a in Equation (52). Therefore, the momentum and the U
operators commute

[pi, Ub] = 0 (124)

and the state 〈U′| is proportional to a momentum eigenstate 〈p′|:

〈U′| = 〈p′|
√

J(p) (125)

where the momentum eigenstate is defined by 〈p′|p = p′〈p| and∫
d3 p′|p′〉〈p′| = 1. (126)

The function J(p′) may be determined by equating the completeness conditions and substituting
Equation (125):

1 =
∫

d3 p′|p′〉〈p′| =
∫

d3Ω′|U′〉〈U′| =
∫

d3Ω′ J(p′)|p′〉〈p′| (127)

which leads to the identification of the differential quantities

d3 p′ = d3Ω′ J(p′) (128)

demonstrating that J(p′) is the Jacobian of the transformation from the p- to the U- space. Noting that
on the unit sphere

U2
4 = 1−UiUi (129)

we can compute the Jacobian

J(p′) =
[

p′2 + a2

2a

]3

. (130)

Therefore from Equation (125) we have the important result

〈U′| = 〈p′|
[

p2 + a2

2a

]3/2

. (131)

We can use this result to compute the action of r on 〈U′| in terms of the differential operators.
Using the equation

〈p′|r = i∇p′〈p′| (132)

we obtain

〈U′|r =

(
i∇p′ −

3ip′

p′2 + a2

)
〈U′|. (133)
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Action of a and L on 〈U′|

Using Equation (133) for the action of r on 〈U′| and using the expression Equation (120) for
a since 〈U′| is proportional to 〈p′|, we immediately find that when acting on 〈U′|, a has the
differential representation

a′ =
i

2a

(
(p′2 − a2)∇p′ − 2p′p′ ·∇p′

)
(134)

where
〈U′|a = a′〈U′|. (135)

We can also write a′ in terms of the U′ variables by using the relationship Equation (52) between
the p and U variables:

a′ = U′4i∇U′ −U ′i∂/∂′4 (136)

where the spatial part of the four vector U′ is U = (U1, U2, U3) and U4 is the fourth component. This
is the differential representation of a rotation operator mixing the spatial and the fourth components of
U′a. When acting on the state 〈U′| , clearly eia·ν generates a four-dimensional rotation that produces a
new eigenstate 〈U”|. To explicitly derive the form of the finite transformation, we compute

[a′j, U′j ] = iU′4δij [a′j, U′4] = −iU′i . (137)

For a finite transformation aia·nν with n2 = 1, we have

U ′′ = eia′ ·nνU ′e−ia′ ·nν

= U ′ − nn ·U ′ + nn ·U ′ cos ν− nU′4 sin ν
(138)

and
U4” = eia′ ·nνU4

′e−ia′ ·nν

= U′4 cos ν + n ·U ′ sin ν
(139)

These equations of transformation are like those for a Lorentz transformation of a four-vector (r, it).
We can illustrate the equations for eia2ν (cf Equation (58)), which mixes the two and four components
of U′:

U1” = U′1 U3” = U′3
U2” = U′2 cos ν−U′4 sin ν U4” = U′2 sin ν + U′4 cos ν

. (140)

When L acts on 〈U′|, it has the differential representation

L′ = U ′ × i∇U′ (141)

This result follows directly, since U′i equals p′i times a factor that is a scalar under rotations in
three dimensions. When eiL·ω acts on 〈U′| it produces a new state 〈U”| , where the spatial components
of U′ have been rotated to produce U”.

In summary, we see that U′ is a four-vector under rotations generated by a′ and L′. Therefore the
states 〈U′| provide a vector representation of the group of rotations in four dimensions SO(4), with the
generators a and L.

5. Wave Functions for the Hydrogenlike Atom

In this section, we analyze the wave functions of the hydrogenlike atom, working primarily in
the 〈U′| representation and using eigenstates of the inverse of the coupling constant (Zα)−1 for the
basis states. In this representation the wave functions are spherical harmonics in four dimensions.
We derive the relationship of the usual energy eigenfunctions in momentum space to the spherical
harmonics and discuss the classical limits in momentum and configuration space.
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5.1. Transformation Properties of the Wave Functions under the Symmetry Operations

We can show that the wave functions Ynlm(U′) in the 〈U′| representation with respect to the
eigenstates of (Zα)−1

Ynlm(U′) ≡ 〈U′|nlm) (142)

transform as four-dimensional spherical harmonics under the four-dimensional rotations generated by
the Runge-Lenz vector a and the angular momentum L. We note that the quantity a is implicit in both
the bra and the ket in Equation (142). For our basis states we employ the set of (Zα)−1 eigenstates |nlm)

of the inverse coupling constant that are convenient for momentum space calculations (ρ = p2+a2

2a2 ). We
choose these states rather than those convenient for configuration space calculations, because the 〈U′|
eigenstates are proportional to the 〈p′| eigenstates.

If we transform our system by the unitary operator eiθ where θ = L ·ω + a · ν, then the wave
function in the new system is

Y′nlm(U
′) = 〈U′|eiθ |nlm). (143)

There are two ways in which we may interpret this transformation, corresponding to what have
been called the active and the passive interpretations. In the passive interpretation we let eiθ act on
the coordinate eigenstate 〈U′| . As we have seen in Section 3.6, this produces a new eigenstate 〈U”|,
where the four-vector U” is obtained by a four-dimensional rotation of U′ (Equations (138) and (139)).
Thus, we have

Y′nlm(U
′) = 〈U”|nlm) = Ynlm(U”). (144)

In the active interpretation, we let eiθ act on the basis state |nlm). Because L and a are symmetry
operators of the system, transforming degenerate states into each other, it follows that eiθ |nlm) must
be a linear combination of states with principal quantum number equal to n. Therefore, we have

Y′nlm(U
′) = ∑

l′m′
〈U′|Rnlm

nl′m′ |nl′m′) = ∑
l′m′

Rnlm
nl′m′Ynl′m′(U

′). (145)

The wave functions for degenerate states with a given n transform irreducibly among themselves
under the four-dimensional rotations, forming a basis for an irreducible representation of SO(4) of
dimensions n2 . Equating the results of the two different interpretations gives

Ynlm(U”) = ∑
l′m′

Rnlm
nl′m′Ynl′m′(U

′). (146)

The transformation properties Equation (146) of Ynlm are precisely analogous to those of the
three-dimensional spherical harmonic functions. It follows that the Ynlm are four-dimensional spherical
harmonics [35,124].

5.2. Differential Equation for the Four Dimensional Spherical Harmonics Ynlm(U′)

The differential equation for the Ynlm(U′) may be obtained from the equation

(L′2 + a′2)Ynlm(U′) = (n2 − 1)Ynlm(U′) (147)

which follows from C2 = n2 − 1 and the definition of C2, Equation (81). Substituting in the differential
expressions Equations (134) and (141) for a′ and L′ we find that L′2 + a′2 equals ∇2

U′ − (U′ ·∇U′)
2,

which is the angular part of the Laplacian operator in four dimensions (cf in three dimensions,
L2/r2 = p2 − p2

r ). Thus, Equation (147) is the differential equation for four-dimensional spherical
harmonics with the degree of homogeneity equal to n − 1, which means n2 such functions exist,
in agreement with the know degree of degeneracy.
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5.3. Energy Eigenfunctions in Momentum Space

We want to determine the relationship between the usual energy eigenfunctions in momentum
space ψnlm(p′) ≡ 〈p′|nlm〉 (with a = an) and the four-dimensional spherical harmonic eigenfunctions
Ynlm(U′; a) = 〈U′|nlm; a).

We choose the RMS momentum a to have the value an. If we use the expression Equation (131)
for 〈U′| in terms of 〈p′|

〈U′| = 〈p′|
(

p2 + a2
n

2an

)3/2

(148)

and the expression Equation (104) for the eigenstates of (Zα)−1 in terms of the energy eigenstates

|nlm; an) =

√
p2 + a2

n
2a2

n
|nlm〉 (149)

we find the desired result

Ynlm(U′; an) =

(
p2 + a2

n
2an

)2 1√
an

ψnlm(p′). (150)

The usual method of deriving this relationship between the wave function in momentum space
and the corresponding spherical harmonics in four dimensions involves transforming the Schrodinger
wave equation to an integral equation in momentum space [18,35]. As in the classical case, to do this we
first replace p by p/a and perform a stereographic projection from the hyperplane corresponding to the
three- dimensional momentum space to a unit hypersphere in a four-dimensional space. The resulting
integral equation manifests a four-dimensional invariance. When the wave functions are normalized
as in Equation (150), the solutions are spherical harmonics in four dimensions. As another alternative
to this procedure, we can Fourier transform the configuration space wave functions directly [126].

5.4. Explicit Form for the Spherical Harmonics

The spherical harmonics in four dimensions can be expressed as [127]:

Ynlm(Ω) = N1(n, l)(sin θ4)
lCl+1

n−1−l(cos θ4) ·
[

N2(l, m)(sin θ)mCm+1/2
l−m (cos θ)

eimφ

√
2π

]
. (151)

The factor in brackets is equal to Ym
l (θ, φ), the usual spherical harmonic in three-dimensions [127].

The Gegenbauer polynomials Cλ
n of degree n and order λ are defined in terms of a generating function:

1
(1− 2tx + t2)λ

= ∑
n=0

tnCλ
n . (152)

N1(n, l) and N2(l, m) are chosen to normalize the Ynlm on the surface of the unit sphere:∫
|Ynlm(Ω)|2d3ΩU = 1 (153)

where d3ΩU = sin2 θ4 sin θdθdφ. We find

N1(n, l) =

√
22l+1

π

n(n− l − 1)!(l!)2

(n + l)!
(154)

N2(l, M) =

√
22m

π
(l +

1
2
)
(l −m)!
(l + m)!

[Γ(m +
1
2
)]2 . (155)



Symmetry 2020, 12, 1323 35 of 66

In the next section, we discuss the asymptotic behavior of Ynlm for large quantum numbers and
compare it to the classical results of Section 3.

5.5. Wave Functions in the Classical Limit

5.5.1. Rydberg Atoms

Advances in quantum optics, such as the development of ultra short laser pulses, microwave
spectroscopy, and atom inteferometery, have opened new possibilities for experiments with atoms and
Rydberg states, meaning hydrogenlike atoms in states with very large principal quantum numbers
and correspondingly large diameter electron orbits. The pulsed electromagnetic fields can be used
to modify the behavior of the orbital electrons. Semi-classical electron wave packets in hydrogenlike
atoms were first generated in 1988 by ultrashort laser pulses, and today are often generated by unipolar
teraherz pulses [128–130]. Over the last few decades, there has been interest in the classical limit of the
hydrogenlike atom for n very large, Rydberg states, for a number of reasons [131]: 1. Rydberg states
are at the border between bound states and the continuum, and any process which leads to excited
bound states, ions or free electrons usually leads to the production of Rydberg states. This includes,
for example, photo-ionization or the application of microwave fields. The very large cross section for
scattering is unique. 2. Rydberg states can be used to model atoms with a higher atomic number that
have an excited valence electron that orbits beyond the core. 3. In Rydberg states, the application of
electric and magnetic fields breaks the symmetry of the atom and allows for the study of different
phenomena, including the transition from classical to quantum chaos [132]. 4. Rydberg atoms can be
used to study coherent transient excitation and relaxation, for example, the response to short laser
pulses creating coherent quantum wave packets that behave like a classical particle.

The square of the wave function for a given quantum state gives a probability distribution for
the electron that is independent of time. If we want to describe the movement of an electron in a
semiclassical state, with a large radius, going around the nucleus with a classical time dependence,
then we need to form a wave packet. The wave packet is built as a superposition of many wave
functions with a band of principal quantum numbers.

A variety of theoretical methods have been used to derive expressions for the hydrogen atom wave
functions and wave packets for highly excited states. There is general agreement on the wave functions
for large n, and that the wave functions display the expected classical behavior, elliptical orbits in
configurations space, and great circles in the four dimensional momentum space [133–136].

Researchers have proposed a variety of wave packets to describe Rydberg states. There are general
similarities in the wave packets that describe electrons going in circular or elliptical orbits with a classical
time dependence for some characteristic number of orbits, and it is maintained that the quantum mechanical
wave packets provide results that agree with the classical results [129,130,133–139]. Most of the approaches
exploit the SO(4) or SO(4,2) symmetry of the hydrogen atom which is used to rotate a circular orbital to an
elliptical orbit. The starting orbital is often taken as a coherent state, which is usually considered a classical
like state with minimum uncertainty. The most familiar example of a coherent state is for a one dimensional
harmonic oscillator characterized by creation and annihilation operators a† and a. The coherent state |α〉
is a superposition of energy eigenstates that is an eigenstate of a where a|α〉 = α|α〉 for a complex α. This
coherent state will execute harmonic motion like a classical particle [140]. To obtain a coherent state for the
hydrogenlike atom, eigenstates of the operator than lowers the principal quantum number n (which will be
discussed in Section 7.4) have been used [141], as well as lowering operators based on the equivalence of
the four dimensional harmonic oscillator representation of the hydrogen atom [134,135,142].

In either case, this coherent eigenstate is characterized by a complex eigenvalue, which needs to
be specified. Several constraints have been used to obtain the classical wave packet that presumably
obeys Kepler’s Laws, such as requiring that the orbit lie in a plane so 〈z〉 = 0 for the orbital, or that
〈r− rclassical〉 be a minimum, or that some minimum uncertainty relationship is obtained. In addition,
there are issues regarding the approximations used, in particular, those that relate to time. For times
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characteristic of the classical hydrogen atom, the wavepackets act like a classical system. For longer
times, the wavepacket spreads in the azimuthal direction and after some number of classical revolutions
of order 10 to 100 the spread is 2π, so the electron is uniformly spread over the entire orbit. The spread
arises because the component wave functions forming the wavepacket have different momenta. In two
derivations, still longer times were considered, and recoherence was predicted to occur after about n/3
(where n is the approximate principal quantum number) revolutions, although there is some difference
in the predicted amount of recoherence [131,136]. Because of the conservation of L and A, the spread
of the wave packets is inhibited, except in the azimuthal direction.

This is a system with very interesting physics. For example, one can view the transition from
a well defined wave packet representing the electron to a 2π spread and back again as a dynamical
illustration of the wave-particle duality.

Brown took a different approach to develop a wavepacket for a circular orbit [139]. He first
developed the asymptotic wave function for large n and then optimized the coefficients in a Gaussian
superposition to minimize the spread in φ, obtaining a predicted characteristic decoherence time of
about 10 minutes, considerable longer than any other predicted decoherence time.

Other authors have explored the problem from the perspective of classical physics and the
correspondence principle [133,137,143,144]. The results from the different methods are similar with the
basic conclusion that the wave functions are peaked on the corresponding classical Kepler trajectories:
“atomic elliptic states sew the wave flesh on the classical bones” [129].

With the variety of experimental methods used to generate Rydberg states, a variety of Rydberg
wave packets are created, and it is not clear which theoretical model, if any, is preferred [131]. We take
a very simple approach to forming a wavepacket and simply use a Gaussian weight for the different
frequency components. This does not give an intentionally optimized wave packet, but it is a much
simpler approach and the result has all of the expected classical behavior that is very similar to that
obtained from much more complicated derivations. We start with a circular orbit and then do a SO(4)
rotation to secure an elliptical orbit. We show that it has the classical period of rotation.

5.5.2. Wave Functions in the Semi-Classical Limit

We need to derive the semiclassical limit of the wave functions that correspond to circular
orbits in configuration space. For this case, sin ν, which we interpret as the expectation value of the
eccentricity, vanishes. We derive expressions for the wave functions in momentum space and then
form a wavepacket. To obtain corresponding expressions for elliptical orbits, we perform a rotation by
eia·ν, which does not alter the energy but changes the eccentricity and the angular momentum.

Case 1: Circular orbits, sin ν = e = 0
We derive the asymptotic form of Ynlm for large quantum numbers, where for simplicity

we choose the quantum numbers n − 1 = l = m corresponding to a circular orbit in the 1–2
plane. From Equation (151) we see we encounter Gegenbauer polynomials of the form Cλ

0 , which,
by Equation (152), are unity. For a very large l, sinl θ will have a very strong peak at θ = π/2, so we
make the expansion [103]

sin θ = sin
(π

2
+
(

θ − π

2

))
= 1− 1

2

(
θ − π

2

)2
+ · · · ≈ e−(1/2)(θ−π/2)2

(156)

to obtain
sinl θ ≈ e−(1/2)l(θ−π/2)2

. (157)

The asymptotic forms for N1 and N2 can be computed using the properties of Γ functions:

Γ(2z) =
(

1√
2π

)
22z− 1

2 Γ(z)Γ
(

z− 1
2

)
limz→∞ Γ(az + b) '

√
2πe−az(az)az+b− 1

2 .
(158)
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We finally obtain [145]

Yn,n−1,n−1(Ω) =

√
n

2π2 e−
1
2 n(θ4− π

2 )
2
· e−

1
2 n(θ− π

2 )
2
ei(n−1)φ, (159)

which gives the probability density

|Yn,n−1,n−1(Ω)|2 =
n

(2π2)
e−n(θ4− π

2 )
2
· e−n(θ− π

2 )
2
. (160)

We have Gaussian probability distributions in θ4 and θ about the value π/2. The distributions are
quite narrow with widths ∆θ4 ≈ ∆θ ≈ 1/

√
n and the spherical harmonic essentially describes a circle

(θ4 = θ = π/2) on the unit sphere in the 1–2 plane. As n becomes very large, U4 = cos θ4 ≈ (r− rc)/r
(Equations (54) and (72)) and U3 = sin θ4 cos θ, which is proportional to p3, both go to zero as 1/

√
n.

The distribution approaches the great circle U2
1 + U2

2 = 1 that we found in Section 3.6 for a classical
particle moving in a circular orbit in the 1–2 plane in configuration space. Note that this state is a
stationary state with a constant probability density. To get the classical time dependence we need to
form a wavepacket.

Forming a Wavepacket
We form a time dependent wavepacket for circular orbits by superposing circular

energy eigenstates:
χ(Ω, t) = ∑

n
eitEn Yn,n−1,n−1 An−N (161)

where An−N is an amplitude peaked about n = N >> 1. For n >> 1 we expand En about EN :

En = EN +
∂E
∂n

∣∣∣∣
N

s +
∂2E
∂n2

∣∣∣∣
N

s2 + . . . (162)

where s = n− N. From the equation for the energy levels, E = −m(Zα)2/(2n2) we compute

∂En

∂n

∣∣∣
N
=

m(Zα)2

N3 =

√
−8E3

N
m(Zα)2 . (163)

In agreement with the Bohr Correspondence Principle, the right-hand side of this equation is just
the classical frequency ωcl as given in Equation (38). For the second order derivative, we have

∂2E
∂n2

∣∣∣
N
= − 3

N
ωcl ≡ β (164)

which gives

χ(Ω, t) = e−itEN eiφ(N−1)
∞

∑
s=−N+1

e−i
(

ωcl st−
(

β
2

)
s2t−sφ

)
· As|YN+s,N+s−1,N+s−1|. (165)

We choose a Gaussian form for As

As =
1√

2πN
e−s2/(2N). (166)

Brown used As = Ce−s23ωcl t/N which minimizes the diffusion in φ at time t [139]. Since
|YN+s,N+s−1,N+s−1| varies slowly with s for N >> 1 we can take it outside the summation in
Equation (165). We now replace the sum by an integral over s. Because As is peaked about N
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we can integrate from s = −∞ to s = +∞. We perform the integral by completing the square in the
usual way. The final result for the probability amplitude for a circular orbital wave packet is

|x(Ω, t)|2 = |YN,N−1,N−1|2
(

1 + β2t2N2
)−1

· exp
[
− (φ−ωclt)

2 N
1 + (βtN)2

]. (167)

This represents a Gaussian distribution in φ that is centered about the classical value φ = ωclt,
meaning that the wavepacket is traveling in the classical trajectory with the classical time dependence.
The width of the φ distribution is

∆φ = (N)(−1/2)(1 + β2t2N2)1/2 = (N)(−1/2)(1 + 9ω2
clt

2)1/2. (168)

The distribution in φ at t = 0 is very narrow, proportional to 1/
√

N, but after several orbits ∆φ is
increasing linearly with time.

The distributions in θ4 and θ are Gaussian and centered about π/2 in each case as for the circular
wave function (cf. Equation (160)) with widths equal to (N)−1/2. The spreading of these distributions
in time is inhibited because of the conservation of angular momentum and energy. The detailed
behavior of the widths depend on our use of the Gaussian distribution. Other distributions will give
different widths, although the general behavior is expected to be similar.

As a numerical example, consider a hydrogen atom that is in the semiclassical region when the
orbital diameter is about 1 cm. The corresponding principal quantum number is about 104, the mean
velocity is about 2.2× 104 cm/s and the period about 1.5× 10−4 s. After about 34 revolutions or
5× 10−3 s, the spread in φ is about 2π, meaning the electron is spread uniformly about the entire
circular orbit. This characteristic spreading time can be compared to 1.6× 10−3 s for a fully optimized
wave packets formed from coherent SO(4,2) states [136,146]. In order to make predictions about
significantly longer times, we would need to retain more terms in the expansion Equation (162) of En.

Case 2: Elliptical orbits sin ν = e 6= 0
We can obtain the classical limit of the wave function for elliptical orbits by first writing our

asymptotic form Equation (159) for Yn,n−1,n−1 in terms of the U variables instead of the angular
variables by using definitions Equation (52), and setting a = an. Retaining only the lowest order terms
in (θ4 − π/2) and (θ − π/2), we find

Yn,n−1,n−1(U) =
( n

2π2

) 1
2 ei(n−1) tan−1

(
U2
U1

)
· e−

1
2 n(U4)

2
e−

1
2 n(U3)

2
(169)

For large n, this represents a circular orbit in the 1–2 plane. We now perform a rotation by A2ν.
which will change the eccentricity to sin ν, and change the angular momentum, but will not change
the energy or the orbital plane. Using Equation (140) to express the old coordinates in terms of the new
coordinates, we find to lowest order

Y′n,n−1,n−1(U) =
( n

2π2

)1/2
ei(n−1) tan−1

(
U2

U1 cos v

)
· e−

1
2 n{U2 sin ν−U4 cos ν}2

· e−
1
2 n(U3)

2
. (170)

In Section 3.6, we found that the vanishing of the term in braces 0 = U2 sin ν−U4 cos ν specifies
the classical great hypercircle orbit (Equation (56)) corresponding to an ellipse in configuration space
with eccentricity e = sin ν and lying in the 1–2 plane. The probability density |Y′n,n−1,n−1(U)|2 vanishes
except within a hypertorus with a narrow cross section of radius approximately 1√

n , which is centered

about the classical distribution. Because the width 1√
n of the distribution is constant in U space, it will

not be constant when projected onto p space.
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In terms of the original momentum space variables, the asymptotic spherical harmonic is

Yn,n−1,n−1(p) =
(

n
2π2

) 1
2 ei(n−1) tan−1

(
p2

p1 cos ν

)

· exp
{
−
( n

2
) [

p2
1 + (p2 − a tan ν)2 − a2

cos2 ν

]2 ( cos ν
p2+a2

)}2

· exp
{
−
( n

2
) ( 2p3a

p2+a2

)}2 ∣∣∣a = an

. (171)

The expression in brackets corresponds to the momentum space classical orbit equation we found
previously (Equation (49)). As we expect, p3 is Gaussian about zero since the classical orbit is in the
1–2 plane. We can simplify the expressions for the widths by observing that to lowest order we can
use Equation (48), which implies p2 + a2 = 2a2 + 2ap2 tan ν in the exponentials. The widths of both
distributions therefore increase linearly with p2. We also note that, since classically there exists a
one-to-one correspondence between each point of the trajectory in momentum space and each point in

configuration space, we may interpret the widths of the distributions using Equation (32) p2+a2

a2 = 2rc
r .

Accordingly, the widths increase as the momentum increases or as the distance to the force center
decreases (Figure 8).

Figure 8. Wave function probability distribution |Y′n,n−1,n−1(p)|2 in momentum space for large n,
showing the variation in the width of the momentum distribution about the classical circular orbit.
The center of the distribution is at p2 = a tan ν. The classical orbit is in the 1–2 plane.

Forming a Wave packet for Elliptical Motion
We may form a time dependent wavepacket superposing the wave functions of Equation (170).

Care must be taken to include the first order dependence (through an) of tan−1(U2/U1 cos ν) on the
principal quantum number when integrating over the Gaussian weight function. The result for the
probability density is the same as before (Equation (167)), except |Y′N,N−1,N−1|2 (given in Equation (170))
replaces |YN,N−1,N−1|2 and

ωclt = tan−1
(

U2

U1 cos ν

)
+ sin ν (U1) (172)

where replaces ωclt = φ . The result is exactly the same as the classical time dependence Equation (73).
The spreading of the wave packet will be controlled by the same factor as for the circular wave packet.
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Remark on the Semiclassical Limit in Configuration Space
The time dependent quantum mechanical probability density follows the classical trajectory in

momentum space meaning that the probability is greatest at the classical location of the particle in
momentum space. Because the configuration space wave function is the Fourier transform of the
momentum space wave function, the classical limit must also be obtained in configuration space.
That this limit is obtained is made explicit by observing that the momentum space probability density
is large when

(U2 sin ν−U4 cos ν)2 ≈ 0. (173)

However from Section 3 we can show that

U2 sin ν−U4 cos ν = cos ν
( r− rclassical

rclassical

)
(174)

where rclassical is given by the classical orbit Equation (33). Accordingly, we see that the configurations
space probability will be large when [ r− rclassical

rclassical

]2
≈ 0. (175)

5.6. Quantized Semiclassical Orbits

It is convenient at times to have a semiclassical model for the orbitals of the hydrogenlike atom.
Historically this was first done by Pauling and Wilson [147]. We can obtain a model by interpreting
the classical formulae for the geometrical properties of the orbits as corresponding to the expectation
values of the appropriate quantum mechanical expressions. Thus, when the energy E = −a2/2m
appears in a classical formula, we employ the expression for a for the quantized energy levels a = 1

nr0

where r0 = (mZα)−1, which is the radius 0.53 Angstrom of the ground state. Similarly if L2 appears
in a classical formula, we substitute l(l + 1), where l is quantized l = 0, 1, 2..n − 2, n − 1; and m ,
the component of L along the 3-axis is quantized: m= −l,−l + 1,−l + 2, ..l.

Orbits in Configuration Space
Recalling Equation (28) rc =

mZα
a2 , we see arc = n, which gives a semimajor axis of length rc = n2r0,

where r0 is the radius for the circular orbit of the ground state and rc is for a circular orbit for a state
with principal quantum number n. The equations for the magnitude of L and A are

L = rca cos v = n cos v =
√

l(l + 1) (176)

A = rca sin v = n sin v =
√

n2 − l(l + 1) (177)

This gives an eccentricity sin ν equal to

e = sin v =

√
1− l(l + 1)

n2 (178)

and a semi-major axis equal to

b = rc sin ν = n
√

l(l + 1). (179)

Note that the expression for e is limited in its meaning. For an s state, it always gives e = 1, and for
states with l = n− 1 it give e =

√
1/n, not the classically expected 0 for a circular orbit.
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Orbits in U-Space
The corresponding great hypercircle orbits (ν, Θ) in U-space are described by giving the quantized

angle ν, between the three-dimensional hyperplane of the orbit and the 4-axis, and the quantized angle
Θ, between the hyperplane of the orbit and the 3-axis:

cos ν =

√
l(l + 1)

n2 (180)

cos Θ =

√
m2

l(l + 1)
. (181)

Note the similarity in these two equations, suggesting that m relates to l the same way that l
relates to n, which suggests a generalization of the usual vector model of the atom which only describes
the precession of L about the z axis.

The results for orbits in configuration and momentum space illustrate some interesting features:
1. The equation ar = n illustrates that the characteristic dimensions of an orbit in configuration

space and the corresponding orbit in momentum space are inversely proportional, as expected,
since they are related by a Fourier transform, consistent with the Heisenberg Uncertainty Principle.

2. If l = 0, then no classical state exists. The orbit in configuration space degenerates into a
line passing through the origin while the corresponding circular orbit in momentum space attains an
infinite radius and an infinite displacement from the origin. Although this seems peculiar from the
pure classical viewpoint, quantum mechanically it follows, since for S states there is a nonvanishing
probability of finding the electron within the nucleus.

In order to interpret these statements about quantized semiclassical elliptical orbits we observe
that for quantum mechanical state of the hydrogenlike atom with definite n, l, m, the probability
density is (1) independent of φr or φp and (2) it does not confine the electron to some orbital plane.
Because the quantum mechanical distribution for such a state specifies no preferred direction in the
1–2 plane, we must imagine this distribution as corresponding in some way to an average over all
possible orientations of the semiclassical elliptical orbit. This interpretation is supported by the fact
that the region within which the quantum mechanical radial distribution function differs largely from
zero is included between the values of r corresponding to the semiclassical turning points rc(1± sin ν).

5.7. Four-Dimensional Vector Model of the Atom

In configuration space or momentum space„ the angle between the classical plane of the orbit
and the 3-axis is Θ, which is usually interpreted in terms of the vector model of the atom in which
we imagine L to be a vector of magnitude

√
l(l + 1) precessing about the 3-axis, with m as the

component along the 3-axis. This precession may be linked to the φr independence of the probability
and the absence of an orbital plane as mentioned at the end of the preceding section. The precession
constitutes a classical mechanism which yields the desired average over all possible orientations of the
semiclassical elliptical orbit. Because the angle Θ is restricted to have only certain discrete values one
can say that there is a quantization of space.

The expression for cos ν =
√

l(l + 1)/n2 is quite analogous to that for Θ and so suggests
a generalization of the vector model of the atom to four dimensions. The projection of the
four-dimensional vector model onto the physical three-dimensional subspace must give the usual
vector model. We can achieve this by imagining that a four-dimensional vector of length n, where n
is the principal quantum number, is precessing in such a way that its three and four components
are constants, while the one and two components vary periodically. The projection onto the 1–2–3
hyperplane is a vector of constant magnitude

√
l(l + 1) precessing about the 3-axis. The component

along the 3-axis is m. The component along the 4-axis is A =
√

n2 − l(l + 1) the magnitude of the
vector A. The vectors L and A are perpendicular to each other. Thus, the precessing n vector makes a
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constant angle Θ with the 3-axis and a constant angle π/2− ν with the 4-axis. Because both angles are
restricted to certain values, we may say that we have a quantization of four-dimensional space.

6. The Spectrum Generating Group SO(4,1) for the Hydrogenlike Atom

We consider the Schrodinger hydrogen atom and its unitary “noninvariance” or spectrum
generating operators eiDi βi where Di is a generator and βi is a real parameter, using eigenstates
of (Zα)−1 for our basis of our representation. These operators transform an eigenstate of the kernel K
with a definite value of the coupling constant (or principal quantum number) into a linear combination
of eigenstates with different values of the coupling constant (or different principal quantum numbers),
and different l and m. Unlike the invariance generators L and A, the noninvariance generators clearly
do not generally commute with the kernel K, [Di, K] 6= 0, so they change the principal quantum number.

The set of all invariance and noninvariance operators forms a group with which we may generate
all eigenstates in our complete set from a given eigenstate. We show that this group, called the Spectrum
Generating Group of the hydrogenlike atom, is SO(4,1), the group of orthogonal transformations in
a 5-dimensional space with a metric gAB = (−1, 1, 1, 1, 1), where A, B = 0, 1, 2, 3, 4. The complete set
of eigenstates of (Zα)−1 for the hydrogenlike atom forms a unitary, irreducible, infinite-dimensional
representation of SO(4,1) which, we shall find, can be decomposed into an infinite sum of irreducible
representations of SO(4), each corresponding to the degeneracy group for a particular principal
quantum number. A unitary representation means all generators are unitary operators. An irreducible
representation does not contain lower dimensional representations of the same group. In Section 6.3,
we discuss the isomorphism between the spectrum generating group SO(4,l) and the group of
conformal transformations in momentum space. An isomorphism means the groups have the same
structure and can be mapped into each other.

6.1. Motivation for Introducing the Spectrum Generating Group Group SO(4,1)

We have examined the group structure for the degenerate eigenstates of (Zα)−1 for the
Schrodinger hydrogenlike atom: the n2 degenerate states form an irreducible representation of
SO(4). The next question we might ask is: Do all or some of the states with different principal
quantum numbers form an irreducible representation of some larger group which is reducible into
SO(4) subgroups? If such a group exists then it clearly is not an invariance group of the kernel K
(Equation (106)). If we want our noninvariance group to include just some of the states then it will be a
compact group, since unitary representations of compact groups can be finite dimensional. If we want
to include all states then it will be a noncompact group since there are an infinite number of eigenstates
of (Zα)−1 and all unitary representations of noncompact groups are infinite dimensional [9].

We can find a compact noninvariance group for the first N levels of the coupling constant,
n = 1, 2, ...N. The dimensionality of our representation is

N

∑
n=1

n2 =
N(N + 1)(2N + 1)

6
. (182)

Mathematical analysis of the group SO(5) shows that this is the dimensionality of the irreducible
symmetrical tensor representation of SO(5), given by the tensor with five upper indices Tabc...,
where a, b, .. = 1, 2, 3, 4 or 5 [11]. Reducing this representation of SO(5) into its SO(4) components gives

( symm · tensor N)SO(5) =(0, 0)⊕
(

1
2

,
1
2

)
⊕ . . . ⊕

(
N − 1

2
,

N − 1
2

)
=( symm · tensor n = 1)SO(4)⊕

( symm · tensor n = 2)SO(4)⊕

. . .⊕ ( symm · tensor n = N)SO(4)

(183)
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which is precisely the structure of the first N levels of a hydrogenlike atom. If we want to include
all levels then we guess that the appropriate noncompact group is SO(4,1), whose maximal compact
subgroup is SO(4). Thus, we conjecture that all states form a representation of SO(4,1).

Consider the Lie algebra of O(4,1) and the general structure of its generators in terms of the
canonical variables. The algebra of O(n) has n(n−1)

2 generators so to extend the algebra of O(n) to
O(n+1) takes n generators, which can be taken as the components of a n-vector. To extend the Lie
algebra from O(4) to O(5) or O(4,1) we can choose the additional generators Ga to be components of a
four-vector G under O(4):

[Sab, Gc] = i(Gbδac − Gaδbc) a, b, c = 1, 2, 3, 4. (184)

If we apply Jacobi’s identity to Sab, Ga, and Gb and use Equation (184) we find

[Sab, [Ga, Gb]] = 0. (185)

We require that the Lie algebra closes, so [Ga, Gb] must be a linear combination of the generators,
clearly proportional to Sab and we choose the normalization, such that

[Ga, Gb] = −iSab. (186)

If we define
G4 = S40 = S; Gi = Si0 = Bi (187)

and recall Equation (79)
Li = eijkSjk Ai = Si4

then the additional commutation relations that realize SO(4,1) may be written in terms of L, A, B,
and S: [

Li, Bj
]
= iεijkBk [Li , S] = 0[

S , Aj
]
= iBj

[
S , Bj

]
= iAj[

Aj, Bk
]
= iδjkS

[
Bi, Bj

]
= −iεijkLk.

(188)

The top two commutators show that B transforms as a three-vector under O(3) rotations and that
S is a scalar under rotations. Alternatively, we can write the commutation relations in terms of the
generators SAB , A, B = 0, 1, 2, 3, 4 :

[SAB, SCD] = i (gACSBD + gBDSAC − gADSBC − gBCSAD) (189)

where g00 = −1, gaa = 1.
The commutators above follow directly from the mathematical theory of SO(4,1), but the theory

does not tell us what these generators represent, just their commutation properties. We now investigate
the general features of the representations of SO(4,1) provided by the hydrogenlike atom and how to
represent the generators in terms of the canonical variables.

6.2. Casimir Operators

The two Casimir operators of SO(4,1) are [120]

Q2 = −1
2

SABSAB = S2 + B2 − A2 − L2 (190)

and
Q4 = −wAwA = (SL− AxB)2 − 1

4
[L · (A + B)− (A + B) · L]2 (191)

where wA = 1
8 εABCDESBCSDE .
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For SO(4), we recall that for the SO(4) representations the structure of the generators in terms of
the canonical variables led to the vanishing of one Casimir operator C1 = L · A and, consequently, the
appearance of only symmetrical tensor representations. We will find Q4 vanishes for analogous reasons.

If B is a pseudovector, it is proportional to L, which is the only independent pseudovector that
can be constructed from the dynamical variables. The coefficient of proportionality, a scalar, X need
not commute with H:

B = XL [X, L] = 0 [X, H] 6= 0 (192)

Because [Bi, Bj] = −ieijkLk it follows that X2 = −1 and B would therefore be a constant multiple
of L and not an independent generator. Thus B must be a vector and expressible as

B = f r + hp (193)

where f and h are scalar functions of r, p2, and r · p. Accordingly we find

B · L = L · B = 0 (194)

Further, since B is a vector and A is a vector, A× B is a pseudovector and therefore is proportional
to L :

A× B = YL , [Y, L] = 0 (195)

For this equation to be consistent with the SO(4,1) commutation relations we find Y = S and,
therefore

A× B = SL. (196)

It follows from substituting L · A = 0 and Equations (194) and (196) into Equation (191) that for
the SO(4,1) representations realized by the hydrogenlike atom

Q4 = 0. (197)

As with the SO(4) symmetry, the dynamics of the hydrogen atom require that only certain
representations of SO(4,1) appear. From the mathematical theory of irreducible infinite dimensional
unitary representations of SO(4,1), we have the following results:

Class I: Q4 = 0; Q2 real, > 0

SU(2) × SU(2) content:

(Q)I =(0, 0)⊕
(

1
2

,
1
2

)
⊕ (1, 1)⊕ . . .

(198)

Class II: Q4 = 0, Q2 = −(s− 1)(s + 2), s = integer > 0

SU(2)× SU(2) content:

(Q)I I =
( s

2
,

s
2

)
⊕
(

s + 1
2

,
s + 1

2

)
⊕ · · ·

(199)

The class I representations are realized by the complete set of eigenstates of (Zα)−1 for the
hydrogenlike atom. Note, however, that we have an infinite number of such class I representations
since Q2 may have any positive real value. We shall find that for Q2 = 2 we may extend our group
from SO(4,l) to SO(4,2). The class II representations are realized by the eigenstates of (Zα)−1 with
principal quantum numbers from n = s + 1 to n becomes infinite. The first s levels could, if we desire,
be described by SO(5).

In this section, we have analyzed the group structure and the representations using the complete
set of eigenstates of (Zα)−1 for our basis. We might ask: what if we used energy eigenstates instead as
a basis for the representations? From Section 4.3 we know that the quantum numbers and multiplicities
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of the (Zα)−1 eigenstates are precisely the same as those of the bound energy eigenstates. Thus, with
the energy eigenstates as our basis, we would reach the same conclusions about the group structure
as before but we would be including only the bound states in our representations and we would be
ignoring all scattering states.

6.3. Relationship of the Dynamical Group SO(4,1) to the Conformal Group in Momentum Space

We can give a more complete analysis of the hydrogenlike atom in terms of SO(4,1) by considering
the relationship between the four-dimensional rotations of the four-vector U′a, with a = l, 2, 3, 4,
which we discussed in Section 4.6, and the group of conformal transformations in momentum
space. Conformal transformations preserve the angles between directed curves, but not necessarily
lengths. The rotations generated by the Runge-Lenz vector a and the angular momentum L leave
the scalar product UaVa of four-vectors invariant and, therefore, are conformal transformations.
The stereographic projection we employed is also a conformal transformation. Since the product of
two conformal transformations is itself a conformal transformation, we must conclude that a generates
a conformal transformation of the momentum three-vector p.

We must introduce two additional operators that correspond to the operators B and S introduced
in Section 6.1 in order to express the most general conformal transformation. By employing the
isomorphism between the generators L, a, B, and S of SO(4,1) and the generators of conformal
transformations in momentum space we can immediately obtain expressions for the additional
generators B and S in terms of the canonical variables, which is our objective. We need these additional
generators to complete our SO(4,1) group for the hydrogen atom.

To derive the isomorphism we use the most convenient representation, namely that based

on eigenstates of (Zα)−1 convenient for momentum space calculations (ρ = (p2+a2)
2a2 ). Once

established, the isomorphism becomes a group theoretical statement and it is independent of the
particular representation.

The Conformal Group in Momentum Space
An arbitrary infinitesimal conformal transformation in momentum three-space may be written as

δpj = δaj + δωjk pk + δρpj +
(

p2δcj − 2pj p · δc
)

(200)

where δωjk = −δωkj.
The terms in δpj arise as follows:

δaj translation generated by R · δa
δωjk rotation generated by J · δω, Jij = εijk Jk
δρ dilation generated by Dδρ

δcj special conformal transformation generated by K · δc

(201)

This is a ten parameter group with the generators (R, J, D, K) which obey the following
commutation relations: [

D, Rj
]
· = iRj [D, Ji] = 0[

D, Kj
]
= −iKj [Ri, Jk] = iεijkRk

[Kn, Rm] = 2iεnmr Jr − 2iδmnD [Ji, Jk] = iεikmJm[
Ri, Rj

]
= 0 [Ki, Jk] = iεikmKm[

Kj, Kj
]
= 0

(202)

There is an isomorphism between the algebra of the generators of conformal transformations and
the dynamical noninvariance algebra of SO(4,1) of the hydrogen atom. Because Ji is the generator
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of spatial rotations we make the association Li = Ji. Comparing the differential change in pi from a

transformation generated by a · δν (in the representation with ρ = (p2+A2)
2a2 )

δpi = i [a · δν, pi]

= − 1
2a

[(
p2 − a2

)
δνi − 2p · δνpi

] (203)

to the differential change in pi from a conformal transformation leads to the association

ai =
1
2

(
Ki
a
− aRi

)
. (204)

To confirm the identification we can use the commutation relations of the conformal group to
show that the O(4) algebra of L and a corresponds precisely to that of J and 1

2 (
K
a − aR). This result

alone suggests that our SO(4) degeneracy group should be considered as a subgroup of the larger
group SO(4,1). It suggests introducing the operators

B =
1
2

(
K
a
+ aR

)
S = D. (205)

The commutation relations of S and B which follow from Equations (205) and the commutation
relations Equation (202) are identical to the commutation relations given for S and B in Section 6.1.
Thus, by considering the a and L transformations in momentum space as conformal transformations,
we were led to introduce the generators B and S and obtain the dynamical algebra SO(4,l). Further, we
are led to the expressions for these generators in terms of the canonical variables.

By comparing the expression for a in terms of the conformal generators with our known
expressions for a, Equation (120) or Equation (121), we obtain expressions for Ki and Ri in terms
of the canonical variables. If we use the eigenstates convenient for configuration space calculations
(ρ = n/ar) we make the identifications

K = 1
2 (rp2 + p2r)− r · pp− pp · r− r 1

4r2

R = r.
(206)

Substituting these results in the equation for B we find

B =
1
2a

(
p2r + rp2

2
− r · pp− pp · r− r

4r2

)
+

ar
2

(207)

which is a manifestly Hermitean operator valid throughout Hilbert space. From Equations (204) and
(205) we note that

B− a = ar. (208)

To compute D, we substitute the expressions for K and R into the commutation relation

D =
i
2
[Ki, Ri]

obtaining the result

S =
1
2
(p · r + r · p) = D (209)

which is identical to the generator of the scale change transformation D(λ) defined in Equation (109)
in Section 4.3.
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The significance of the generator D = S of the scale change in terms of SO(4,1) is apparent if
we compute

eiλD
(

K
a
± aR

)
e−iλD =

K
a′
± a′R (210)

where a′ = eλa.
The unitary transformation eiλD may be viewed as generating an inner automorphism of SO(4,1)

which is an equivalent representation of SO(4) that is characterized by a different value of the quantity
a or the energy. In other words, under the scale change eiλD, the basis states for our representation of
SO(4,1), |nlm; a), transform to a new set, |nlm; eλa) in agreement with our discussion in Section 4.3.

Because the algebra of our generators closes, we may also view eiλD as transforming a given
generator into a linear combination of the generators. With the definitions of a and B (Equation (204)
and (205)), we can easily show that Equation (210), with the upper sign, may also be written

eiλDBe−iλD = B cosh λ + a sinh λ. (211)

7. The Group SO(4,2)

7.1. Motivation for Introducing SO(4,2)

We would like to express Schrodinger’s equation as an algebraic equation in the generators of
some group [37,38]. As we are unable to do this with our SO(4,l) generators SAB we again expand the
group. To guide us, we recall that to expand SO(3) to SO(4) we added a three-vector of generators
A, and to expand SO(4) to SO(4,1), we added a four-vector of generators (S, B). In both cases, this
type of expansion produced a set of generators convenient for the study of the hydrogenlike atom.
We guess that the appropriate expansion of SO(4,1) is obtained by adding a five-vector (under SO(4,1))
of generators ΓA to obtain SO(4,2) [37,38]. We can provide additional motivation for this choice
by considering Schrodinger’s equation. The generators in terms of which we want to express this
equation must be scalars under Li rotations. Additionally we know S = S40 (Equation (187)) generates
scale changes of Schrodinger’s equation. The fact that S40 mixes the zero and four components of a
five-vector suggests that Schrodinger’s equation may be expressed in terms of the components Γ0 and
Γ4 which are scalars under Li, of the five vector ΓA. Since ΓA is a five-vector under SO(4,1), it must
satisfy the equation

[SAB, ΓC] = i (ΓBgAC − ΓAgBC) . (212)

The spatial components of ΓA which are (Γ1, Γ2, Γ3) = Γ transform as a vector under rotations
generated by L.

To construct the Lie algebra of SO(4,2) we require that the set of operators {ΓA, SAB; A, B =

0, 1, 2, 3, 4}must close under the operations of commutation. By applying Jacobi’s identity to ΓA, ΓB,
and SAB, and requiring that ΓA and ΓB do not commute, we find

[SAB, [ΓA, ΓB]] = 0 A, B = 0, 1, 2, 3, 4.

Because we require that our Lie algebra closes, the commutator of ΓA and ΓB must be proportional
to SAB. We normalize Γ, so

[ΓA, ΓB] = −iSAB A, B = 0, 1, 2, 3, 4. (213)

If we define
SA5 = ΓA = −S5A A = 0, 1, 2, 3, 4. (214)

and recall
Ai = Si4 Bi = Sio Li = eijkSjk S = S40
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then we may unite all the commutations relations of ΓA and SAB in the single equation :

[SAB , SCD ] = i(gACSBD + gBDSAC − gADSBC − gBCSAD) (215)

where A,B, .. = 0, 1, 2, 3, 4, 5 and g00 = g55 = −1; gaa = 1, a = 1, 2, 3, 4.
These are the commutation relation for the Lie algebra of SO(4,2). In terms of A, B, L, S and ΓA

the additional commutation relations for the noncommuting generators are [53]:[
Bi, Γj

]
= iΓ0δij

[
Γi, Γj

]
= −iεijkLk[

Ai, Γj
]
= iΓ4δij [Γi, Γ0] = −iBi[

Li, Γj
]
= iεijkΓk [Γi, Γ4] = −iAi

[Γ4, Γ0] = −iS
[ Bi, Γ0] = iΓi [Ai, Γ4] = −iΓi
[ S, Γ0 ] = iΓ4 [ S, Γ4] = iΓ0

(216)

7.2. Casimir Operators

The Lie algebra of SO(4,2) is rank three, so it has three Casimir operators W2, W3, and W4 [43]:

W2 = −1
2

SABSAB = Q2 + ΓAΓA (217)

where Q2 is the nonvanishing SO(4,1) Casimir operator Equation (190) and

W3 = εABCDEFSABSCDSEF (218)

W4 = SABSBCSCDSDA. (219)

Computation of W3

We can show that W3 = 0 from dynamical considerations similar to those used in the discussion
of SO(4,1) Casimir operators. The only terms that can be included in W3 are scalars that are formed
from products of three generators with different indices

B · A× Γ, A · Γ× B, Γ · B× A

Γ4L · B, Γ0L · A, SΓ · L
(220)

It is interesting that these terms are actually all pseudoscalars. Terms like B · A× L are simply
not possible because of the structure of W3. We know that Γ = (Γ1, Γ2, Γ3) must not be pseudovector,
otherwise it would be proportional to L. Since it is a vector, it must equal a linear combination of r and
p. Therefore, we conclude

Γ · L = L · Γ = 0. (221)

Because Γ and B are both vectors and L is the only pseudovector we have Γ× B = ΛL . In order
to determine the scalar Λ we evaluate the commutators

[Bk, (Γ× B)k], and [Γk, (Γ× B)k] (222)

and find
Γ× B = Γ0L = −B× L. (223)

The analogous equations for A and Γ, and for A and B, are

Γ× A = −Γ4L = −A× Γ

A× B = SL = − B× A.
(224)
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From Equations (223) and (224), we see that because of the dynamical structure of the generators
each of the quantities in the first line of Equation (220) is proportional to the quantity directly below in
the second line. We also have shown that (Equations (194) and (221))

L · B = L · A = Γ · L = 0. (225)

Accordingly, each scalar in our list vanishes and

W3 = 0. (226)

Computation of W2

In order to compute W2 we need to evaluate

Γ2 ≡ ΓAΓA = Γ2
4 + ΓiΓi − Γ2

0. (227)

From the structure of W2 as shown in Equation (217), we see that Γ2 must be a number since
W2 and Q2 are both Casimir operators and therefore equal numbers for a particular representation.
Accordingly, we have

[Γ2, ΓA] = 0. (228)

From this equation, we can deduce a lemma allowing us to easily evaluate W2 and W4 in terms of
the number Γ2. Using Equation (227) and the definition of SAB Equation (213) we find

ΓASAB + SABΓA = 0.

Contracting Equation (212) with gAC gives

SABΓA − ΓASAB = 4iΓB.

Consequently, it must follow that

SABΓA = 2iΓB = −ΓASAB. (229)

We are now able to evaluate the quantity

SABSB
C = iSAB[ΓB, ΓC] = i(SABΓBΓC − SABΓCΓB).

Using Equation (212) for the commutator of SAB with ΓC and Equation (229) for the contraction
SABΓB we prove the lemma

SABSB
C = 2iSCA − ΓAΓC + Γ2gAC. (230)

The value of the SO(4,1) Casimir operator Q2 = 1
2 gACSABSB

C follows directly from the lemma:

Q2 = 2Γ2. (231)

Accordingly, we have from Equation (217)

W2 = 3Γ2. (232)

Computation of W4

The Casimir operator W4 can be written as

W4 = SABSBCSCDSDA + SABSB5S5DSDA + S5BSBCSCDSD5 + S5BSB5S5DSD5. (233)

where B,D = 0, 1, 2, 3, 4, 5 and A, C = 0, 1, 2, 3, 4.
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In order to evaluate W4 in terms of Γ2 we compute SABSBC. Recalling ΓA = SA5 we see

SABSBC = ΓAΓC + SABSBC. (234)

Substituting the lemma Equation (230), we find

SABSBC = 2iSC
A − Γ2g C

A . (235)

From Equation (229), it follows that

S5BSBC = 2iΓC. (236)

Substituting Equations (231), (232), (235), and (236) into Equation (233) for W4 we find

W4 = 6(Γ2)2 − 24Γ2. (237)

The fact that the nonvanishing Casimir operators (Q2, W2, and W4) for SO(4,1) and SO(4,2) are
given in terms of Γ2 implies that the representation of SO(4,2) determines the particular representation
of SO(4,l) appropriate to the hydrogenlike atom. In turn the value of Γ2 is determined by the structure
of the Γs in terms of the canonical variables. In Section 7.4, we derive these structures and find that

Γ2 = 1.

Therefore, the quadratic SO(4,1) Casimir operator Q2 has the value

Q2 = 2

and the SO(4,2) Casimir operators have the values:

W2 = 3 W3 = 0 W4 = −18.

The researchers that have published different representations of SO(4,2) based on the hydrogen
atom that give their Casimir operators all have W2 = 3 (or its equivalent) and W3=0 [34,79,82], however,
two authors have representations with W4 = 0 [34,82] and one [79] has W4 = −12, as compared to our
value of -18.

From the mathematical theory of representations, it follows that our representations of SO(4,1)
and SO(4,2) are both unitary and irreducible. This means there is no subset of basis vectors that
transform among themselves as either SO(4,1) or as SO(4,2).

7.3. Some Group Theoretical Results

In this section, we derive the transformation properties of the generators of SO(4,2) and then a
novel contraction formula that will prove useful for situations in which we want to employ perturbation
theory, for example, in our calculation of the radiative shift for the hydrogen atom in Section 8. We will
work primarily with the SO(4,2) generators expressed as the combination of the SO(4,1) generators
SAB and the five-vector Γ, with gAB = (−1, 1, 1, 1, 1) where A, B = 0, 1, 2, 3, 4.

Transformation Properties of the Generators
We can evaluate quantities like

ABΓB(θ) ≡ eiSABθΓBe−iSABθ no sum over A or B (238)

by expanding the exponentials in an infinite series and then using the commutation relations
Equations (212) and (213) of the generators SAB and ΓA, ΓB repeatedly. However, it is easier to
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solve the differential equations satisfied by ABΓB and to use the appropriate boundary conditions.
Differentiating Equation (238) and using the commutation relations, we obtain the equations

d
dθ

ABΓB = −gBB
ABΓA

d2

dθ2
ABΓB = −gAAgBB

ABΓB (239)

which have the solution

ABΓB = ΓB cos
√

gAAgBBθ +
gBB√

gAAgBB
ΓA sin

√
gAAgBBθ. (240)

Using a similar procedure we find

eiΓAθSABe−iΓAθ = SAB cosh
√

gAAθ +
√

gAAΓB sinh
√

gAAθ (241)

eiΓAθΓBe−iΓAθ = ΓB cosh
√

gAAθ +
1

√
gAA

SAB sinh
√

gAAθ (242)

where no summation over A or B is implied.
These formulae, Equation (240)–(242), give the SO(4,2) transformation properties of the SO(4,2)

generators.

The Contraction Formula
If we multiply Equation (241) from the right by eiΓAθ and then contract from the left with ΓB, we

obtain

∑
B

ΓBeiΓAθΓB =

[
(1− gAAΓ2

A) cosh
√

gAAθ +
2iΓA√

gAA
sinh
√

gAAθ

]
eiΓAθ + gAAΓ2

AeiΓAθ (243)

where we have used Γ2 = 1 and Equation (229). Expanding the hyperbolic functions in terms of
exponentials and collecting terms gives

∑
B

ΓBeiΓAθΓB =
1
2
(1 +

iΓA√
gAA

)2ei(ΓA−i
√

gAA)θ +
1
2
(1− iΓA√

gAA
)2ei(ΓA+i

√
gAA)θ + gAAΓ2

AeiΓAθ . (244)

A Fourier decomposition of a function ΓA may be written

f (ΓA) =
1

2π

∫
dθ h(θ)eiΓAθ . (245)

Consequently we have

∑
B

ΓB f (ΓA)ΓB =
1
2
(1 +

iΓA√
gAA

)2 f (ΓA − i
√

gAA) +
1
2
(1− iΓA√

gAA
)2 f (ΓA + i

√
gAA) + gAAΓ2

A f (ΓA).

(246)
By performing a suitable rotation we can generalize this formula from functions of ΓA to functions

of ΓAnA where nAnA = ±1. For n2 = −1 we start with ΓA = Γ0 and rotate to obtain a very
general result

∑
B

ΓB f (nΓ)ΓB =
1
2
(nΓ + 1)2 f (nΓ + 1) +

1
2
(nΓ− 1)2 f (nΓ− 1)− (nΓ)2 f (nΓ). (247)

We will have occasion to apply this formula for the special case

f (nΓ) =
1

Γn− ν
. (248)
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Using the representation
1

Γn− ν
=
∫ ∞

0
dseνse−Γns (249)

we obtain the result
ΓA

1
Γn− ν

ΓA = −2ν
∫ ∞

0
ds eνs d

ds
(sinh2 s

2
e−Γn s) (250)

which is in a form convenient for perturbation calculations.
Derivation of the ΓA in terms of the Canonical Variables
For our basis states, we shall use eigenstates of (Zα)−1 convenient for configuration space

calculations (ρ = na/r). We choose these states rather than those convenient for momentum space
calculations because they lead to simpler expressions for the ΓA in terms of the canonical variables,
although the expression for a is slightly more complicated. Thus, our states obey the equation[

1
K1(a)

− n
]
|nlm) = 0 (251)

where K1(a) is given by Equation (116). We know that K−1
1 must commute with the generators of the

SO(4) symmetry group (a)i = Si4 and Sij = εijkLk. This suggests that we choose

Γ0 = [K1(a)]−1 =
√

ar
p2 + a2

2a2

√
ar =

1
2

(√
rp2√r

a
+ ar

)
(252)

so that
(Γ0 − n) |nlm) = 0. (253)

This last equation is the Schrodinger equation expressed in our language of SO(4,2): our states
|nlm) are eigenstates of Γ0 with eigenvalue n.

To find Γ4, we calculate Γ4 = −i[S, Γ0], using Equation (209) for S,

Γ4 =
√

ar
p2 − a2

2a2

√
ar =

1
2

(√
rp2√r

a
− ar

)
. (254)

Sometimes it is convenient to use the linear combinations

Γ0 − Γ4 = ar Γ0 + Γ4 =

√
rp2√r

a
(255)

which can be used to express the dipole transition operator [33]. We can find Γi from Equation (216),
Γi = −i[Bi, Γ0]

Γi =
√

rpi
√

r (256)

which we might have guessed initially since [rpi, rpj] ∼ Lk. Every component of ΓA is Hermitean,
consequently the generators SAB given by the commutators Equation (213) are also Hermitian. We may
explicitly verify that these expressions for ΓA lead to a consistent representation of all generators in the
SO (4,2) Lie algebra.

Under a scale change generated by S, Γi is invariant and Γ4 and Γ0 transform in the same manner
as a and B (Equation (210)): they retain their form but a is transformed into eλa:

eiλS
{

Γ0

Γ4

}
e−iλS =

1
2

(√
rp2√r
eλa

± eλar
)

(257)

The scale change generates an inner automorphism of SO(4,2) characterized by a different value
of the parameter a.
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7.4. Subgroups of SO(4,2)

The two most significant subgroups are [53]:

1. Li, ai or Sjk, Si4, forming an SO(4) subgroup. These generators commute with Γ0 and therefore
constitute the degeneracy group for states of energy −a2/(2m) and fixed principal quantum number n
(or fixed coupling constant na/m). The Casimir operator for this subgroup is

a2 + L2 = n2 − 1 = Γ2
0 − 1. (258)

We discussed this subgroup in Section 4.2 in terms of L and A and the states |nlm〉. The same
results are obtained with the generators L and a with the states |nlm). For example, we have the
raising and lowering operators for m and l (Equations (93) and (94)). With the definition

L± = L1 ± iL2 (259)

it follows that
[L3, L±] = ±L± (260)

which gives

L±|nlm) =
√
(l(l + 1)−m(m± 1)|nl m± 1) L3|nlm) = m|nlm). (261)

for l ≥ 1. In analogy to L± one can define

a± = a1 ± ia2 (262)

which obey the relations
[a3, a±] = ±L3 [L3, a±] = ±a± (263)

and

a±|nlm) =∓
(
(n2 − (l + 1)2)(l + 2±m)(l + 1±m)

4(l + 1)2 − 1

) 1
2

|n l + 1 m± 1)

±
(
(n2 − l2)(l ∓m)(l − 1∓m)

4l2 − 1

) 1
2

|n l − 1 m± 1)

(264)

for l ≥ 1. The action of a± is not directly analogous to that of L±, because we are using |nlm) as
basis states. If we used |na3l3 = m) as basis states, the action would be similar. An operator that only
changes the angular momentum is a3

a3|nlm〉 =
(
(n2 − (l + 1)2)((l + 1)2 −m2)

4(l + 1)2 − 1

) 1
2

|n l + 1 m〉+
(
(n2 − l2)(l2 −m2)

4l2 − 1

) 1
2

|n l − 1 m〉.

(265)
for l ≥ 1. Since a3 commutes with L3 and Γ0, it does not change n or m.

2. Γ4, S = S40, Γ0, forming a SO(2,1) subgroup. These operators commute with L but not with Γ0,
hence then can change n but not L or m. The Casimir operator for this subgroup is

Γ2
0 − Γ2

4 − S2 = L2 = l(l + 1). (266)

We can define the operators [53]

j1 = Γ4 j2 = S j3 = Γ0 (267)

with commutators
[j1, j2] = −ij3 [j2, j3] = ij1 [j3, j1] = ij2 (268)



Symmetry 2020, 12, 1323 54 of 66

We can define the raising and lowering operators

j± = j1 ± ij2 = Γ4 ± iS (269)

which obey the commutation relations
[j±, j3] = ∓j±. (270)

We find (in analogy to Equation (261))

Γ0|nlm) = n|nlm) (Γ4 ± iS)|nlm) =
√

n(n± 1)− l(l + 1)|n± 1 lm) (271)

We can express the action of Γ0 − Γ4 = ar on our states

ar|nlm) = 1
2

(
(n)(n− l)− l(l + 1)

) 1
2

|n− 1 lm) + n|n lm) + 1
2

(
(n)(n + l)− l(l + 1)

) 1
2

|n + 1 lm) (272)

As previously mentioned, the operator S generates scale changes as shown in Equation (257),
where the value of a is changed. We can also express the action of S equivalently as transforming Γ0

into Γ4

eiSλΓ0e−iSλ = Γ0 cosh λ− Γ4 sinh λ eiSλΓ4e−iSλ = Γ4 cosh λ− Γ0 sinh λ. (273)

7.5. Time Dependence of SO(4,2) Generators

For a generator to be a constant it must commute with the Hamiltonian as discussed in Section 2.1.
Because the SO(4,2) group is the non-invariance or spectrum generating group, the additional
generators do not all commute with the Hamiltonian and may have a harmonic time dependence
as discussed in Section 2.2. It is notable that as far as we know only one paper considers the
time dependence of the generators of non-invariance groups in general and one considers SO(4,2)
specifically [97,136]. Our results certainly clarify and make explicit the time dependence, and show
that it is just a particular aspect of the SO(4,2) transformations. In our representation with basis states
|nlm; a), the Hamiltonian, which is the generator of translations in time, has been transformed into Γ0

and the Schrodinger energy eigenvalue equation has become Γ0|nlm) = n|nlm). Accordingly, all of the
generators that commute with Γ0 are constants of the motion, which includes a, L. The other operators,
B, Γ, S, Γ4 have a time dependence given by Equations (241) and (242), for example

S(t) = eiHtS(0)E−iHt = eiΓ0tSe−iΓ0t = S cos t + Γ4 sin t. (274)

Γ4(t) = eiHtΓ4(0)E−iHt = eiΓ0tΓ4e−iΓ0t = Γ4 cos t− S sin t. (275)

Consequently, terms like j± have a simple exponential time dependence

j±(t) = j±(0)e±it. (276)

Similarly Γ± iB has an exponential time dependence.

7.6. Expressing the Schrodinger Equation in Terms of the Generators of SO(4,2)

We can write the Schrodinger equation for the energy eigenstate En = −a2
n/2m of a particle in

a Coulomb potential in terms of the SO(4,2) generators, which are expressed in terms of the energy
−a2/2m, by making a scale change. From Section 4.3, Equation (114), the relationship between the
Schrodinger energy eigenstate |nlm〉 and the eigenstate of (Zα)−1 is:

|nlm; a) = e−iSλn
√

ρ(an)|nlm〉 (277)
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where
eλn =

an

a
ρ(an) =

n
anr

. (278)

Substituting Equation (277) into the eigenvalue equation Equation (253) for |nlm; a) and
employing the transformation Equation (273), we find the usual Schrodinger equation can be expressed
in SO(4,2) terms as

(Γn− n)
√

ρ(an)|nlm〉 = 0 (279)

where
Γn ≡ ΓAnA = Γ0n0 + Γini + Γ4n4 (280)

no = cosh λn =
a2 + a2

n
2aan

, ni = 0, n4 = − sinh λn =
a2 − a2

n
2aan

(281)

and nAnA = n2
4 − n2

0 = −1.
Equation (279) expresses Schrodinger’s equation for an ordinary energy eigenstate |nlm〉 with

energy EN = −a2
n/2m in the language of SO(4,2). It shows the relationship between these energy

eigenstates and the basis states of (Zα)−1 used for the SO(4,2) representation,

8. SO(4,2) Calculation of the Radiative Shift for the Schrodinger Hydrogen Atom

In the 1930’s, it was generally believed that the Dirac equation predicted the energy levels of
the hydrogen atom with excellent accuracy, but there were some questions about the prediction that
the energy levels for a given principal quantum number and given total angular momentum were
independent of the orbital angular momentum. To finally resolve this issue, in 1947, Willis Lamb and
his student Robert Retherford at Columbia University in New York City employed rf spectroscopy and
exploited the metastability of the hydrogen 2s1/2 level in a beautiful experiment and determined that
the 2s1/2 and 2p1/2 levels were not degenerate and that the energy difference between the levels was
about 1050 MHz, or 1 part in 106 of the 2s1/2 level [5,148]. Shortly thereafter Hans Bethe [6] published
a ground breaking nonrelativistic quantum theoretical calculation of the shift assuming it was due
to the interaction of the electron with the ground state electromagnetic field of the quantum vacuum
field. This radiative shift accounted for about 96% of the measured shift. The insight that one needed
to include the interaction of the atom with the vacuum fluctuations and how one could actually do it
ushered in the modern world of quantum electrodynamics [7]. Here, we compute in the non-relativistic
dipole approximation and to first order in the radiation field, as did Bethe, the radiative shift, but we
use group theoretical methods based on the SO(4,2) symmetry of the non-relativistic hydrogen atom
as developed in this paper. Bethe’s calculation required the numerical sum over intermediate states to
obtain the average value of the energy of the states contributing to the shift. In our calculation, we do
not use intermediate states, and we derive an integral equivalent to Bethe’s log, and more generally
derive the shift for all levels in terms of a double integral.

An expression for the radiative shift ∆NL for energy level EN of a hydrogen atom in a state
|NL〉 can be readily obtained using second order perturbation theory (to first order in α the radiation
field) [6,149–151]

∆NL =
2αc

3πm2

s

∑
n

∫ ωc

0
dω

(En − EN)〈NL|pi|n〉〈n|pi|NL〉
En − EN + ω− iε

, (282)

where ωC is a cutoff frequency for the integration that we will take as ωc = m.
This expression, which is the same as Bethe’s, has been derived by inserting a complete set of

states |n〉〈n|, a step that we eliminate with our group theoretical approach:

∆NL =
2α

3πm2

∫ ωc

0
dω〈NL|pi

H − E
H − (E−ω)− iε

pi|NL〉 (283)
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If we add and subtract ω from the numerator, we find the real part of the shift is

Re∆NL =
2α

3πm2 Re
∫ ωc

0
dω[〈NL|p2|NL〉 −ωΩNL] (284)

where
ΩNL = 〈NL|pi

1
H − EN + ω− iε

pi|NL〉 (285)

and

H =
p2

2m
− Zα

r
. (286)

The imaginary part of the shift gives the width of the level [7].
The matrix element ΩNL can be converted to a matrix element of a function of the generators

ΓA taken between eigenstates |nlm) of (Zα)−1. To do this we insert factors of 1 =
√

r 1√
r and use the

definitions of the ΓA in terms of the canonical variables, Equations (254)–(256). Letting the parameter a
take the value aN , we obtain the result

ΩNL =
mν

N2 (NL|Γi Γn(ξ)− ν
Γi|NL) (287)

where
n0(ξ) =

2 + ξ

2
√

1 + ξ
= cosh φ ni = 0 n4(ξ) = − ξ

2
√

1 + ξ
= − sinh φ (288)

and
ξ =

ω

|EN |
ν =

N√
1 + ξ

= Ne−φ. (289)

From the definitions we see φ = 1
2 ln(1 + ξ) > 0 and nA(ξ)nA(ξ) = −1. The quantity

ν =
mZα√

−2m(EN −ω)

may be considered the effective principal quantum number for a state of energy EN − ω.
The contraction over i in ΩNL may be evaluated using the group theoretical formula Equation (250):

ΩNL = −2
mν2

N2

∫ ∞

0
dseνs d

ds

(
sinh2 s

2
MNL(s)

)
−m

ν

N2 (NL|Γ4
1

Γn(ξ)− ν
Γ4|NL) + m

ν

N2 (NL|Γ0
1

Γn(ξ)− ν
Γ0|NL)

(290)

where
MNL(s) = (NL|e−Γn(ξ) s|NL). (291)

In order to evaluate the last-two terms in ΩNL, we can express the action of Γ4 on our states in
terms of Γn(ξ)− ν. Substituting the equation

Γ0|NL) = N|NL) (292)

into the expression for Γn(ξ)− ν, with n(ξ) given by Equation (288), gives

Γ4 = N −
(

1
sinh φ

)
(Γn(ξ)− ν) (293)
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when acting on the state |NL). If we substitute Equation (293) into the expression for the Re∆ENL
Equation (284) and simplify using the virial theorem

(NL|p2|NL) = a2
N

we find that the term in p2 exactly cancels the last two terms in ΩNL, yielding the result

Re∆ENL =
4mα(Zα)4

3πN4

∫ φc

0
dφ sinh φeφ

∫ ∞

0
ds eνs d

ds

(
sinh2 s

2
MNL(s)

)
(294)

where

φc =
1
2

ln
(

1 +
ωc

|EN |

)
=

1
2

ln
(

1 +
2N2

(Zα)2

)
(295)

and ωc = m.
Comparison to the Bethe Logarithm
The first order non-relativistic radiative shift is commonly given in terms of the Bethe

logarithm γ(N, L), which is interpreted as the average over all states, including scattering states,
of ln |En−EN |

1
2 m(Zα)2 [149] :

γ(N, L)∑S
n (En − EN) 〈N0 |pi| n〉 〈n |pi|N0〉

= ∑S
n (En − EN) 〈NL |pi| n〉 〈n |pi|NL〉 ln |En−EN |

1
2 m(Zα)2

. (296)

We use the dipole sum rule [150]

2
s

∑
n
(En − EN) 〈N |pi| n〉 〈n |pi|N〉 = −

〈
N
∣∣∣∇2V

∣∣∣N
〉

(297)

and apply it for the Coulomb potential∇2V(r) = 4πZαδ(r). The use of the Bethe log allowed Bethe to
take the logarithmic expression obtained from the frequency integration outside the summation over
the states, and replace it with the average value. Only the S states contribute to the expectation value
in Equation (297), giving, from Equation (282), an expression for the shift

Re ∆ENL =

[
4m
3π

α(Zα)4
]

1
N3

{
δL0 ln

2
(Zα)2 − γ(N, L)

}
. (298)

Comparing the shift in terms of MNL Equation (294) to the shift in terms of γ(N, L) we find that
the Bethe log is

γ(N, L) =
∫ φc

0
dφ sinh φ eφ

∫ ∞

0
ds eνs d

ds

(
sinh2 s

2
MNL(s)

)
− δL0ln

1
(Zα)2 (299)

8.1. Generating Function for the Shifts

We can derive a generating function for the shifts for any eigenstate characterized by N and L if
we multiply Equation (291) by N4eβ N and sum over all N, N ≥ L + 1. To simplify the right side of the
resulting equation, we use the fact that the O(2,1) algebra of Γ0, Γ4, and S closes. We can compute the
sum on the right hand side:

∞

∑
N=L+1

e−βN MNL =
∞

∑
N=L+1

(NL|e−j·ψ|NL). (300)

where
e−j·ψ ≡ e−βΓ0 e−sΓn(ξ). (301)
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We perform a j transformation, such that

e−j·ψ → e−j3ψ = e−Γ0ψ (302)

so
∞

∑
N=L+1

e−βN MNL =
∞

∑
N=L+1

(NL|e−j3ψ|NL) =
∞

∑
N=L+1

e−Nψ (303)

=
e−ψ(L+1)

1− e−ψ . (304)

In order to find a particular MNL, we must expand the right hand side of the equation in powers
of e−β and equate the coefficients to those on the left hand side. First, we need an equation for e−ψ.
This can be obtained using the isomorphism between j and the Pauli σ matrices:

(Γ4, S, Γ0)→ (j1, j2, j3)→ (
i
2

σ1,
i
2

σ2,
1
2

σ3) (305)

Using the formula

e
i
2 sn·σ = cos

s
2
+ in · σ sin

s
2

(306)

where |n| = 1, we find

cosh
ψ

2
= cosh

β

2
cosh

s
2
+ sinh

β

2
sinh

s
2

cosh φ. (307)

We can rewrite this equation in a form easier for expansion

e+
1
2 ψ = de

1
2 β + be−

1
2 β − e−

1
2 ψ (308)

where
d = cosh s

2 + sinh s
2 cosh φ

b = cosh s
2 − sinh s

2 cosh φ
. (309)

Let β become very large and iterate the equation for e−
1
2 ψ to obtain the result

e−ψ = Ae−β
[
1 + A1e−β + A2e−2β + . . .

]
(310)

where
A = A0 =

1
d2

A1 = −
(

2
d

)(
b− d−1

)
A2 = 3d−2

(
b− d−1

)2
− 2−2

(
b− d−1

)
...

(311)

Note b− d−1 = −d−1 sinh2 s
2 sinh2 φ.

8.2. The Shift between Degenerate Levels

Expressions for the energy shift between degenerate levels with the same value of N may be
obtained directly from the generating function using Equations (294) and (304). We find

∑
N=L+1

e−βN N4 Re ∆ENL −
∞

∑
N=L′+1

e−βN N4 Re ∆ENL′ =
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4mα(Zα)4

3π

∫ φc

0
dφeφ sinh φ

∫ ∞

0
dseνs d

ds

(
sinh2 s

2
e−ψ(L+1) − e−ψ(L′+1)

1− e−ψ

)
. (312)

For an example, consider L = 1, L′ = 0. For the shifts between levels we obtain

∞

∑
N=2

e−βN N4 Re (∆ENO − ∆EN1) + Re ∆E10 e−β =

4mα(zα)4

3π

∫ φc

0
dφ eφ sinh φ

∫ ∞

0
dseνs d

ds

(
sinh2 s

2
e−ψ

)
(313)

Substituting Equation (310) for e−ψ, using the coefficient AAN−1 of e−Nβ, gives

Re(∆EN0 − ∆EN1) =
4mα(Zα)4

3πN4

∫ φc

0
dφeφ sinh φ

∫ ∞

0
dseνs d

ds

(
sinh2 s

2
AAN−1

)
. (314)

where A and AN−1 are given in Equation (311) in terms of the variables of integration s and φ.
General Expression for MNL
Once we have a general expression for MNL, we can use Equation (294) to calculate the shift for any

level ENL. We can obtain expressions for the values of MNL by letting β become large, expanding the
denominator in Equation (304) and equating coefficients of powers of e−β. For large β, we have large
ψ. We have

e−ψ(L+1)

1− e−ψ =
∞

∑
m=1

e−ψ(m+L)

and for large β it follows from Equation (310) that

∞

∑
N=L+1

e−βN MNL =
∞

∑
m=1

[
e−β A

(
1 + A1e−β + . . .

)]m+L
. (315)

Using the multinomial theorem [124], the right side of the equation becomes

∞

∑
m=1

Am+L ∑
r,s,t,...

(m + L)!
r!s!t! . . .

A1
s At

2 . . . e−β(m+L+s+2t+...). (316)

where r + s + t + ... = m + L.
To obtain the expression for MNL, we note N is the coefficient of β so N = m + L + s + 2t + ... =

r + 2s + 3t + ... Accordingly we find

MNL = ∑
r,s,t,...

A(r+s+t+...) (r + s + t + . . .)!
r!s!t! . . .

As
1 At

2 . . . (317)

where r + 2s + 3t + . . . = N and r + s + t + . . . >L.
By applying this formula, we obtain the results:

N = 1:
M10 = A (318)

N = 2:
M20 = A2 + AA1

M21 = A2 (319)

Shifts for N = 1 and N = 2
To illustrate these results, we can calculate the shift for a given energy level using Equation (294).

For N = 1, we note from Equation (318) that M10 = A, and from Equation (311) that A = 1/d2.
We find that the real part of the radiative shift for the 1S ground state is
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Re∆E10 =
4mα(Zα)4

3π

∫ φc

0
dφeφ sinh φ

∫ ∞

0
dsese−φ d

ds
1(

coth s
2 + cosh φ

)2 (320)

For the shift between two states Equation (314) can be used. For the N = 2 Lamb shift between
2S-2P states, the radiative shift to first order in α is

Re(∆E20 − ∆E21) =
mα(Zα)4

6π

∫ φc

0
dφeφ sinh3 φ

∫ ∞

0
dse2se−φ d

ds
1(

coth s
2 + cosh φ

)4 (321)

The s integral can be computed in terms of a Jacobi function of the second kind [127].
As one check on our group theoretical methods, we can compare our matrix elements (10|eiSφ|n0)

with those of Huff [45]. To go from Equation (301) to Equation (302), we did a rotation R(φ) = eiφS

generated by S that transformed Γn into Γ0. For N, L = 1, 0 we have

M10 = (10|e−Γns|10) = (10|R(φ)e−Γ0sR−1(φ)|10) =
1

(cosh s
2 + sinh s

2 cosh φ)2 (322)

Expanding the hyperbolic functions, we get

M10 =
4e−s

(1 + cosh φ)2

[
1− e−s tanh2 s

2

]−2

=
4

(1 + cosh φ)2

∞

∑
n=1

ne−ns
(

tanh2 φ

2

)n−1
. (323)

We can also compute M10 by inserting a complete set of states and using Γ0|n0) = n|n0) in
Equation (322). Because the generator S is a scalar, only states with L = 0, m = 0 can contribute:

M10 = ∑
nlm

e−ns|n(10|R(φ)|n0)|2. (324)

Comparing this to Equation (323), we make the identification

|(10|R(φ)|n0)|2 =
4n

(1 + cosh φ)2

(
tanh2 φ

2

)n−1
. (325)

Huff computes this matrix element by analytically continuing the known O(3) matrix element of
ei Jyφ obtaining

|〈10|R(φ)|n0〉|2 =
4n

cosh2 φ− 1

(
tanh2 φ

2

)n
· [2F1(0,−1; n;

1
2
(1− cosh φ))]2. (326)

By algebraic manipulation and using 2F1 = 1 for the arguments here, we see that this result agrees
with our much more simply expressed result from group theory.

9. Conclusions and Future Research

Measuring and explaining the properties of the hydrogen atom has been central to the
development of modern physics over the last century. One of the most useful and profound
ways to understand its properties is through its symmetries, which we have explored in this paper,
beginning with the symmetry of the Hamiltonian, which reflects the symmetry of the degenerate
levels, then the larger non-invariance and spectrum-generating groups, which include all of the states.
The successes in using symmetry to explore the hydrogen atom led to use of symmetry to understand
and model other physical systems, particularly elementary particles.
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The hydrogen atom will doubtless continue to be one of testing grounds for fundamental
physics. Researchers are exploring the relationship between the hydrogen atom and quantum
information [152], the effect of non-commuting canonical variables [xi, xj] 6= 0 on energy
levels [153–155], muonic hydrogen spectra [156], and new physics using Rydberg states [157–162].
The ultra high precision of the measurement of the energy levels has led to new understanding of
low Z two body systems, including muonium, positronium, and tritium [151]. As mentioned in the
introduction, measurements of levels shifts are currently being used to measure the radius of the
proton [2]. We can expect that further investigations of the hydrogen atom and hydrogenlike atoms will
continue to reveal new vistas of physics and that symmetry considerations will play an important part.
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as we prefer to do the necessary calculations in terms of commutators rather than Poisson brackets, we defer
these considerations to Section 4. There we show that the generator Li rotates Û about the i− 4 plane; the
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