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Abstract: Confronted with the increasingly serious water pollution in China, companies are
implementing scientific measures to strive for sustainable drinking water source regions (DWSRs).
The challenge lies in how to evaluate available DWSRs. Considering the complexity and uncertainty
existing in the evaluation process, we deem this process a complicated multi-criteria group
decision-making (MCGDM) problem. It involves fuzzy decision information, prioritized relationships
among different criteria, and distinctively allocated weights of decision makers regarding different
alternatives. By utilizing the asymmetrical weak probabilistic hesitant fuzzy elements (P-HFES) to
depict fuzzy data, this paper leads a direction to investigating a data-driven MCGDM approach and
its application to evaluate available DWSRs. First, considering the common sense that criteria are
not always given symmetrical priority, we propose a series of aggregation operators for integrating
weak P-HFEs by including the prioritized relationship of criteria. Moreover, the importance
weights of criteria and decision makers are objectively determined through a priority-based basic
unit interval and monotonic (P-BUM) function and some novel distance measures, respectively.
Finally, an evaluation approach is established. It aims to handle MCGDM problems with incomplete
weight information regarding the criteria and decision makers in weak probabilistic hesitant fuzzy
circumstance. Practically, focusing on evaluating three DWSRs, a realistic example of application is
furnished to verify the feasibility of the proposed approach.

Keywords: multi-criteria group decision making; weak probabilistic hesitant fuzzy element;
aggregation; data-driven; distance measure; sustainable drinking water source region

1. Introduction

Along with the rapid development of the society, the problem of water pollution in China has
become increasingly serious. Influenced by this phenomenon, the safety of drinking water is of great
concern. Water source selection is one of the preventive measures to ensure the safety and hygiene of
drinking water for residents [1]. Meanwhile, as China has become the largest consumer of bottled
water, selecting an appropriate drinking water source region (DWSR) is also a challenge to companies
when supporting the supply of drinks. Therefore, it is essential and practical to study how to select
suitable DWSRs, which raises a complex decision-making problem that would always encounter
uncertainty in an realistic decision environment. To address this issue, we concentrate on developing
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an evaluation approach for selecting available DWSRs from the angle of companies by answering
several research questions:

(1) Is it possible to accurately represent the contradictory evaluation results for DWSRs given by
different decision makers?

(2) As distinctive criteria are not equal and asymmetrically prioritized in terms of different decision
makers’ preferences, how to generate weights of criteria?

(3) How to distinguish different decision makers with respect to different alternatives?
(4) How to fuse distinctive assessments of DWSRs without complaints, which may lead to the decline

of decision efficiency?

Responding to these points, our research deals with multi-criteria group decision-making
(MCGDM) problems defined in weak probabilistic hesitant fuzzy contexts and unknown weight
information on the premise of an asymmetrical prioritization of criteria. The contributions of this
study are:

(1) Information presentation. Differing from most MCGDM problems [2], the individual decision
maker considered in this paper is not referred to an individual person, but an individual group.
Actually, there are some available extensions of fuzzy sets that are capable of describing the decision
information supplied by individual groups, such as probabilistic linguistic term sets [3] and picture
fuzzy sets [4]. However, these sets are always defined to present complete information or are not able
to show probabilistic information. Hence, considering the ability of weak probabilistic hesitant fuzzy
elements (P-HFEs) for expressing distinctive opinions in a set and allowing incomplete probabilistic
information, it is quite appropriate to use weak P-HFEs to express the opinions of each individual group.

(2) Weight generation function. In light of the asymmetrically prioritized relationship between
criteria, we are going to extend the classical prioritized aggregation operators [5] to fuse criteria values
regarding each alternative given by each group. Meanwhile, the prioritization given by each group will
be utilized in a newly introduced priority-based basic unit interval and monotonic (P-BUM) function,
to yield the importance weights of different criteria with respect to different alternatives.

(3) Information measurements. Commonly, large distance is in correspondence to little
consensus [6,7]. Given that the numbers of the elements in different weak P-HFEs are not equal,
this paper will introduce a series of Hausdorff distance measures to measure the distinction among
different groups. Based on this, the weights of different groups under different alternatives will
be generated.

(4) Information fusion. Generally speaking, aggregation operators are powerful tools to integrate
the information derived from individuals in one group [8]. To synthesize distinctive opinions, a series
of aggregation operators, which can be divided into two branches, will be developed. One branch
contains two prioritized aggregation operators, aiming to fuse criteria values for alternatives. The other
branch is to integrate group assessments by inserting the relationship between different groups into
the extension of the classical induced ordered weighted averaging (IOWA) operator, which considers
the special ability of an inducing variable.

(5) Approach development. A hybrid evaluation approach will be developed to handle an
existing problem for evaluating DWSRs, which contains positive and negative decision information
and incomplete weight information.

The rest of this paper is arranged as follows. In Section 2, a review of extant studies is presented.
In Section 3, the weak P-HFEs with its operations and comparisons, as well as some aggregation
operators are reviewed. Moreover, the innovative operators, which cover the previously defined
two aggregation phases, are introduced. Moreover, a supported P-BUM function and a family of
generalized Hausdorff distance measures are put forward. In Section 4, the background of the MCGDM
problem being tackled in this paper and the corresponding solving approach are presented. In Section 5,
an example of application regarding the evaluation for DWSRs is furnished. In Section 6, discussions
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including the findings of the experiment and comparisons are illustrated. In Section 7, conclusions
are drawn.

2. Literature Review

Initiated by Zadeh [9], the fuzzy set is a powerful tool to represent uncertain information.
During the last decades, it has been extended to various forms to accommodate complex and vague
decision environments. These extended forms can be roughly captured by two branches: numeric
and linguistic. Despite the success of a series improvement of the linguistic decision making [10–13],
this has ignored the distortion of the original information because it usually requires some tools
(the cloud model [14], linguistic scale function [15], the transformation function [16,17], etc.) to make
the linguistic values calculable. Bearing this in mind, we intend to manage MCGDM problems with
numeric values when there are uncertainties expressed by the weak P-HFEs, which can be deemed as
an important extension of numeric fuzzy settings. Weak P-HFEs [18], including a hesitant fuzzy set [19]
and corresponding probabilities, is a direct extension of the probabilistic hesitant fuzzy elements
(P-HFEs) [20]. Despite the common advantage of these two sets for simultaneously representing positive
and negative information, the weak P-HFEs further considered the incompleteness of probabilistic
information. It is this idea that allows us to measure the degree of membership degree with its
probabilities in realistic situations. Although there is some similar characteristics between weak P-HFSs
and PHFSs, they differ from each other in the development of solving realistic problems. As to the
PHFS, it has awakened high interest among the researchers [21–23], due to its ability to enrich the
flexibility of expressing real-world decision information. Compared with the development of PHFSs
and to the best of our knowledge, there is not a huge amount of literature reporting studies about the
weak P-HFEs. This is possibly because the weak P-HFEs were newly introduced as a notable concept.
To enhance and spread the applicability of weak P-HFEs, this paper will investigate MCGDM problems
with weak probabilistic hesitant fuzzy information.

In general, the majority of selection issues contain fuzzy information and groups of decision
makers, which are always addressed as MCGDM problems. Water source selection is an environmental
process that is always concerned with the application of multi-criteria decision problems [24]. As a rule
of thumb, when the decision makers involved in a decision process are no less than one, the multi-criteria
decision converts to an MCGDM process. Furthermore, an MCGDM problem usually includes the
fusion of decision information. For this, aggregation operators turn out to be an effective and powerful
tool since they are so intuitive to fuse individual information by consideration of importance weights.
Until now, a majority of distinctive aggregation operators are developed. Aiming to suit the MCGDM
problem in this paper, the comprehensive assessments of each alternative as well as the overall opinions
of all decision makers ought to be derived. As such, we define the fusion process into two phases,
which are respectively in need of two types of aggregation operators:

(1) In terms of the synthesis of criteria values, we define the first fusion phase to be in accordance
with the phenomenon of the prioritization between criteria, which appears frequently in real-life
decision environments. To support this process, there are two fundamental issues to be solved:
determining the weights and developing the operator. Nevertheless, early efforts in figuring out
the incomplete weight information of criteria did not consider the prioritization relationship of
criteria [25–29]. Oppositely, the prioritized average operators have absorbed not a few academic
concentrations, including the prioritized aggregation operator [5], the prioritized ordered weighted
averaging operator (POWA) [30], and their extensions [31–34]. Thus, the combination of the generation
technique of objective weights for criteria and prioritized aggregation operators has some benefits in
finding solutions to realistic decision-making problems.

(2) From the perspective of integrating individual opinions, we define the second fusion
phase, which could reflect the relationship between individuals with respect to different alternatives.
To accomplish this phase, a family of the IOWA operators [35] proves to be a suitable tool. This is
because the necessary inducing variables could represent the relationship between argument variables.
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Following this idea, the extension of the IOWA operator to the weak probabilistic hesitant fuzzy
environment poses a challenge as to how to determine the inducing variable. Undoubtedly, distance
is a good choice. Measuring the distance between different objects is a useful way to manifest the
relationship between them. To support this, the last decades have witnessed a lot of studies on different
distance measures, such as the Hamming distance, the Euclidean distance, the Hausdorff distance,
the Hybrid distance, the entropy-based distance, and the ordered weighted distance measure [28,36–38].
Except for the Hausdorff distance, the others all demand that the length of the compared objects should
be the same. To some extent, this requirement may not be possible under a weak probabilistic hesitant
fuzzy environment, due to the uncertainty expressed through the weak P-HFEs.

3. Related Works

This section firstly reviews some basic concepts related to the decision data in this paper.
Furthermore, we discuss the extension of prioritized aggregation operators to weak probabilistic
hesitant fuzzy environments. To complete the aggregation, a P-BUM function is established.
Then, by considering the relationship between weak P-HFEs, we put forward a generalized aggregation
operator, which is quantified by the introduction of a family of generalized Hausdorff distances.

3.1. Weak Probabilistic Hesitant Fuzzy Elements

Definition 1. [18]. Let A be a fixed set. A weak P-HFE is defined in terms of a function that, when applied to A,
returns to a subset of [0, 1] and is mathematically expressed as:

H =
{ 〈

a, ha(pa)
〉∣∣∣a ∈ A

}
, (1)

where the values in both of the two sets ha and pa are lying in the range of [0, 1].

To be specific, the symbol ha refers to some possible membership degrees of a ∈ A to the set H.
Accordingly, pa stands for the associated possibilities with ha.

For convenience, h(p) =
{
τt(pt)|t = 1, 2, . . . , #h(p)

}
is called a weak P-HFE, in which τt(pt) is

defined as one of the # h terms in the weak P-HFE and
∑#h(p)

t=1 pt ≤ 1.

Definition 2. [18]. Let hl(p) =
{
τtl(ptl)|tl = 1, 2, . . . , #hl (p)

}
(l = 1, 2) be two arbitrary weak P-HFEs and

α > 0, then

(1) αhl(p) = ∪
τtl∈hl

{
[1− (1− τtl)

α](ptl)
}
;

(2) (hl(p))
α = ∪

τtl∈hl
(τtl)

α(ptl)
}
;

(3) h1(p) ⊕ h2(p) = ∪
τtl∈hl

[τt1 + τt2 − τt1τt2 ]

 pt1 ·pt2∑#h1(p)
t1=1 pt1 ·

∑#h2(p)
t2=1 pt2


; and

(4) h1(p) ⊗ h2(p) = ∪
τtl∈hl

[τt1τt2 ]

 pt1 ·pt2∑#h1(p)
t1=1 pt1 ·

∑#h2(p)
t2=1 pt2


.

As to any fuzzy setting, comparison is imperative. In this paper, we adopt the following definition
to compare any two weak P-HFEs.

Definition 3. [18] For a weak P-HFE h(p) =
{
τt(pt)|t = 1, 2, . . . , #h(p)

}
, its score and deviation degree are

defined as:

µ(h(p)) =

∑#h(p)
t=1 τtpt∑#h(p)

t=1 pt

, (2)
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ν(h(p)) =

∑#h(p)
t=1 (pt(τt − µ))

2∑#h(p)
t=1 pt

. (3)

Then, based on Equations (2) and (3), the comparison rules of two weak P-HFEs hl(p) ={
τtl(ptl)|tl = 1, 2, . . . , #hl (p)

}
(l = 1, 2) can be summarized below.

(1) If µ(h1(p)) > µ(h2(p)), then h1(p) > h2(p);
(2) If µ(h1(p)) < µ(h2(p)), then h1(p) < h2(p);
(3) If µ(h1(p)) = µ(h2(p)), then three situations exist:

1) If ν(h1(p)) > ν(h2(p)), then h1(p) < h2(p);
2) If ν(h1(p)) < ν(h2(p)), then h1(p) > h2(p);
3) If ν(h1(p)) = ν(h2(p)), then h1(p) = h2(p).

3.2. Prioritized Aggregation Operators

This subsection reviews some prioritized aggregation operators to facilitate further studies.

Definition 4. [5] Let C = (c1, c2, . . . , cm) be a finite set of m criteria. The prioritization of these criteria
is mathematically predefined with a linear ordering c1 � c2 � · · · � cm, which implies that the priority
of criterion c j becomes lower with the increase in the subscript of c j. Assume c j(x)(c j(x) ∈ [0, 1]) is the
assessment value of an arbitrary alternative xi over c j, then the prioritized average (PA) operator is defined with
the following form:

PA(c j(x)) =
∑m

j=1
w jc j(x), (4)

where w j =
u j∑m

j=1 u j
with u j =

∏ j−1
j′=1 c j′(x) and u1 = 1.

To enforce the necessity of the prioritization between criteria, Yager [30] further put forward
the POWA operator, which is originated from the idea of the normalized priority-based importance
degrees and the BUM function [39].

Definition 5. [30]: Let F be a BUM function and ω = (ω1,ω2, . . . ,ωm) be the weight vector of criteria,
then the POWA operator is mathematically defined as:

POWA(c j(x)) =
∑m

j=1
ω jc( j)(x), (5)

where the BUM function should satisfy F : [0, 1]→ [0, 1] , F(0) = 0 and F(1) = 1, and ω j = F(w( j)) −

F(w( j−1)), in which the value of c( j)(x) ranks as the jth largest among c j(x)( j = 1, 2, . . . , m).

3.3. Prioritized Weak Probabilistic Hesitant Fuzzy Weighted Averaging Operator

Motivated by the fundamental concepts of prioritized aggregation operators, this subsection
introduces the prioritized weak probabilistic hesitant fuzzy weighted average (PWPHFWA) operator.

Definition 6. Let C = (c1, c2, . . . , cm) be a finite set of m criteria, which are partitioned by a prioritization
c1 � c2 � · · · � cm, and assume c j(x) =

{
τt j(pt j)

∣∣∣t j = 1, 2, . . . , #c j (x)
}
(l = 1, 2, . . . , m) is m weak P-HFEs

representing the assessment value of an arbitrary alternative x over c j. The PWPHFWA operator is an aggregation
function with

PWPHFWA
(
c j(x)

)
=

∑m

j=1
w j · c j(x), (6)

where
w j =

s j∑m
j=1 s j

, (7)
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being 
s1 = 1

s j =
∏ j−1

k=1

∑#hk(p)
tk=1 τtk ·ptk∑#hk(p)

tk=1 ptk

, f or k = 2, 3, . . . , m
. (8)

Obviously, during the calculation of the weights of criteria, the probabilities are normalized and
newly distributed. To some extent, this process avoids the ignorance of probabilistic information.
In other words, this conforms to the habit of human beings that the sum of importance weights should
be equal to 1.

To better understand the PWPHFWA operator, a practical example is illustrated below.

Example 1. Let the prioritized relationship of four criteria be c1 � c2 � c3 � c4. Assume the criteria values for an
alternative is c1(x) =

{
0.6(0.4), 0.7(0.3)

}
, c2(x) =

{
0.4(0.2), 0.5(0.5), 0.6(0.1)

}
, c3(x) =

{
0.8(0.7), 0.9(0.3)

}
,

and c4(x) =
{
0.55(0.6), 0.65(0.2)

}
.

As per Equation (8), we have s1 = 1, s2 = 0.6429, s3 = 0.3134, and s4 = 0.2601. Afterwards,
from these results and according to Equation (7), we have w1 = 0.4512, w2 = 2901, w3 = 0.1414,
and w4 = 0.1173. Then, utilizing Equation (6), one can obtain:

c(x) = PWPHFWA
(
c j(x)

)
=

∑4
j=1 w j · c j(x)

=

{
0.3386(0.4),
0.4191(0.3)

}
⊕


0.1377(0.2),
0.2929(0.5),
0.2334(0.1)

⊕
{

0.2035(0.7),
0.2779(0.3)

}
⊕

{
0.0894(0.6),
0.1159(0.2)

}

=



0.5864(0.075), 0.5984(0.025), 0.625(0.0322), 0.6359(0.0107), 0.6608(0.1875),
0.6707(0.0625), 0.6925(0.0803), 0.7014(0.0268), 0.6323(0.0375), 0.6431(0.0125),
0.6649(0.0161), 0.6747(0.0053), 0.6231(0.0563), 0.6329(0.0187), 0.6706(0.0241),
0.6802(0.008), 0.7021(0.1406), 0.7107(0.0469), 0.7092(0.0603), 0.738(0.0201),
0.677(0.0281), 0.6864(0.0094), 0.7072(0.0121), 0.7157(0.004)


From this numeric example, the resulted criteria weights show their accordance with the predefined

prioritization of criteria, and illustrate that the frontal prioritized criteria cannot be compensated by
the posteriori ones.

Theorem 1. The aggregated value by the PWPHFWA operator is still a weak P-HFE.

It is obvious that this theorem always holds, so the proof is omitted here.

Theorem 2. The probabilistic information in the aggregated value by the PWPHFWA operator is completed, i.e.,
the sum of the associated probabilistic values equals to 1.

Proof. As per Equations (7)–(8), the original probabilistic information existing in each criterion value,
which may not be coincident with human habits that the sum of the probabilistic values should be 1,
is normalized by a division operation. Undoubtedly, this design firmly supports the establishment of
Theorem 2. �

Frankly speaking, the PWPHFWA operator does not possess the properties of idempotency,
monotonicity and boundary. This conclusion can be drawn from an analysis that the addition between
two identical weak P-HFEs would not result in the same value like other settings. Nevertheless,
the commutative law of the PWPHFWA operator can be elucidated in the following theorem.
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Theorem 3. Let C′ = (c′1, c′2, . . . , c′m) be an arbitrary permutation of C = (c1, c2, . . . , cm). Denote the
prioritization of the permutated m criteria as c′1′ � c′2′ � · · · � c′m′ , where c′ j′( j = 1, 2, . . . , m) are, respectively,

in the same position with c j( j = 1, 2, . . . , m). Suppose c′ j(x) =
{
τ′t j(p

′
t j
)
∣∣∣t j = 1, 2, . . . , #c′ j (x)

}
(l =

1, 2, . . . , m) are m weak P-HFEs representing the assessment value c′ j, then:

PWPHFWA
(
c j(x)

)
= PWPHFWA

(
c′ j(x)

)
, (9)

where c′ j′( j = 1, 2, . . . , m) refer to the prioritized criteria of c′ j( j = 1, 2, . . . , m).

Remark. For the sake of the prioritized positions being predefined for every criterion, the new prioritization
c′1′ � c′2′ � · · · � c′m′ totally equates to the original prioritization c1 � c2 � · · · � cm. In other words, whatever
the permutation of the finite criteria is, the prioritization of the distinctive criteria is fixed.

Proof. Obviously, since the permutation does not influence the prioritized ranking of the criteria,
the weight information of the permutated criteria is entirely the same as that of the original ranked
criteria. Therefore, the aggregation results of PWPHFWA

(
c j(x)

)
and those of PWPHFWA

(
c′ j(x)

)
would be the same. That is to say, Theorem 3 always holds. �

3.4. Prioritized Weak Probabilistic Hesitant Fuzzy Ordered Weighted Averaging Operator

To strengthen the power of the prioritization imperative, this subsection further proposes the
prioritized weak probabilistic hesitant fuzzy ordered weighted averaging (PWPHFOWA) operator
as follows.

Definition 7. Let F be a BUM function and C = (c1, c2, . . . , cm) be a fixed set of m criteria with an associated
prioritization c1 � c2 � · · · � cm. Suppose c j(x) =

{
τt j(pt j)

∣∣∣t j = 1, 2, . . . , #c j (x)
}
(l = 1, 2, . . . , m) is m weak

P-HFEs representing the assessment value of an arbitrary alternative x over c j, then the PWPHFOWA operator
is defined with the mathematical expression:

PWPHFOWA
(
c j(x)

)
=

∑m

j=1
ω j · c( j)(x), (10)

where the BUM function satisfies F : [0, 1]→ [0, 1] , F(0) = 0 and F(1) = 1, and ω j = F(w( j))− F(w( j−1)) in
which the value of c( j)(x) ranks as the jth largest among c j(x)( j = 1, 2, . . . , m). In other words, : {1, 2, . . . , m} →
{1, 2, . . . , m} is a permutation such that c( j)(x) ≥ c( j+1)(x), for ∀ j = 1, 2, . . . , m− 1.

Theorem 4. The aggregated value by the PWPHFOWA operator is still a weak P-HFE.

It is obvious that this theorem always holds, so the proof is omitted here.

Theorem 5. The probabilistic information in the aggregated value by the PWPHFOWA operator is completed,
i.e., the sum of the associated probabilistic values equals 1.

Similar to Theorem 2, this theorem can be easily proved.

Theorem 6. Let C′ = (c′1, c′2, . . . , c′m) be an arbitrary permutation of C = (c1, c2, . . . , cm). Denote the
prioritization of the permutated m criteria as c′1′ � c′2′ � · · · � c′m′ , where c′ j′( j = 1, 2, . . . , m) are, respectively,

in the same position with c j( j = 1, 2, . . . , m). Assume c′ j(x) =
{
τ′t j(p

′
t j
)
∣∣∣t j = 1, 2, . . . , #c′ j (x)

}
(l =

1, 2, . . . , m) is m weak P-HFEs representing the assessment value c′ j, then:
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PWPHFOWA
(
c j(x)

)
= PWPHFOWA

(
c′ j(x)

)
, (11)

where c′ j′( j = 1, 2, . . . , m) refer to the prioritized criteria of c′ j( j = 1, 2, . . . , m).

Proof. On one hand, from the definition of the PWPHFOWA operator, the reordered sequence of the
criteria is determined by the original criteria values, so this variable would not be affected by the
permutation of the criteria. On the other hand, the importance weights of the criteria are dependent on
the BUM function and the normalized priority-based importance degrees derived from the priorities
of the criteria. Clearly, this does not have any connection with the permutation of the criteria yet.
Thereby, the proof of Theorem 6 is completed. �

In this PWPHFOWA operator, the sequence of the criteria weights is dominated by the weak
P-HFEs expressing the criteria values for the alternative. Meanwhile, the normalized priority-based
importance degrees generated from the prioritized information indirectly determines the weights of
criteria by using a BUM function. Thereafter, there is a significant push towards the development of
the BUM function, which should accommodate to the environment of prioritized weak probabilistic
hesitant fuzzy information. Followed by the properties of the PWPHFOWA operator, we present a
BUM function for weak P-HFEs as below.

Definition 8. Let H =
{
h1(p), h2(p), . . . , hm(p)

}
be a collection of weak P-HFEs, and φ ={

h(1), h(2), . . . , h(J)

}
(J ≤ m) be a subset of H, then a P-BUM function is defined as:

F̃(φ) =

∑J
j=1 w( j) + J∑n
j=1 w j + m

, (12)

where w( j) is the corresponding importance degree of the criterion value, which is ranked as the jth position with
a decreasing sequence.

Theorem 7. For the P-BUM function, it has the following properties:

(1) Boundary: For φ ⊂ H, F̃(φ) ∈ [0, 1], especially for an empty set ϑ, i.e., no element is included in ϑ,
F̃(ϑ) = 0. On the contrary, for a universal set H, F̃(H) = 1.

(2) Monotonicity: If φ1 ⊂ φ2 ⊂ H, then F̃(φ1) ≤ F̃(φ2).

It is obvious that these two properties naturally hold. Thereby, we omit the proof here.

Example 2. Assume the criterion values for an alternative is c1(x) =
{
0.6(0.4), 0.7(0.3)

}
, c2(x) ={

0.4(0.2), 0.5(0.5), 0.6(0.1)
}
, c3(x) =

{
0.8(0.7), 0.9(0.3)

}
, and c4(x) =

{
0.55(0.6), 0.65(0.2)

}
. The prioritized

relationship between these four criteria is c1 � c2 � c3 � c4.

First of all, rank the criteria values by employing Definition 3. The scores and the ranking are
listed as follows:

µ1(x) = 0.6429,µ2(x) = 0.4125,µ3(x) = 0.83,µ4(x) = 0.575.

From the scores, one can easily discriminate the orders of the four criteria as c3(x) > c1(x) >
c4(x) > c2(x). Following this, the criteria are reordered as:

c(1)(x) = c3(x) =
{
0.8(0.7), 0.9(0.3)

}
, c(2)(x) = c1(x) =

{
0.6(0.4), 0.7(0.3)

}
,

c(3)(x) = c4(x) =
{
0.55(0.6), 0.65(0.2)

}
, c(4)(x) = c2(x) =

{
0.4(0.2), 0.5(0.5), 0.6(0.1)

}
.
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Correspondingly, by taking advantage of the results in Example 1, we have the criteria satisfactions
numerically expressed by the normalized priority-based importance degrees are newly endowed with

w(1) = w3 = 0.1414, w(2) = w1 = 0.4512, w(3) = w4 = 0.1173, w(4) = w2 = 2901.

Then, utilizing the P-BUM function, one can obtain the weight information related to the criteria as:
ω1 = F̃(w(1)) − F̃(ϑ) = 0.1414+1∑4

j=1 w j+4
− 0 = 0.2283,

ω2 = F̃(w(2)) − F̃(w(1)) =
0.1414+0.4512+2∑4

j=1 w j+4
−

0.1414+1∑4
j=1 w j+4

= 0.2902,

ω3 = F̃(w(3)) − F̃(w(2)) =
0.1414+0.4512+0.1173+3∑4

j=1 w j+4
−

0.1414+0.4512+2∑4
j=1 w j+4

= 0.2235,

ω4 = F̃(w(4)) − F̃(w(3)) = 1− 0.1414+0.4512+0.1173+3∑4
j=1 w j+4

= 0.258.

Finally, By employing

Equation (10), we have the comprehensive value of alternative x as:

c(x) = PWPHFOWA
(
c j(x)

)
=

∑m
j=1 ω j · c( j)(x)

= ω1 · c3(x) ⊕ω2 · c1(x) ⊕ω3 · c4(x) ⊕ω4 · c2(x)

=



0.6107(0.075), 0.6286(0.1875), 0.6494(0.0375), 0.632(0.025), 0.649(0.0625),
0.6686(0.0125), 0.6419(0.0563), 0.6584(0.1406), 0.7246(0.0281), 0.6615(0.0188),
0.6771(0.0469), 0.6951(0.0093), 0.6677(0.0322), 0.683(0.0804), 0.7007(0.016),
0.6859(0.0107), 0.7003(0.0268), 0.717(0.0053), 0.6943(0.0241), 0.7083(0.0603),
0.7246(0.0121), 0.711(0.008), 0.7243(0.02), 0.7397(0.0041)


3.5. Weak Probabilistic Hesitant Fuzzy Induced Ordered Weighted Averaging Operators

The above presented PWPHFOWA operator is an extension of the POWA operator under a weak
probabilistic hesitant fuzzy environment. If we take the prioritized information as an inducing variable,
this POWA operator may be deemed as a special case of the IOWA operator [35]. Bearing this in mind,
this subsection aims to present a more general type of the PWPHFOWA operator. In detail, the weak
probabilistic hesitant fuzzy IOWA (WPHFIOWA) operator, together with its properties, is going to
be studied.

Definition 9. Let H = (h1(p), h2(p), . . . , hL(p)) be a collection of weak P-HFEs. A WPHFIOWA operator of
dimension m is an aggregation function with the following expression:

WPHFIOWA(
〈
σ1, h1(p)

〉
,
〈
σ2, h2(p)

〉
, . . . ,

〈
σL, hL(p)

〉
) =

∑L

l=1
v(l) · h(l)(p), (13)

where σl plays the part of the inducing variable and hl(p) is called the argument variable. Moreover, according
to the ranking of the inducing variables (σ1, σ2, . . . , σL), (h1(p), h2(p), . . . , hl(p)) is reordered and denoted by(
h(1)(p), h(2)(p), . . . , h(L)(p)

)
.

In Equation (13), based on the value of σl and a quantifier guided function [39], the weight
information v(l) could be indirectly decided. In what follows, some properties of this WPHFIOWA
operator are studied.

Theorem 8. The aggregated value by the WPHFIOWA operator is still a weak P-HFE.

It is obvious that this theorem always holds, so the proof is omitted here.

Theorem 9. The probabilistic information in the aggregated value by the WPHFIOWA operator is completed,
i.e., the sum of the associated probabilistic values equals to 1.
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Similar to Theorem 2, this theorem can be easily proved.

Theorem 10. Let H′ = (h′1(p), h′2(p), . . . , h′L(p)) be any permutation of H = (h1(p), h2(p), . . . , hL(p)), then:

WPHFIOWA(
〈
σ1, h1(p)

〉
,
〈
σ2, h2(p)

〉
, . . . ,

〈
σL, hL(p)

〉
)

= WPHFIOWA(
〈
σ′1, h′1(p)

〉
,
〈
σ′2, h′2(p)

〉
, . . . ,

〈
σ′L, h′L(p)

〉
)

where σ′l(l = 1, 2, . . . , L) are the associating inducing variables of h′l(p)(l = 1, 2, . . . , L).

This theorem can be analogously verified by reference to the proof of Theorem 6.
As is well known, central to the IOWA operator is the implementation of the inducing variable,

which is a deterministic factor in the aggregation process. Generally, many indices can be applied to
undertake this role for formulating the relationship between the argument variables. For the sake that
the distance between two objects could intuitively reflect their distinction, we consider the distances
between weak P-HFEs to be inducing variables.

Definition 10. Let hl(p) =
{
τtl(ptl)|tl = 1, 2, . . . , #hl (p)

}
(l = 1, 2) be two arbitrary weak P-HFEs,

the generalized Hausdorff distance measure between h1(p) and h2(p) can be mathematically defined with
the following form:

DgH(h1(p), h2(p)) =


1
2


1

#h1(p)
∑#h1(p)

t1=1 min
τt2 (pt2 )∈h2(p)


∣∣∣∣∣∣∣ τt1 pt1∑#h1(p)

t1=1 pt1

−
τt2 pt2∑#h2(p)
t2=1 pt2

∣∣∣∣∣∣∣

λ

+

1
#h2(p)

∑#h2(p)
t2=1 min

τt1 (pt1 )∈h1(p)


∣∣∣∣∣∣∣ τt2 pt2∑#h2(p)

t2=1 pt2

−
τt1 pt1∑#h1(p)
t1=1 pt1

∣∣∣∣∣∣∣

λ





1
λ

, (14)

where λ > 0.

This distance measure satisfies some properties summarized below.

Theorem 11. Let hl(p) =
{
τtl(ptl)|tl = 1, 2, . . . , #hl (p)

}
(l = 1, 2, 3) be any three weak P-HFEs, then

(1) DgH(h1(p), h2(p)) ≥ 0;
(2) DgH(h1(p), h2(p)) = 0, iff h1(p) = h2(p);
(3) DgH(h1(p), h2(p)) = DgH(h2(p), h1(p)); and
(4) If h1(p) < h2(p) < h3(p), then DgH(h2(p), h3(p)) ≤ DgH(h1(p), h3(p)) and DgH(h1(p), h2(p)) ≤

DgH(h1(p), h3(p)).

It is obvious that properties (1–3) naturally hold. Herein, we just provide the proof process of the
last property in Theorem 11 in the Appendix A.

In the following, we take an analysis of the WPHFIOWA operator by configuring the value of the
parameter λ.

If λ = 1, then the above generalized Hausdorff distance measure degenerates to the following
Hamming–Hausdorff distance measure between h1(p) and h2(p):

DHH(h1(p), h2(p)) =
1
2


1

#h1(p)
∑#h1(p)

t1=1 min
τt2 (pt2 )∈h2(p)


∣∣∣∣∣∣∣ τt1 pt1∑#h1(p)

t1=1 pt1

−
τt2 pt2∑#h2(p)
t2=1 pt2

∣∣∣∣∣∣∣
+

1
#h2(p)

∑#h2(p)
t2=1 min

τt1 (pt1 )∈h1(p)


∣∣∣∣∣∣∣ τt2 pt2∑#h2(p)

t2=1 pt2

−
τt1 pt1∑#h1(p)
t1=1 pt1

∣∣∣∣∣∣∣


. (15)
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If λ = 2, then the above generalized Hausdorff distance measure degenerates to the following
Euclidean–Hausdorff distance measure:

DEH(h1(p), h2(p)) =


1
2


1

#h1(p)
∑#h1(p)

t1=1 min
τt2 (pt2 )∈h2(p)


∣∣∣∣∣∣∣ τt1 pt1∑#h1(p)

t1=1 pt1

−
τt2 pt2∑#h2(p)
t2=1 pt2

∣∣∣∣∣∣∣


2

+

1
#h2(p)

∑#h2(p)
t2=1 min

τt1 (pt1 )∈h1(p)


∣∣∣∣∣∣∣ τt2 pt2∑#h2(p)

t2=1 pt2

−
τt1 pt1∑#h1(p)
t1=1 pt1

∣∣∣∣∣∣∣


2





1
2

. (16)

By taking the distance between two weak P-HFEs as the inducing variable, we can characterize an
extension of the IOWA operator defined below.

Definition 11. Let H = (h1(p), h2(p), . . . , hL(p)) be a collection of weak P-HFEs, a weak probabilistic hesitant
fuzzy distance-based IOWA (WPHFD-IOWA) operator of dimension m is an aggregation function mathematically
defined as:

WPHFD− IOWA(
〈
D1, h1(p)

〉
,
〈
D2, h2(p)

〉
, . . . ,

〈
DL, hL(p)

〉
) =

∑L

l=1
v(l) · h(l)(p) (17)

where Dl =

∑L
l′=1,l′,l DgH(hl(p),hl′ (p))

L−1 and v(l) =
1−D(l)∑L

l=1 (1−Dl)
with vl ∈ [0, 1] and

∑L
l=1 νL = 1. Definitely,

Dl stands for the distance of hl(p) to others and D(l) denotes the lth smallest one among Dl(l = 1, 2, . . . , L).

Similarly, this WPHFD-IOWA operator possesses the same properties with the WPHFIOWA
operator. Such properties are introduced by Theorems 8–10.

4. Methodology

This section firstly formulates a group decision environment on the basis of weak P-HFEs. Within
this fuzzy environment, an evaluation method for handling MCGDM problems, where the criteria are
given a prioritization relationship and the weight information is unknown, is proposed.

4.1. Problem Statement

Consider the kind of MCGDM problems within an uncertain decision environment involving
the weak probabilistic hesitant fuzzy information. Suppose X = {x1, x2, . . . , xn} is the alternative set,
in which n indicates the number of alternatives. Define C = (c1, c2, . . . , cm) as a finite set of m criteria,
for which the importance information is unknown. Besides, these criteria are not given symmetrical
priority, due to the subjective distinction of decision makers. Let G =

{
g1, g2, . . . , gq

}
denote q groups

of decision makers who are invited to furnish their opinions of alternatives with respect to different
criteria. The opinion of group gd(d = 1, 2, . . . , q) for alternative xi(i = 1, 2, . . . , n) with respect to criteria

c j( j = 1, 2, . . . , m) is performed by a weak P-HFE denoted as hd
ij(p) =

{
τtd

ij
(ptd

ij
)
∣∣∣∣td

ij = 1, 2, . . . , #hd
ij(p)

}
.

Overall, the evaluation ratings of alternatives are characterized by q, and weak probabilistic hesitant

fuzzy decision matrices are represented by Rd = (rd
ij)n×m

=
(
hd

ij(p)
)

n×m
(d = 1, 2, . . . , q). Except for

providing judgments on alternatives, each group is required to provide a prioritization of the criteria
with a linear ordering cd1 � cd2 � · · · � cdm , in which cd j implies the priority of criterion c j given by

group gd.

4.2. Approach to MCGDM under Weak Probabilistic Hesitant Fuzzy Environment

Based on the previously proposed operators and distances, this subsection develops an evaluation
approach to address MCGDM problems, where the criteria values are represented by weak probabilistic
hesitant fuzzy decision matrices. Besides, the related weight information is missing.
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Step 1. Collect the decision information given by different groups of decision makers and construct
the corresponding weak probabilistic hesitant fuzzy decision matrices as Rd(d = 1, 2, . . . , q).

Step 2. Apply the following functions, which are related to the PWPHFWA operator,
to generate the normalized priority-based importance degrees related to different groups from
the prioritized information.

sd
1 = 1

sd
j =

∏ j−1
k=1

∑#hd
ik(p)

tdik=1
τ

tdik
·p

tdik∑#hd
ik(p)

tdik=1
p

tdik

, f or j = 2, 3, . . . , m
, (18)

wd
j =

sd
j∑m

j=1 sd
j

. (19)

Step 3. By referring to Definition 3, rank the criteria values related to different alternatives and
distinctive groups, and then match the weights with the reordered criteria.

Step 4. Determine the importance weights of criteria regarding different alternatives and distinctive
groups by operating the P-BUM function. That is,

F̃(wd
( j)) =

∑J
j=1 wd

( j) + J∑n
j=1 wd

j + m
, (20)

ωd
j = F̃(wd

( j)) − F̃(wd
( j−1)), (21)

where wd
( j) is defined as the corresponding importance degree of the criterion, which is ranked as the

jth position under a decreasing sequence.
Step 5. Employ the PWPHFOWA operator to obtain the comprehensive criteria values for different

groups Rd
C =

(
hd

1(p), hd
2(p), . . . , hd

n(p)
)T

with hd
i (p) =

{
τtd

i
(ptd

i
)
∣∣∣td

i = 1, 2, . . . , #hd
i (p)

}
(i = 1, 2, . . . , n).

That is,
PWPHFOWA

(
hd

ij(p)
)
=

∑m

j=1
ωd

j · h
d
i( j)(p), (22)

where : {1, 2, . . . , m} → {1, 2, . . . , m} is a permutation such that hd
i( j)(p) ≥ hd

i( j+1)
(p), for ∀ j = 1, 2, . . . , m− 1.

After this manipulation, the results related to each group contain n values, which represent the
group assessment over n alternatives.

Step 6. Taking the ease of employment and computational efficiency into consideration, we utilized
the Hamming–Hausdorff distance measure to calculate the distances between one group and another
one with respect to different alternatives. That is,

DHH
(
hd

i (p), hd′
i (p)

)
=

1
2



1
#hd

i (p)

∑#hd
i (p)

td
i =1

min
τ

td
′

i
(p

td
′

i
)∈hd′

i (p)


∣∣∣∣∣∣∣∣∣∣

τ
tdi

p
tdi∑#hd

i (p)

tdi =1
p

tdi

−

τ
td
′

i
p

td
′

i∑#hd′
i (p)

td
′

i =1
p

td
′

i

∣∣∣∣∣∣∣∣∣∣
+

1
#hd′

i (p)

∑#hd′
i (p)

td′
i =1

min
τ

tdi
(p

tdi
)∈hd

i (p)


∣∣∣∣∣∣∣∣∣∣

τ
td
′

i
p

td
′

i∑#hd′
i (p)

td
′

i =1
p

td
′

i

−

τ
tdi

p
tdi∑#hd

i (p)

tdi =1
p

tdi

∣∣∣∣∣∣∣∣∣∣



, (23)

where d′ = 1, 2, . . . , n with d′ , d.
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Step 7. Distinguish the distinction of one group with others with respect to different alternatives
by calculating the average distance of one group to all the others with

DHH
(
gd

i

)
=

∑q
d′=1,d′,d DHH

(
hd

i (p), hd′
i (p)

)
q− 1

. (24)

Step 8. Compute the weights of different groups relating to different alternatives by

vo(d)
i =

1−DHH

(
go(d)

i

)
∑q

d=1

(
1−DHH

(
gd

i

)) . (25)

where o :
{
1, 2, . . . , q

}
→

{
1, 2, . . . , q

}
is a permutation such that DHH

(
go(d)

i

)
≤ DHH

(
go(d+1)

i

)
.

In some cases, there may exist the situation where a group rather prefers one alternative that
their judgments may be far away from those of other groups, such that these judgments cannot be
importantly weighted. Occasionally, this is common in real-life decision-making processes. In this
situation, regarding one alternative, the distance value of this group to others may be very small
such that the opinions of this group should not be greatly taken into consideration. Nevertheless,
this disparity can be offset by the distances of this group to others in view of the other alternatives.
Bearing this in mind, we consider the weights of different groups with respect to different alternatives,
respectively. Therefore, the operation in this step does not allow for compensation between distances,
i.e., the phenomenon that the far distance representing the poor relationship of the group to others
would not reduce the ability of better relationship for compensation by poorer ones. Based on this,
the weight generation process of different groups remains impartial.

Step 9. Fuse the opinions of different groups by utilizing the WPHFD-IOWA operator, i.e.,

WPHFD− IOWA


〈
DHH

(
g1

i

)
, h1

i (p)
〉
,
〈
DHH

(
g2

i

)
, h2

i (p)
〉
, . . . ,〈

DHH
(
gq

i

)
, hq

i (p)
〉  = ∑q

d=1
vo(d)

i · ho(d)
i (p). (26)

By this step, the overall assessment for each alternative can be obtained.
Step 10. According to Definition 3, assess the alternatives by listing rankings of them.
The innovations contained in this approach are graphically described in Figure 1.
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5. Application and Results

This section concentrates on applying the evaluation approach to a practical problem concerning
the assessment of sustainable drinking water source regions for a company in Singapore.

5.1. Problem Statement

Being a young company located in Singapore, Bello Group Pte. Ltd. commits to the research
and development, production and sales of high-end differentiated beverages. Until now, its business
has spread in various countries, such as China, Singapore, Indonesia, Malaysia, Cambodia, Vietnam,
Maldives, and the United States. However, faced with the increasingly serious water pollution, how to
evaluate and select sustainable drinking water source region(s) poses a challenge to the leaders in
Bello. Hoping to acquire the largest benefit from this decision, the management team sincerely invites
the participation and favor of the staff from the sales team and the investing party. Thus, the above
analytical description forms an MCGDM problem that some drinking water source regions are required
to be evaluated and a sustainable drinking water source region is further in need of determination.

To mathematically model this problem, we firstly give some mathematic notations, which are in
one-to-one correspondence with the objectives as follows. Let G =

{
g1, g2, g3

}
denote three groups

of selected decision makers, who are representatives of the management team g1= {g1
1, g1

2, g1
3, g1

4, g1
5

}
,

the sales team g2= {g2
1, g2

2, g2
3, g2

4, g2
5

}
, and the investing party g3= {g3

1, g3
2, g3

3, g3
4, g3

5

}
. After a preparatory

investigation of 20 drinking water source regions, three potential regions are preliminarily selected as
candidate drinking water source regions for supporting the business of Bello. The regions are Mount
Meng in Linyi city (x1), Liangshuihe Town in Danjiangkou city (x2) and Southern Taihang Mountains
in Xinxiang city (x3). To ensure the sustainable development of the company, the manager team has
taken into account three criteria for evaluating the regions: the effect of political factors (c1), the taste of
water (c2) and the effect of market factors (c3).

Actually, owing to respective perspectives of the three decision groups, they hold different
views on the relative importance degrees of the three criteria. This subjective distinction leads to
the asymmetrical priority of different criteria indirectly. Thus, the three groups respectively provide
rankings of the three criteria as g1 : c1 � c2 � c3, g2 : c3 � c1 � c2 and g3 : c2 � c1 � c3. The strength of
the prioritized information lies in the fact that it reflects the status of the criterion, which is acquiesced
by individual groups.

To address this MCGDM problem, the fifteen decision makers are required to furnish their
subjective evaluation results of the regions with respect to different criteria by giving scores according
to an evaluation standard shown in Table 1.

Table 1. Evaluation standard.

Score

1 2 3 4 5

c1 Very small Small Fair Large Very large
c2 Very bad Bad Fair Good Very good
c3 Very small Small Fair Large Very large

By reference to Table 1, the three groups of decision makers provide their assessments, which are
collected in Table 2.

Caused by the limited expertise of different groups, they could not offer all assessment values.
This realistic phenomenon is reflected by the blanks in Table 2.
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Table 2. Assessments of the alternatives.

c1 c2 c3

x1 x2 x3 x1 x2 x3 x1 x2 x3

g1
1 2 4 5 4 3 3 3 3

g1
2 2 3 4 3 3 2 4 4

g1
3 3 4 4 4 4 1 4 4

g1
4 4 2 3 1 5

g1
5 3 4 5 3 4 2 4 5

g2
1 4 3 3 3 3 3 4

g2
2 4 3 2 2 2 4 3 5

g2
3 3 5 1 3 2

g2
4 3 5 2 1 3 3 3

g2
5 4 4 3 2 4 5

g3
1 4 4 4 3 4 5 2 3 3

g3
2 4 2 4 2 4

g3
3 4 5 4 3 4 5

g3
4 4 5 3 3 4 1 1

g3
5 5 4 3 4 4 4

5.2. Solving Process

To deal with the realistic problem depicted in Section 5.1, we statistically coll ect the original
decision data and express the opinions of each group with a weak probabilistic hesitant fuzzy
decision matrix.

R1 =


{
0.4(0.4), 0.6(0.4), 0.8(0.2)

} {
0.4(0.2), 0.6(0.4), 0.8(0.4)

} {
0.6(0.2), 0.8(0.2), 1(0.2)

}{
0.6(0.2), 0.8(0.6)

} {
0.6(0.6), 0.8(0.4)

} {
0.6(0.2), 0.8(0.4)

}{
0.8(0.4), 1(0.4)

} {
0.2(0.4), 0.4(0.4)

} {
0.6(0.2), 0.8(0.4), 1(0.2)

}
,

R2 =


{
0.6(0.2), 0.8(0.6)

} {
0.4(0.2), 0.6(0.4)

} {
0.6(0.6), 0.8(0.2)

}{
0.6(0.4), 0.8(0.2)

} {
0.4(0.4), 0.6(0.2)

} {
0.6(0.4), 0.8(0.4)

}{
0.6(0.2), 1(0.4)

} {
0.2(0.4), 0.4(0.4), 0.6(0.2)

} {
0.4(0.2), 0.6(0.2), 1(0.4)

}
,

R3 =


{
0.8(0.4), 1(0.2)

} {
0.4(0.2), 0.6(0.6)

} {
0.4(0.4), 0.8(0.4)

}{
0.8(0.6), 1(0.2)

} {
0.6(0.2), 0.8(0.6)

} {
0.2(0.2), 0.6(0.2), 0.8(0.2)

}{
0.8(0.6), 1(0.2)

} {
0.6(0.2), 0.8(0.4), 1(0.2)

} {
0.2(0.2), 0.6(0.2), 1(0.2)

}
.

To illustrate the derivation of the three weak probabilistic hesitant fuzzy decision matrices, we take
the first element in R1 as an example. From Table 2, one can obtain the assessments of group g1 for the
system on wind turbines (x1) over criterion c1 as: 2, 2, 3, 4, 3. Through a simple normalization process,
one can obtain a weak P-HFE as:

h1
11(p) =

{2
5

(2
5

)
,

3
5

(2
5

)
,

4
5

(1
5

)}
=

{
0.4(0.4), 0.6(0.4), 0.8(0.2)

}
.

Clearly, the probabilistic information is complete. This represents the case that all the managers
have provided their opinions of region x1 on criterion c1. As to the evaluation values of group g1 for
region x2 over criterion c1, the cross values of the second column and the frontal five rows in Table 2
show the results: 4, 3, 4, -, 4. This incomplete evaluation result can be expressed with:

h1
21(p) =

{3
5

(1
5

)
,

4
5

(3
5

)}
=

{
0.6(0.2), 0.8(0.6)

}
,

where the sum of the probabilities is smaller than 1, indicating that not all the members in g1 could
afford to score the performance of x2 over c1 on a scale of 1 to 5.
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Aiming to fuse the distinctive opinions on different criteria, we apply Equations (18) and (19) to
generate the normalized priority-based importance degrees related to different groups, as listed in
Table 3.

Table 3. Normalized priority-based importance degrees of criteria.

Criteria Satisfactions Importance Degrees

g1

x1

c1 1 0.5213
c2 0.56 0.2919
c3 0.3584 0.1868

x2

c1 1 0.4425
c2 0.75 0.3319
c3 0.51 0.2256

x3

c1 1 0.4545
c2 0.9 0.4091
c3 0.3 0.1364

g2

x1

c1 0.65 0.3041
c2 0.4875 0.2281
c3 1 0.4678

x2

c1 0.7 0.3231
c2 0.4667 0.2154
c3 1 0.4615

x3

c1 0.75 0.3125
c2 0.65 0.2708
c3 1 0.4167

g3

x1

c1 0.55 0.2714
c2 1 0.4934
c3 0.4767 0.2352

x2

c1 0.75 0.3141
c2 1 0.4188
c3 0.6375 0.2671

x3

c1 0.8 0.3226
c2 1 0.4032
c3 0.68 0.2742

Clearly, the last column of Table 3 performs the normalized priority-based importance degrees of
each criterion with respect to different regions and groups.

Subsequently, by referring to Definition 3, rank the criteria values and match the weights with the
reordered criteria. The results are listed below.

U1 =


0.56 0.64 0.8
0.75 0.68 0.7333
0.9 0.3 0.8

 ⇒


h1

11(p) < h1
12(p) < h1

13(p)
h1

22(p) < h1
23(p) < h1

21(p)
h1

32(p) < h1
33(p) < h1

31(p)

⇒


h1

1(1)
(p) = h1

13(p), h1
1(2)

(p) = h1
12(p), h1

1(3)
(p) = h1

11(p)

h1
2(1)

(p) = h1
21(p), h1

2(2)
(p) = h1

23(p), h1
2(3)

(p) = h1
22(p)

h1
3(1)

(p) = h1
31(p), h1

3(2)
(p) = h1

33(p), h1
3(3)

(p) = h1
32(p)

⇒


w1

1(1)
= w1

13, w1
1(2)

= w1
12, w1

1(3)
= w1

11

w1
2(1)

= w1
21, w1

2(2)
= w1

23, w1
2(3)

= w1
22

w1
3(1)

= w1
31, w1

3(2)
= w1

33, w1
3(3)

= w1
32
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U2 =


0.75 0.5333 0.65
0.6667 0.4667 0.7
0.8667 0.36 0.75

 ⇒


h2

12(p) < h2
13(p) < h2

11(p)
h2

22(p) < h2
21(p) < h2

23(p)
h2

32(p) < h2
33(p) < h2

31(p)

⇒


h2

1(1)
(p) = h2

11(p), h2
1(2)

(p) = h2
13(p), h2

1(3)
(p) = h2

12(p)

h2
2(1)

(p) = h2
23(p), h2

2(2)
(p) = h2

21(p), h2
2(3)

(p) = h2
22(p)

h2
3(1)

(p) = h2
31(p), h2

3(2)
(p) = h2

33(p), h2
3(3)

(p) = h2
32(p)

⇒


w2

1(1)
= w2

11, w2
1(2)

= w2
13, w2

1(3)
= w2

12

w2
2(1)

= w2
23, w2

2(2)
= w2

21, w2
2(3)

= w2
22

w2
3(1)

= w2
31, w2

3(2)
= w2

33, w2
3(3)

= w2
32

U3 =


0.8667 0.55 0.6

0.85 0.75 0.5333
0.85 0.8 0.6

 ⇒


h3

12(p) < h3
13(p) < h3

11(p)
h3

23(p) < h3
22(p) < h3

21(p)
h3

33(p) < h3
32(p) < h3

31(p)

⇒


h3

1(1)
(p) = h3

11(p), h3
1(2)

(p) = h3
13(p), h3

1(3)
(p) = h3

12(p)

h3
2(1)

(p) = h3
21(p), h3

2(2)
(p) = h3

22(p), h3
2(3)

(p) = h3
23(p)

h3
3(1)

(p) = h3
31(p), h3

3(2)
(p) = h3

32(p), h3
3(3)

(p) = h3
33(p)

⇒


w3

1(1)
= w3

11, w3
1(2)

= w3
13, w3

1(3)
= w3

12

w3
2(1)

= w3
21, w3

2(2)
= w3

22, w3
2(3)

= w3
23

w3
3(1)

= w3
31, w3

3(2)
= w3

32, w3
3(3)

= w3
33

Based on the above presented results, employ the proposed P-BUM function to determine the
importance weights of criteria regarding different alternatives and distinctive groups as:

ω1
11 = 0.2967, ω1

12 = 0.323,
ω1

13 = 0.3803, ω1
21 = 0.3606,

ω1
22 = 0.3064, ω1

23 = 0.333,
ω1

31 = 0.3636, ω1
32 = 0.2841,

ω1
33 = 0.3523,

ω2
11 = 0.326, ω2

12 = 0.367,
ω2

13 = 0.307, ω2
21 = 0.3654,

ω2
22 = 0.3308, ω2

23 = 0.3038,
ω2

31 = 0.3281, ω2
32 = 0.3542,

ω2
33 = 0.3177,

ω3
11 = 0.3179, ω3

12 = 0.3088,
ω3

13 = 0.3733, ω3
21 = 0.3285,

ω3
22 = 0.3547, ω3

23 = 0.3168,
ω3

31 = 0.3307, ω3
32 = 0.3505,

ω3
33 = 0.3188.

Next, employ the PWPHFOWA operator to obtain the overall assessments from different groups as:

R1
C =




0.468(0.0267), 0.544(0.0267), 0.6497(0.0133), 0.5335(0.0533), 0.6002(0.0533),
0.6928(0.0267), 0.6269(0.0533), 0.6802(0.0533), 0.7543(0.0267), 0.5669(0.0267),
0.6287(0.0267), 0.7148(0.0133), 0.6202(0.0533), 0.6745(0.0533), 0.7499(0.0267),
0.6963(0.0533), 0.7397(0.0533), 0.8(0.0267), 1(0.3334)

{
0.5902(0.05), 0.6686(0.1333), 0.732(0.0667), 0.6808(0.15), 0.7213(0.2),
0.7419(0.4)

}
{

0.6032(0.0625), 0.6414(0.0625), 0.6741(0.125), 0.7283(0.125), 0.4851(0.0625),
0.5347(0.0625), 1(0.5)

}


,

R2
C =



{
0.547(0.0625), 0.6(0.125), 0.6486(0.0208), 0.1749(0.0417), 0.6386(0.1875),
0.6809(0.375), 0.7198(0.0625), 0.7526(0.125)

}
{

0.5475(0.2222), 0.6(0.1111), 0.6403(0.1111), 0.682(0.0556), 0.6487(0.2222),
0.6895(0.1111), 0.7208(0.1111), 0.7531(0.0556)

}
{

0.4245(0.0333), 0.4747(0.0333), 0.5383(0.0167), 0.5014(0.0333), 0.545(0.0333),
0.6(0.0167), 1(0.8334)

}


,

R3
C =


{
0.5769(0.0833), 0.6363(0.25), 0.6986(0.0833), 0.741(0.25), 1(0.3334)

}{
0.6033(0.0625), 0.6815(0.0625), 0.7443(0.0625), 0.6897(0.1875),
0.7509(0.1875), 0.8(0.1875), 1(0.25)

}
{
0.6033(0.0625), 0.6819(0.0625), 0.6889(0.125), 0.7086(0.125), 1(0.625)

}
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In the following, utilize the Hamming–Hausdorff distance measure to calculate the distances
between one group and another one with respect to different alternatives by drawing support from
Lingo 11.0. The distances are presented in Table 4.

Table 4. Distances between groups.

Distance

x1 x2 x3

g1 g2 g3 g1 g2 g3 g1 g2 g3

g1 - 0.0174 0.0407 - 0.0222 0.0169 - 0.0773 0.0234
g2 0.0174 - 0.0358 0.0222 - 0.0167 0.0773 - 0.0641
g3 0.0407 0.0358 - 0.0169 0.0167 - 0.0234 0.0641 -

Now that the distinction of one group with another with respect to different alternatives are
distinguished, the distances of one group to all the others can be generated through Equation (24):

DHH
(
g1

1

)
= 0.0291, DHH

(
g1

2

)
= 0.0196, DHH

(
g1

3

)
= 0.0504,

DHH
(
g2

1

)
= 0.0266, DHH

(
g2

2

)
= 0.0195, DHH

(
g1

3

)
= 0.0707,

DHH
(
g2

1

)
= 0.0383, DHH

(
g2

2

)
= 0.0168, DHH

(
g1

3

)
= 0.0438.

Based on these distances, compute the weights of different groups related to different regions as:

v(1)1 = 0.338, v(2)1 = 0.3347, v(3)1 = 0.3273,

v(1)2 = 0.3401, v(2)2 = 0.3376, v(3)2 = 0.3223,

v(1)3 = 0.3389, v(2)3 = 0.3315, v(3)3 = 0.3296.

Then, utilize the WPHFD-IOWA operator to derive the comprehensive opinions with respect to
different regions as:

h(p) =


{
0.6(0.2), 0.7(0.3), 1(0.5)

}{
0.6(0.1), 0.7(0.4), 0.8(0.2), 1(0.3)

}{
0.6(0.1), 1(0.9)

}
.

Herein, to be in line with the form of the original information, the values of comprehensive
opinions are accurate to one decimal point.

Finally, according to Definition 3, scores and rankings of the regions are listed in Table 5.

Table 5. Rankings of systems.

Score Ranking
x1 x2 x3

g1 0.77 0.71 0.82 x3 � x1 � x2
g2 1 0.64 0.92 x1 � x3 � x2
g3 0.78 0.8 0.88 x3 � x2 � x1

Total 0.89 0.8 0.96 x3 � x1 � x2

In conclusion, Southern Taihang Mountains in Xinxiang city should be preferentially considered
as the first drinking water source region for Bello.

Clearly, the whole calculation process can be graphically described in Figure 2.
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6. Discussion

This paper concentrates on handling MCGDM problems within weak P-HFEs and its application
in the selection of an available sustainable DWSR. The outcome of this research may fulfill the research
gaps mentioned in Section 2. Based on the previous illustration presented in Section 5, several findings
and some comparisons with extant researches are observed and summarized as follows.

(1) By comparison with other fuzzy sets in describing evaluation information [40,41] weak P-HFEs
are more advantaged in expressing decision information in evaluating available DWSRs. This is
because weak P-HFEs can simultaneously include positive negative opinions given by decision
makers as well as the associated incomplete probabilistic information. Thus we apply weak
P-HFEs to depict evaluation information about DWSRs ingeniously synthetic distinctive opinions
in a decision group such that complaints about the ignorance of extreme opinion would not occur.

(2) Indeed, it is always difficult to subjectively allocate satisfied weights to criteria and decision
groups [25]. However, some existing studies that also focuses on weak P-HFEs have not considered
this difficulty [18]. In our example of application, the importance weights of criteria and decision
groups are objectively determined based on the original decision information. This avoids conflicts
among decision makers when they stoutly believe that their opinions are not fairly treated.

(3) Generally, there always exist priorities among criteria in realistic decision problems [31].
The developed evaluation approach fully considered this ubiquitous phenomenon that the
aggregation process and the weight generation method are all introduced based on prioritized
relationships provided by different decision groups.
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(4) The results objectively reflect some realistic and acquiescent decision rules and phenomena.
Firstly, it is obvious that the ranking given by the management layer is entirely in accordance
with that assessed by all decision makers. This indirectly identifies the critical position of the
management layer. Secondly, as to the sales team, it can be observed in Table 5 that there is no
consensus between the rankings generated by this group and the other two groups. In general,
the sales team devotes to the sales quantity of the product that they may ignore the potential
significance of policies that would aid the sustainable development of the company.

7. Conclusions

This paper conducts a research on investigating a hybrid evaluation approach with weak P-HFEs
and performs a practical example of application. The strengths of the approach lie in the following points.

(1) The processing of the original decision data brings a broader understanding of how
to address realistic evaluation problems with positive and negative information, which are
asymmetrically distributed.

(2) Weights of criteria are decided based on the prioritization relationship of criteria given by
different decision groups. In the meanwhile, we have considered the situation that the weights of the
groups related to different alternatives should be distinctive, in case of cheating during the decision
process. The objective determination of weights has brought a new way of identifying the importance
degree without complaints.

(3) The fusion of decision information fully considers the phenomenon of asymmetric prioritization
among different criteria, as well as the distinction between individuals that existed in reality.

(4) The proposed evaluation approach can serve as an emerging method for handling MCGDM
problems with prioritized criteria and incomplete weight information within weak probabilistic hesitant
fuzzy circumstance. It is totally possible to employ the proposed approach to solve other similar
evaluation problems.

However, there still remains some work to be done. First, the alternative sustainable DWSRs in the
example are all located in China, the applicability of the proposed method to managing other similar
problems [42] remains to be further studied. Second, since the computational process of the weak
P-HFEs is complicated, we need to further study the operations of weak P-HFEs. Except the above two
points, the consensus between different groups should be taken into consideration. In future, we are
going to conduct studies on these two aspects and devote our attention to applying the proposed
approach to other fields, such as industrial engineering, E-commerce, and so on.
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Appendix A. Appendix

Proof of Theorem 11. If h1(p) < h2(p) < h3(p), then it satisfies 0 ≤
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

≤
τ(t2)p(t2)∑#h2(p)

t2=1 pt2

≤
τ(t3)p(t3)∑#h3(p)

t3=1 pt3

.
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Thereby, one can obtain:

τ(t3)p(t3)∑#h3(p)
t1=3 pt3

−
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

≥
τ(t2)p(t2)∑#h2(p)

t2=1 pt2

−
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

⇒

∣∣∣∣∣∣∣ τ(t1)p(t1)∑#h1(p)
t1=1 pt1

−
τ(t3)p(t3)∑#h3(p)

t3=1 pt3

∣∣∣∣∣∣∣ ≥
∣∣∣∣∣∣∣ τ(t1)p(t1)∑#h1(p)

t1=1 pt1

−
τ(t2)p(t2)∑#h2(p)

t2=1 pt2

∣∣∣∣∣∣∣
⇒ min

τt3 (pt3 )∈h3(p)

∣∣∣∣∣∣∣ τ(t1)p(t1)∑#h1(p)
t1=1 pt1

−
τ(t3)p(t3)∑#h3(p)

t3=1 pt3

∣∣∣∣∣∣∣ ≥ min
τt2 (pt2 )∈h2(p)

∣∣∣∣∣∣∣ τ(t1)p(t1)∑#h1(p)
t1=1 pt1

−
τ(t2)p(t2)∑#h2(p)

t2=1 pt2

∣∣∣∣∣∣∣
⇒

∑#ht1 (p)
t1=1 min

τt3 (pt3 )∈h3(p)

∣∣∣∣∣∣∣ τt1 pt1∑#h1(p)
t1=1 pt1

−
τt3 pt3∑#h3(p)
t3=1 pt3

∣∣∣∣∣∣∣ ≥ ∑#ht1 (p)
t1=1 min

τt2 (pt2 )∈h2(p)

∣∣∣∣∣∣∣ τt1 pt1∑#h1(p)
t1=1 pt1

−
τt2 pt2∑#h2(p)
t2=2 pt2

∣∣∣∣∣∣∣
⇒

1
#ht1 (p)

∑#ht1 (p)
t1=1 min

τt3 (pt3 )∈h3(p)

∣∣∣∣∣∣∣ τt1 pt1∑#h1(p)
t1=1 pt1

−
τt3 pt3∑#h3(p)
t3=1 pt3

∣∣∣∣∣∣∣
≥

1
#ht1 (p)

∑#ht1 (p)
t1=1 min

τt2 (pt2 )∈h2(p)

∣∣∣∣∣∣∣ τt1 pt1∑#h1(p)
t1=1 pt1

−
τt2 pt2∑#h2(p)
t2=2 pt2

∣∣∣∣∣∣∣
In addition, it is obvious that:

τ(t3)p(t3)∑#h3(p)
t1=3 pt3

−
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

≥
τ(t2)p(t2)∑#h2(p)

t2=1 pt2

−
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

⇒

∣∣∣∣∣∣∣ τ(t3)p(t3)∑#h3(p)
t3=1 pt3

−
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

∣∣∣∣∣∣∣ ≥
∣∣∣∣∣∣∣ τ(t2)p(t2)∑#h2(p)

t2=1 pt2

−
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

∣∣∣∣∣∣∣
⇒ min

τt1 (pt1 )∈h1(p)

∣∣∣∣∣∣∣ τ(t3)p(t3)∑#h3(p)
t3=1 pt3

−
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

∣∣∣∣∣∣∣ ≥ min
τt1 (pt1 )∈h1(p)

∣∣∣∣∣∣∣ τ(t2)p(t2)∑#h2(p)
t2=1 pt2

−
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

∣∣∣∣∣∣∣

⇒



1
#ht3 (p)

∑#ht3 (p)
t3=1 min

τt1 (pt1 )∈h1(p)

∣∣∣∣∣∣∣ τt3 pt3∑#h3(p)
t3=1 pt3

−
τt1 pt1∑#h1(p)
t1=1 pt1

∣∣∣∣∣∣∣
≥ min
τt2 (pt2 )∈h2(p)

min
τt1 (pt1 )∈h1(p)

∣∣∣∣∣∣∣ τ(t2)p(t2)∑#h2(p)
t2=1 pt2

−
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

∣∣∣∣∣∣∣
1

#ht2 (p)
∑#ht2 (p)

t2=1 min
τt1 (pt1 )∈h1(p)

∣∣∣∣∣∣∣ τt2 pt2∑#h2(p)
t2=1 pt2

−
τt1 pt1∑#h1(p)
t1=1 pt1

∣∣∣∣∣∣∣
≤ max
τt3 (pt3 )∈h3(p)

min
τt1 (pt1 )∈h1(p)

∣∣∣∣∣∣∣ τ(t3)p(t3)∑#h3(p)
t3=1 pt3

−
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

∣∣∣∣∣∣∣
max

τt3 (pt3 )∈h3(p)
min

τt1 (pt1 )∈h1(p)

∣∣∣∣∣∣∣ τ(t3)p(t3)∑#h3(p)
t3=1 pt3

−
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

∣∣∣∣∣∣∣
≥ min
τt2 (pt2 )∈h2(p)

min
τt1 (pt1 )∈h1(p)

∣∣∣∣∣∣∣ τ(t2)p(t2)∑#h2(p)
t2=1 pt2

−
τ(t1)p(t1)∑#h1(p)

t1=1 pt1

∣∣∣∣∣∣∣
⇒

1
#ht3 (p)

∑#ht3 (p)
t3=1 min

τt1 (pt1 )∈h1(p)

∣∣∣∣∣∣∣ τt3 pt3∑#h3(p)
t3=1 pt3

−
τt1 pt1∑#h1(p)
t1=1 pt1

∣∣∣∣∣∣∣
≥

1
#ht2 (p)

∑#ht2 (p)
t2=1 min

τt1 (pt1 )∈h1(p)

∣∣∣∣∣∣∣ τt2 pt2∑#h2(p)
t2=2 pt2

−
τt1 pt1∑#h1(p)
t1=1 pt1

∣∣∣∣∣∣∣
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In summary, we have

1
2


1

#ht1 (p)
∑#ht1 (p)

t1=1 min
τt3 (pt3 )∈h3(p)

∣∣∣∣∣∣∣ τt1 pt1∑#h1(p)
t1=1 pt1

−
τt3 pt3∑#h3(p)
t3=1 pt3

∣∣∣∣∣∣∣+
1

#ht3 (p)
∑#ht3 (p)

t3=1 min
τt1 (pt1 )∈h1(p)

∣∣∣∣∣∣∣ τt3 pt3∑#h3(p)
t3=1 pt3

−
τt1 pt1∑#h1(p)
t1=1 pt1

∣∣∣∣∣∣∣


≥

1
2


1

#ht1 (p)
∑#ht1 (p)

t1=1 min
τt2 (pt2 )∈h2(p)

∣∣∣∣∣∣∣ τt1 pt1∑#h1(p)
t1=1 pt1

−
τt2 pt2∑#h2(p)
t2=2 pt2

∣∣∣∣∣∣∣
+ 1

#ht2 (p)
∑#ht2 (p)

t2=1 min
τt1 (pt1 )∈h1(p)

∣∣∣∣∣∣∣ τt2 pt2∑#h2(p)
t2=2 pt2

−
τt1 pt1∑#h1(p)
t1=1 pt1

∣∣∣∣∣∣∣



⇒

DgH(h1(p), h3(p)) ≥ DgH(h1(p), h2(p))

Analogously, DgH(h2(p), h3(p)) ≤ DgH(h1(p), h3(p)) can be proved. Thus, Theorem 11 holds. �
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