
symmetryS S

Article

On Some Symmetries of Quadratic Systems

Maoan Han 1 , Tatjana Petek 2,3,4* and Valery G. Romanovski 2,4,5

1 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China; mahan@shnu.edu.cn
2 Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia;

valerij.romanovskij@um.si
3 Institute of Mathematics, Physics and Mechanics, SI-1000 Ljubljana, Slovenia
4 Center for Applied Mathematics and Theoretical Physics, SI-2000 Maribor, Slovenia
5 Faculty of Natural Science and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
* Correspondence: tatjana.petek@um.si

Received: 29 May 2020; Accepted: 31 July 2020; Published: 4 August 2020
����������
�������

Abstract: We provide a general method for identifying real quadratic polynomial dynamical systems
that can be transformed to symmetric ones by a bijective polynomial map of degree one, the so-called
affine map. We mainly focus on symmetry groups generated by rotations, in other words, we treat
equivariant and reversible equivariant systems. The description is given in terms of affine varieties in
the space of parameters of the system. A general algebraic approach to find subfamilies of systems
having certain symmetries in polynomial differential families depending on many parameters is
proposed and computer algebra computations for the planar case are presented.
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1. Introduction

Studying various symmetries of dynamical systems is important for several reasons.
Systems which phase diagrams posses a rotational symmetry are interesting because they are related to
the second part of Hilbert’s 16th problem and the existence of such systems can lead to the construction
of families with many limit cycles. Another reason for investigation of symmetries is their connection
with the integrability. It is well known that an elementary singular point of a time-reversible polynomial
system of degree two is always integrable [1]. It can be either a center or an integrable saddle [2] and it
thus cannot be a focus. A similar conclusion is valid for much larger families of systems, as it had been
shown in [2] where we found affine varieties in the space of parameters of a quadratic planar system
which can be brought to a time-reversible one by a bijective linear transformation. This transformation
preserves the integrability property of a present singular point at the origin. So, if the quadratic
planar system with an isolated non-degenerate trace-zero singular point at the origin admits the
transformation to a time-reversible system, the origin is automatically integrable.

In this paper we firstly treat affine transformations to symmetric systems (n-dimensional, n ≥ 2)
in a unified and rather general way. Secondly, for planar quadratic systems, we calculate the varieties
in the space of parameters defining the systems which can be transformed to rotationally (reversible)
equivariant systems by an affine or merely linear (i.e., no translation involved) transformation.

Let us add some notation. All vectors from Rn will be typeset in boldface. When we mention
a linear map from Rn → Rn, we have in mind an additive homogeneous (of degree one) map
(which sends 0 to 0). By an affine map we denote a composition of a linear map and a translation.
Linear maps will be denoted by capital letters and general (not necessarily linear) maps in calligraphic
font. The symbols Id or Idn will both stand for the identity matrix and the transposition of a matrix A

Our paper is organized as follows—in Section 2 we describe the general properties of (reversible)
symmetric systems in Rn and in Section 3 we compute algebraic varieties in parameter space,
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corresponding to quadratic planar systems that can be transformed to the (reversible) symmetric
one by an affine or linear transformation. With some examples in Section 3 we end the paper.

2. Equivariant and Reversible Equivariant Systems in Rn

Let us start with a rather general definition of a symmetry of a dynamical system. Throughout
the paper, we will be interested in smooth, mostly polynomial dynamical systems of the form

dx
dt

= F (x), x(t) ∈ Rn. (1)

Following Lamb et al. [3,4], we say that a bijective map B : Rn → Rn is a symmetry of the
system (1) when

d(B ◦ ϕ)

dt
= F ◦ B ◦ ϕ (2)

for each trajectory ϕ : t 7→ x(t) of system (1). A map C : Rn → Rn is called a reversible symmetry of
system (1) when

d(C ◦ ϕ)

dt
= −F ◦ C ◦ ϕ (3)

for each trajectory ϕ of (1). The condition (2) implies that the system is invariant under transformation
(x, t) 7→ (B(x), t) and (3) implies the invariance under the map (x, t) 7→ (C(x),−t).

We will be only interested in linear (reversible) symmetries. Let B : Rn → Rn be a linear map.
Then, by the linearity, d(B◦ϕ)

dt = B dϕ
dt = F ◦ ϕ(t). Now, if for some regular n× n matrix B and a fixed

ε ∈ {1,−1}
F (Bx) = εBF (x) (4)

holds for every x ∈ Rn, then B is a symmetry if ε = 1, and it is a reversible symmetry if ε = −1.
Let Γ be a finite cyclic group of invertible linear operators (matrices) on Rn. It is said that system (1)

is Γ-equivariant if every B ∈ Γ is a symmetry of the system. Further, it is said that a system (1) is reversible
Γ-equivariant if there exists a non-trivial homomorphism σ : Γ→ {−1, 1} such that for every B ∈ Γ,

F (Bx) = σ(B)BF (x) (5)

holds true for every x ∈ Rn. Obviously, the elements B ∈ Γ for which σ(B) = −1, are reversing
symmetries and those B with σ(B) = 1 are symmetries. By the successive application of (5), we get

F (Bkx) = σ(B)kBkF (x) (6)

for all x ∈ Rn and for all integers k. It easily follows that all even powers of a reversible symmetry
are symmetries and all odd powers of a reversible symmetry are reversible symmetries. Therefore,
in order that there exists a non-trivial reversible Γ-equivariant system, the order of Γ must be even as it
can be easily seen by inserting the order of Γ for k in (6).

In the next proposition we will see that having only information for a generator of the
group suffices.

Proposition 1. A system (1) is Γ-equivariant if and only if any fixed generator of Γ is a symmetry. A system (1)
is reversible Γ-equivariant if and only if some fixed generator of Γ is a reversible symmetry.

Proof. By application of (6) and taking σ(R) = −1 for the chosen generator R of Γ in the reversible
case, the claims easily follow.

We recall the definition of Kronecker product of matrices related to the tensor product of
operators. The Kronecker product of A = [aij] ∈ Rm,n and B = [bij] ∈ Rp,q is defined as
block matrix A⊗ B =

[
aijB

]
∈ Rmp,nq. It is well know that the following rule can be applied
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(A⊗ B)(C⊗ D) = AC⊗ BD for any matrices A, B, C and D for which the products AC and BD
are well defined.

We shall now restrict ourselves to quadratic dynamical systems of n equations and n unknown
functions x = (x1(t), x2(t), . . . , xn(t))tr. The way we express our system is a bit unusual, but it will
provide some advantages for our consideration. Let us write

ẋ = f0 + F1x + (Id⊗ xtr)Gx, (7)

where f0 ∈ Rn, F1 is a n× n real matrix and G = (G1, . . . , Gn)tr is a n2 × n matrix with symmetric
blocks G1, . . . , Gn, that is, Gk = Gtr

k , k = 1, 2, . . . , n. Each of the matrices Gk is the symmetric matrix
arising from the quadratic form in the k-th equation, for example, ax2 + 2bxy + cy2 = xtr [ a b

b c

]
x with

x = (x, y)tr. For the reader’s convenience, Idn ⊗ xtr is a block-diagonal n× n2 matrix with xtr sitting in
the diagonal blocks.

The algebraic conditions for a (reversible) Γ-equivariant quadratic systems are given in the
following statement.

Theorem 1. Let Γ = {R, R2, . . . , Rq−1, Id} be an order-q cyclic group of invertible n× n matrices, generated
by a matrix R and let ε ∈ {−1, 1}. System (7) is Γ-equivariant (reversible Γ-equivariant, resp.) if and only if
the following equations are satisfied

Rf0 − εf0 = 0, (8)

RF1 − εF1R = 0, (9)

GR− ε(R⊗ R−tr)G = 0, (10)

with choosing ε = 1 and ε = −1 for Γ-equivariance and reversible Γ-equivarivance, respectively.

Before presenting the proof we have a direct consequence of the fact that Equations (8)–(10) are
linear with respect to f0, F1 and G.

Corollary 1. Let Γ be as in Theorem 1. The family of all (reversible) Γ-equivariant systems with parameters
collected in f0 ∈ Rn,1, F1 ∈ Rn,n and G = (G1, . . . , Gn)tr ∈ Rn2,n, forms a linear (vector) subspace in
Rn,1 ×Rn,n ×Rn2,n.

We continue with the proof of Theorem 1.

Proof. By Proposition 1, we set the value of homomorphism σ on the generator R as σ(R) = ε

and apply identity (5) with R in place of B and the form F (x) = f0 + F1x + (Id ⊗ xtr)Gx.
Then, the comparison of the terms of degree zero and one easily provides Equations (8) and (9).
For Equation (10) some more effort is necessary. Equating the terms of order two gives us

H(x) := (Id⊗ xtrRtr)GRx− εR(Id⊗ xtr)Gx = 0, x ∈ Rn. (11)

Evaluating the derivative DH(x) acting at y gives the identity

2(Id⊗ xtrRtr)GRy− 2εR(Id⊗ xtr)Gy = 0, y ∈ Rn

so,
1
2

DH(x) = (Id⊗ xtrRtr)GR− εR(Id⊗ xtr)G

= (Id⊗ xtr)(Id⊗ Rtr)GR− ε(R⊗ xtr)G

= (Id⊗ xtr)(Id⊗ Rtr)GR− ε(Id⊗ xtr)(R⊗ Id)G

= (Id⊗ xtr)((Id⊗ Rtr)GR− ε(R⊗ Id)G).
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The above expression must be zero for all x, so we get

(Id⊗ Rtr)GR− ε(R⊗ Id)G = 0.

Multiplying by (Id⊗ R−tr) = (Id⊗ R−tr) gives

GR− ε(Id⊗ R−tr)(R⊗ Id)G

= GR− ε(R⊗ R−tr)G = 0,

as desired.

Several remarks are in order.

Remark 1. From equality (8) we see that for a (reversible) equivariant quadratic system (with respect to Γ
generated by R), the constant term column vector f0 is either an eigenvector of R corresponding to the eigenvalue
ε or, when ε is not an eigenvalue of R, f0 = 0. For example, when n = 2, and R is the rotation for the angle
2π/3, neither 1 nor −1 is an eigenvalue of R, therefore, f0 = 0, and the origin must be a singular point of
the system.

Remark 2. Equality (9) says that the matrix F1 of the linear part is a zero of the Lie product RF1− F1R (in other
words F1 commutes with R) when ε = 1 and F1 is a zero of the Jordan product RF1 + F1R when ε = −1.

Remark 3. Equation (10) is also a well-known linear equation in linear algebra, it is the so-called (homogeneous)
Sylvester equation. From the next theorem we will recall that non-trivial solutions X of matrix equation
AX− BX = 0 are subject to the existence of common eigenvalues of the given matrices A and B of sizes n× n
and k× k, respectively.

Theorem 2 ([5], Th. 4.4.6). Let A ∈ Cn,n, B ∈ Ck,k and C ∈ Cn,k. The equation AX− XB = C has unique
solution X ∈ Cn,k if and only if A and B do not have any joint eigenvalues, that is, their spectra are disjoint.

In the sequel we apply Theorem 1 for computation of (in fact linear) varieties (in the space of
parameters) of systems which are equivariant or reversible equivariant with respect to a chosen group
of rotations of the plane. The theorem is also valid for the so-called time-reversible systems and mirror
symmetric systems, where the group of symmetries, being of order two, is generated by a non-trivial
involution. For the varieties in the space of parameters for such (merely planar) systems we refer the
reader to our previous work [2].

Theorem 1 will also show why we have many planar equivariant quadratic systems with respect
to the group generated by 2π/3 rotation, meanwhile, planar quadratic equivariant systems with
respect to other rotations are found only among linear systems for the only solution G of system (10) is
trivial. Similarly, we will see that the only non-linear quadratic reversible-equivariant systems will
appear with π/3 or π rotation.

From now on we consider planar (n = 2) quadratic systems (7), parametrized as

ẋ = −(a0 + a00x + a−1,1y + a10x2 + a01xy + a12y2)

ẏ = b0 + b1,−1x + b00y + b21x2 + b10xy + b01y2,
(12)

where

f0 = (−a0, b0)
tr, F1 =

[
−a00 −a−1,1

b1,−1 b00

]
,

G =

[
G1

G2

]
, G1 =

[
−a10 − 1

2 a01

− 1
2 a01 −a12

]
, G2 =

[
b21

1
2 b10

1
2 b10 b01

]
.

(13)
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We further restrict ourselves to rotational groups of symmetries. Recall that the cyclic
multiplicative group Γq of order q generated by 2π/q-angle rotation around the origin is naturally
isomorphic to the additive group Zq. From now on we refer to (reversible) Γq-equivariant systems as
(reversible) Zq-equivariant systems. It is not difficult to find the corresponding linear subspace of the
space of parameters, completely describing (reversible) Zq-equivariant systems and, we present
their description below. In different form as in our setting (complex parametrization), and for
planar polynomial systems of degree not bounded by 2, the Zq-equivariant systems were completely
determined in [6] and reversible Zq-equivariant systems in [7]. Let

Rq =

[
cos ϕq − sin ϕq

sin ϕq cos ϕq

]
(14)

be the rotation in counter clock direction for an angle ϕq = 2π/q, where the integer q ∈ {2, 3, . . . }
is being fixed. In the next proposition we recall the form of (reversible) Zq-equivariant systems in
the plane. The forms of polynomial planar Zq-equivariant systems may be found in [6] and for the
reversible Zq-equivariant ones in [7]. In the following propositions we present the forms of (reversible)
Zq-equivariant systems in terms of coefficient matrices. As we shall see, only Z3-equivariant and
reversible Z6 and reversible Z2-equivariant planar quadratic systems are in some sense non-trivial.

Proposition 2. Consider the system (12).

1. System (12) is Z2-equivariant if and only if f0 = 0 and G = 0.
2. System (12) is Z3-equivariant if and only if f0 = 0,

F1 =

[
−a00 −a−1,1

a−1,1 −a00

]
(15)

and G = [G1, G2]
tr with

G1 =

[
−a10 −b01

−b01 a10

]
, G2 =

[
−b01 a10

a10 b01

]
. (16)

3. System (12) is Zq-equivariant for any q ≥ 4 if and only if f0 = 0, G = 0 and F1 is of the form (15).

The proof will be given after the following proposition in which we describe reversible
Zq-equivariant systems. Note that only even q makes sense.

Proposition 3. Consider the system (12).

1. System (12) is reversible Z2-equivariant if and only if F1 = 0.
2. System (12) is reversible Z4-equivariant if and only if f0 = 0, G = 0 and F1 is of the form

F1 =

[
−a00 −a−1,1

−a−1,1 a00

]
. (17)

3. System (12) is reversible Z6-equivariant if and only if f0 = 0, F1 = 0 and G1, G2 are of the form (16).
4. System (12) is reversible Zq-equivariant for some q = 2k > 6 if and only if f0 = 0, F1 = 0 and G = 0.

Before starting to prove both propositions we need a preliminary argument involving eigenvalues
of the Kronecker product [5]. Let us denote by eig(A) = λ1, λ2, . . . , λn; the list of eigenvalues (possibly
complex) of a n× n real matrix A, listed according to their algebraic multiplicities. The order of the
listing is irrelevant. Then eig(Rq) = eiϕq , e−iϕq ;. It is known that the eigenvalues of the Kronecker
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product of matrices A and B are all products λiµj running through all eigenvalues λi of A and µj of

B. Then, since Rq ⊗ Rtr
q
−1

= Rq ⊗ Rq and, eig(Rq ⊗ Rq) is the list of all four products of eigenvalues,
we have eig(Rq ⊗ Rq) = e2iϕq , e−2iϕq , 1, 1;. When solving equality (10) for G, we have only trivial
solution G = 0 unless there exists a joint member of lists eig(Rq) and eig(εRq ⊗ Rq) due to the
Sylvester type of the equation. If ε = 1, the only instance when G is not necessarily zero, is q = 3,
in this case we have e2iϕ3 = e−iϕ3 . If ε = −1, this happens when q ∈ {2, 6} since e2iϕq = −e−iϕq .

The following Lemma will be used at several places in the proofs.

Lemma 1. Let q 6= 2.

(i) The set of all real matrices commuting with the 2 × 2 rotation matrix Rq is the family
S = {

[ a −b
b a

]
; a, b ∈ R}. A matrix F is similar to a member of the family S if and only if F = λId for

some λ ∈ R or it has a conjugated pair of non-real eigenvalues.
(ii) The set of all real matrices Jordan commuting with the 2 × 2 rotation matrix Rq is the family
T = {

[ a b
b −a

]
; a, b ∈ R}. A matrix F is similar to a member of the family T if and only if it is

either zero or it has nonzero eigenvalues λ,−λ.

Proof. The forms of the matrices in families S and T can be easily validated by direct elementary
computations. All matrices in S are either of the form a Id or have eigenvalues a± ib. In T , all non-zero
members have a pair of non-zero eigenvalues ±

√
a2 + b2. The argument for the second claims in

(i) and (ii) is that the similarity preserves the mentioned eigenvalue types and there are no other
possibilities.

Proof of Proposition 2. Set ε = 1. Validating the if statements, being an elementary exercise, is left to
the reader. By using the above mentioned argument on the eigenvalues of Rq and Rq ⊗ Rq, we observe
that G = 0 unless q = 3. Moreover, as 1 is not an eigenvalue of Rq for any q, we must have f = 0 in
all cases due to (8). Clearly, every linear system is Z2-equivariant, since F (−x) = −F (x) for all x.
For q = 4, by (9) the matrix F1 must commute with R4 and it is thus of the form (15) by (1) of Lemma 1.
That G1, G2 must be of the form (16) when q = 3 can be obtained by a straightforward solution of
linear system (10) with R3 in place of R.

Proof of Proposition 3. Now, let ε = −1. We again write the proof only for the only if statements.
By (8), f0 = 0 for all q 6= 2, since only in the case q = 2, the number −1 is an eigenvalue of R2 = −Id.
If q = 2, it is easy to see that any constant and any quadratic terms can be present in any reversible
Z2-equivariant system which proves (1).

If q ≥ 4, F1 must Jordan commute with R4, and (2) of Lemma 1 gives the desired form. Moreover,
reversible Z6-equivariant system is simultaneously Z3-equivariant, and F1 must also be of the form (15).
Then F1 = 0. The form of G follows from the direct solution of the homogeneous system given by the
Sylvester Equation (10). Finally, when q = 2k ≥ 8, recall (6) and apply R2

q = Rk in order to obtain

F (Rkx) = F (R2
qx) = (−1)2R2

qF (x) = RkF (x) (18)

holding true for all x. This implies that a reversible Zq-equivariant system must as well be
Zk-equivariant. Since k ≥ 4, by (4) of Proposition 2, the system can only be linear. The matrix F1

must furthermore satisfy RqF1 + F1Rq = 0 and since the trace of Rq equals 2 cos π
k , k ≥ 4, and is

non-zero, there must be F1 = 0.

3. Transformation to (Reversible) Zq-Equivariant Systems

Our next interest is to classify the quadratic systems which can be transformed to Γ-equivariant or
reversible Γ-equivariant systems by a bijective affine transformation of Rn. Based on this result we will
then compute the affine varieties in the space of parameters of planar systems. The next theorem is the
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cornerstone of our further consideration. Without loss of any generality, to simplify computations we
will assume that the origin is a singular point of investigated systems, F (0) = 0. Note that the map
x 7→ Sx + x0 is a bijective affine transformation of Rn whenever S is a real invertible matrix. Clearly,
the inverse map is affine as well.

Theorem 3. Let Γ be a finite cyclic group of invertible n× n matrices. Set ε = 1 or ε = −1 when studying
Γ-equivariant and reversible Γ-equivariant systems, respectively.

(1) If there exists an affine transformation of the form x = Sy+ x0, with S invertible, which transforms a given
quadratic system ẋ = F1x + (Id⊗ xtr)Gx, with F1 and G given by (7), to a (reversible) Γ-equivariant
system, then, by introducing the notation

X0 = (Id⊗ xtr
0 )G, (19)

y0 = (F1 + X0)x0, (20)

F̃1 = F1 + 2X0, (21)

the following identities, where R is a generator of the group Γ and B = SRS−1, must be valid

By0 = εy0, (22)

F̃1B− εBF̃1 = 0, (23)

GB− ε(B⊗ B−tr)G = 0. (24)

(2) If there exists a linear transformation of the form x = Sy, which provides transformation of a system given
in (1) of this theorem to (reversible) Γ-equivariant one, then

F1B− εBF1 = 0, (25)

GB− ε(B⊗ B−tr)G = 0, (26)

where B = SRS−1 and R generates the group Γ.
(3) Suppose that Equations (22)–(24) are satisfied for some invertible matrix B of finite order, that is, Bq = Id

for some integer q > 1 and a vector x0. Then the translation x = y + x0 transforms the original system
to a (reversible) ΓB-equivariant one, ΓB = {B, B2, . . . , Bq−1, Id}. Moreover, if B = SRS−1 for some real
invertible matrix S and a matrix R in some canonical form, then the affine map x = Sy + x0 transforms
the system to a (reversible) ΓR-equivariant one. Apparently, if x0 = 0, a linear transformation is possible.

Proof.

(1) By substitution x = Sy + x0 we rewrite the system as

ẏ = S−1F1(Sy + x0) + S−1(Id⊗ (ytrStr + xtr
0 ))G(y + x0)

= S−1F1(x0) + S−1(Id⊗ xtr
0 ))Gx0 + S−1F1Sy + S−1(Id⊗ (ytrStr))Gy

= S−1y0 + S−1F1Sy + S−1(Id⊗ (ytrStr))Gy.

Suppose that the obtained system is (reversible) ΓR-equivariant. Then the constant term vector
g0 = S−1y0 must satisfy (8) with g0 in place of f0. Then Rg0 = εg0, which by multiplying with S
gives that By0 = εy0 and (22) follows. Writing explicitly linear and quadratic terms and using
the proposed notations (19)–(21), gives (23) and (24).

(2) Set x0 = 0, then X0 = 0, y0 = 0 and F̃1 = F1.
(3) In the proof of (1) follow the steps in the reversed direction.
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Problem. We aim to find algebraic conditions on the parameters of planar quadratic systems for
which there exists either

• a linear transformation, or
• a non-linear affine transformation

which transforms the family of systems to

• Zq-equivariant system, q = 2, 3, 4, . . . , or,
• reversible Zq-equivariant system, q = 2, 4, . . . .

3.1. Preliminaries from Polynomial Ring Theory

Let k be a field and k[x1, . . . , xm] be the ring of polynomials in variables x1, . . . , xm. By 〈 f1, . . . , fs〉
we denote the ideal I in k[x1, . . . , xm] generated by polynomials f1, . . . , fs ∈ k[x1, . . . , xm]. The affine
variety V(I) is the set of all solutions of the polynomial system of equations { f j = 0 : f j ∈ I}.

We first recall a fundamental theorem from the elimination theory, which is the basis for our
computational approach. Let I be an ideal in k[x1, . . . , xm] and fix an ` ∈ {0, 1, . . . , m− 1}. The `th
elimination ideal of I is the ideal I(`) = I ∩ k[x`+1, . . . , xm]. Any point (a`+1, . . . , am) ∈ V(I(`)) is called
a partial solution of the system { f = 0 : f ∈ I}. Some partial solutions can be extended to the solutions,
and it depends on the field k whether there are many or not.

For the proof of the following theorem, see for example, References ([8], Chapter 3) or ([9], Chapter 1).

Theorem 4 (Elimination Theorem). Fix an eliminating term order on the ring k[x1, . . . , xm] with x1 > x2 >

· · · > xm, and let G be a Gröbner basis for an ideal I of k[x1, . . . , xm] with respect to this order. Then, for every
`, 0 ≤ ` ≤ m− 1, the set

G` := G ∩ k[x`+1, . . . , xm]

is a Gröbner basis for the `-th elimination ideal I`.

The radical of an ideal I is the ideal

√
I = { f ∈ k[x1, . . . , xm]; there exists p ∈ N such that f p ∈ I}.

An ideal I is a radical ideal if I =
√

I. A proper ideal I is primary if f g ∈ I implies that f ∈ I
or gp ∈ I for some p ∈ N. An ideal I is prime if f g ∈ I implies that f ∈ I or g ∈ I. An ideal I is
primary if

√
I is prime; in this case

√
I is called associated prime ideal of I. A primary decomposition of

I is a finite intersection I = Q1 ∩ Q2 ∩ · · · ∩ Qs where all ideal Qj are primary. It is called minimal

primary decomposition if the associated prime ideal
√

Qj are all distinct and none of them contains the

intersection of all others. Note that V(I) = V(
√

I).
The following fact will be extensively used for our computations.

Theorem 5. (Lasker-Noether Decomposition Theorem) Every ideal I in k[x1, . . . , xm] has a minimal primary
decomposition. All such decompositions have the same number of primary ideals and the same collection of
associated prime ideals.

We will be interested in solutions of systems of polynomial equations f1 = f2 = . . . = fp = 0.
For a certain elimination ideal I(`) associated to I = 〈 f1, . . . , fp〉 obtained by computation of Gröbner
basis with the routine eliminate of SINGULAR [10], we will then compute the minimal associated
primes of I(`) applying the routine minAssGTZ [11,12] of SINGULAR.
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3.2. Calculations

For the family of systems (the notation goes back to [13])

ẋ = −(a00x + a−1,1y + a10x2 + a01xy + a12y2)

ẏ = b1,−1x + b00y + b21x2 + b10xy + b01y2 (27)

we aim to find (at least necessary) conditions on parameters a = (a00, a−1,1, a10, a01, a12) and
b = (b1,−1, b00, b21, b10, b01) which would assure that it is possible to do such a linear/non-linear
affine transformation of the coordinate system that the system becomes (reversible) Zq-equivariant.
Let us for a moment assume that we allow any affine transformation, linear or non-linear. Then recall
that with chosen ε ∈ {−1, 1} and q, Equations (22)–(24) must be satisfied for some B =

[
α β
γ δ

]
and

a vector x0 = (ρ, σ)tr. At the moment we will not impose any condition on x0.
A glance to the equality (22) and the fact that ε is not an eigenvalue of B unless q = 2 and ε = −1,

which case we treat separately, gives us that y0 = (F1 + X0)x0 = 0, that is, x0 = (ρ, σ) must be a
singular point of the system. This produces two polynomial equations

h1 = h2 = 0, (28)

where
h1 := a00r + a10r2 + s(a−1,1 + a01r + a12s),

h2 := b1,−1r + b21r2 + s(b00 + b10r + b01s).

The next four equations arise from (23) and notation (21)

h3 = h4 = h5 = h6 = 0, (29)

where

h3 : = −a−1,1γ− βb1,−1ε− a01γρ− 2βb21ερ− 2a12γσ− βb10εσ

+ α(−1 + ε)(a00 + 2a10ρ + a01s),

h4 : = −a00β− a−1,1δ + αa−1,1ε− βb00ε− 2a10βρ− a01δρ + αa01ερ− βb10ερ− a01βσ

− 2a12δσ + 2αa12εσ− 2βb01εs,

h5 : = b00γ + a00γε− b1,−1δε + b10γρ + 2a10γερ− 2b21δερ + 2b01γσ + a01γεσ− b10δεs

+ α(b1,−1 + 2b21ρ + b10s),

h6 : = γε + b00(δ− δε) + b10δρ + a01γερ− b10δερ + 2b01δσ + 2a12γεσ− 2b01δεσ

+ β(b1,−1 + 2b21ρ + b10s).

Moreover, (24) gives 8 equations

h7 = h8 = h9 = h10 = h11 = h12 = h13 = h14 = 0, (30)
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with
h7 : = −a01γ + β(b10γ− 2b21d)ε− α(a01γε + a10(2− 2δε)),

h8 : = −2a10β− (2αa12γ− 2βb01γ + βb10d)ε + a01δ(−1 + αε),

h9 : = −2a12γ + a2a01ε + 2b2b21ε− α(a01 + β(2a10 + b10)ε),

h10 : = β(−2αb01 + βb10)ε− 2a12(δ− a2ε)− a01(β + αβε),

h11 : = 2αb21 − (a01c2 − 2a10γδ + 2b21d2)ε + b10(γ + γδε),

h12 : = 2βb21 + γ(−2a12γ + a01δ + 2b01d)ε + b10(δ− d2ε),

h13 : = α(b10 + a01γε− b10δε) + 2(b01γ + β(−a10γ + b21d)ε),

h14 : = β(b10 − a01γε + b10δε) + 2(αa12γε + b01(δ− αδε)).

The matrix B must be similar to the rotation matrix Rq. It suffices to require that the α + δ is equal
to 2 cos(2π/q), the trace of Rq, and the determinant αδ− βγ is equal to 1. Moreover, as the determinant

of B is equal to 1, B−1 equals the adjugate of B and, consequently, B−tr =
[

δ −γ
−β α

]
. So we add also:

h15 = h16 = 0, (31)

where
h15 := α + δ− 2 cos(2π/q),

h16 := αδ− βγ− 1.

The polynomial system of equations is finally

h1 = h2 = · · · = h16 = 0. (32)

Our computational procedure consists of the following steps (except in the case ε = −1
and q = 2).

1. Fix the integer q.
2. Fix ε = 1 if considering transformations to Zq-equivariant systems, and set ε = −1 if treating

transformations to reversible Zq-equivariant systems (only if q is even).
3. Set the initial ideal

J0 = 〈h1, h2, . . . , h16〉. (33)

4. Elimination of six parameters α, β, γ, δ, ρ and σ from the ideal J0 by applying routine eliminate
in SINGULAR gives the elimination ideal J(6) =: Iq.

5. By running the procedure minAssGTZ in SINGULAR compute the minimal primary components of
Iq and analyse the properties of the systems belonging to each component.

The exact results are presented in the theorems below. Some of the computations and all resulting
ideals are given in the text file accessible on website (http://www.camtp.uni-mb.si/camtp/amade/
Code-rotations.txt).

A remark is in order at this point. Assume that the elimination ideal and its decomposition into
minimal primary ideals Iq = Iq1 ∩ · · · ∩ Iqk, k ≥ 1, has been obtained by steps (1)–(5) above. Then the
necessary condition that there exists a bijective affine transformation, which brings the system to a
(reversible) Zq-equivariant one is that the vector of its parameters (a, b) belongs to one of the varieties
V(Iqi), i ∈ {1, . . . , k}.

Conversely, the family of partial solutions (a∗, b∗) ∈ V(Iqi ), i ∈ {1, . . . , k}, which can be
extended to solutions, that is, there exists a real 6-tuple (α, β, γ, δ, ρ, σ); solving the polynomial
system (32), provides systems which can be transformed to (reversible) Zq-equivariant ones by affine
transformations. The families in a certain component typically have interesting common properties.
In our case, we will get two components for each q, one corresponding to systems being transformable

http://www.camtp.uni-mb.si/camtp/amade/Code-rotations.txt
http://www.camtp.uni-mb.si/camtp/amade/Code-rotations.txt
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by linear transformations and the other including systems which can be transformed to symmetric
ones by non-linear affine transformations.

In the following theorems, we present necessary and in some cases also sufficient conditions
for transformation of the family of systems (27) to (reversible) Zq-equivariant systems. In all of
these theorems, the sufficient conditions are easy to check. So we give only arguments for the
necessary conditions.

We say that a system from the family (27) is trivial if all parameters a and b are zero. To shorten
writing, we introduce the following families.

• Lq (resp. rLq) will denote the family of all systems (27) such that for each of them there exists
a bijective linear transformation sending it to a Zq-equivariant (resp. reversible Zq-equivariant)
one. The transformation in general depends on the system.

• Aq (resp. rAq) will denote the family of all systems (27) such that for each of them there exists
a non-linear bijective affine transformation sending it to a Zq-equivariant (resp. reversible
Zq-equivariant) one. The transformation in general depends on the system.

Theorem 6. Let q = 2 or q ≥ 4. For any system in the family (27) we claim:

1. The system belongs to Lq if and only if the system is linear and additionaly, when q ≥ 4, its Jacobian
matrix is either scalar multiple of the identity or, it has a pair of conjugated non-real eigenvalues.

2. The system belongs to A2 if and only if the system is linear with the singular Jacobian matrix. The system
belongs to Aq, q ≥ 4, if and only if it is trivial.

Proof. Proposition 2, assertion (1), tells us that the set of all Z2-equivariant systems is exactly the set
of all linear systems (as the origin is a singular point by our assumption). The set of all linear systems
is clearly invariant under any bijective linear transformation of R2.

For q = 4, as every Z4-equivariant system is as well Z2-equivariant, similarly as above, the system
must be linear and when q ≥ 4, its Jacobian matrix F1 must commute with B, B = SRqS−1, by (9),
ε = 1. In turn, S−1F1S commutes with R4 so, F1 must be similar to a member of the family S in (i) of
Lemma 1. Now, the second assertion of (i) provides the form of F1 which proves (1).

In order to exist a non-linear affine transformation, involving also a translation, which converts
original system to a Z2-equivariant one, the system must be linear and the matrix of the linear part
must be singular. Indeed, if we substitute x = y − x0, x0 6= 0, into ẋ = F1x, the obtained system
ẏ = −F1x0 + F1y must have the origin as a singular point. Therefore, F1x0 = 0 and F1 must be singular.
If q ≥ 4, F1 must be a singular member of the family S in (i) of Lemma 1, thus F1 = 0.

In the next theorem we handle the nontrivial case q = 3.

Theorem 7. For any system in the family (27) it holds true:

1. If the system belongs to L3, then its parameters belong to the variety V(I31)and, if the linear part is
non-zero, its determinant must be positive: a−1,1b1,−1 − a00b00 > 0.

I31 =〈a01 − 2b01, 2a10 − b10,

2a−1,1b21 − a00b10 − b00b10 + 2b1,−1b01,

2b1,−1a12 + a−1,1b10 − 2a00b01 − 2b00b01〉.
(34)

2. If the system belongs to A3, then its parameters belong to the variety V(I32), where

I32 = 〈g1, g2, . . . , g7〉

with
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g1 = a01 − 2b01,

g2 = 2a10 − b10,

g3 = 4 a−1,1 b1,−1 a12 b21 − 16 a00 b00 a12 b21 + 2 a00 b1,−1 a12 b10 + 6 b1,−1 b00 a12 b10 − 2 a2
−1,1 b21 b10 −

a00 a−1,1 b2
10 + a−1,1 b00 b2

10 − 4 b2
1,−1 a12 b01 + 12 a00 a−1,1 b21 b01 + 4 a−1,1 b00 b21 b01 − 2 a2

00 b10 b01 −
6 a−1,1 b1,−1 b10 b01 + 4 a00 b00 b10 b01 − 2 b2

00 b10 b01 + 4 a00 b1,−1 b2
01 − 4 b1,−1 b00 b2

01,

g4 = 8 a00 b1,−1 a12 b21 + 4 a2
−1,1 b2

21 − 4 b2
1,−1 a12 b10 − 4 a00 a−1,1 b21 b10 − 4 a−1,1 b00 b21 b10 + 3 a2

00 b2
10 +

6 a−1,1 b1,−1 b2
10 − 4 a00 b00 b2

10 + b2
00 b2

10 − 8 a2
00 b21 b01 − 16 a−1,1 b1,−1 b21 b01 + 24 a00 b00 b21 b01 −

8 a00 b1,−1 b10 b01 − 4 b1,−1 b00 b10 b01 + 12 b2
1,−1 b2

01,

g5 = 4 b2
1,−1 a2

12 + 8 a−1,1 b00 a12 b21 − 8 a−1,1 b1,−1 a12 b10 + 12 a00 b00 a12 b10 − 4 b2
00 a12 b10 + 3 a2

−1,1 b2
10 −

8 a00 b1,−1 a12 b01 − 8 b1,−1 b00 a12 b01 − 8 a2
−1,1 b21 b01 − 4 a00 a−1,1 b10 b01 − 8 a−1,1 b00 b10 b01 + 4 a2

00 b2
01 +

24 a−1,1 b1,−1 b2
01 − 16 a00 b00 b2

01 + 12 b2
00 b2

01,

g6 = 32 a2
00 b00 a12 b21 + 4 a3

−1,1 b2
21 − 4 a2

00 b1,−1 a12 b10 − 4 a−1,1 b2
1,−1 a12 b10 − 12 a00 b1,−1 b00 a12 b10 −

4 a2
−1,1 b00 b21 b10 + 5 a2

00 a−1,1 b2
10 + 6 a2

−1,1 b1,−1 b2
10 − 6 a00 a−1,1 b00 b2

10 + a−1,1 b2
00 b2

10 + 8 a00 b2
1,−1 a12 b01 −

32 a2
00 a−1,1 b21 b01 − 16 a2

−1,1 b1,−1 b21 b01 + 16 a00 a−1,1 b00 b21 b01 + 4 a3
00 b10 b01 + 4 a00 a−1,1 b1,−1 b10 b01 −

8 a2
00 b00 b10 b01 − 4 a−1,1 b1,−1 b00 b10 b01 + 4 a00 b2

00 b10 b01 − 8 a2
00 b1,−1 b2

01 + 12 a−1,1 b2
1,−1 b2

01 +

8 a00 b1,−1 b00 b2
01,

g7 = 4 a3
−1,1 b1,−1 b2

21 − 16 a00 a2
−1,1 b00 b2

21 − 4 a2
00 b2

1,−1 a12 b10 − 4 a−1,1 b3
1,−1 a12 b10 +

4 a00 b2
1,−1 b00 a12 b10 + 16 a2

00 a−1,1 b00 b21 b10 − 4 a2
−1,1 b1,−1 b00 b21 b10 + 16 a00 a−1,1 b2

00 b21 b10 +

5 a2
00 a−1,1 b1,−1 b2

10 + 6 a2
−1,1 b2

1,−1 b2
10 − 12 a3

00 b00 b2
10 − 30 a00 a−1,1 b1,−1 b00 b2

10 + 16 a2
00 b2

00 b2
10 +

a−1,1 b1,−1 b2
00 b2

10 − 4 a00 b3
00 b2

10 + 8 a00 b3
1,−1 a12 b01 − 32 a2

00 a−1,1 b1,−1 b21 b01 − 16 a2
−1,1 b2

1,−1 b21 b01 +

32 a3
00 b00 b21 b01 + 80 a00 a−1,1 b1,−1 b00 b21 b01 − 96 a2

00 b2
00 b21 b01 + 4 a3

00 b1,−1 b10 b01 +

4 a00 a−1,1 b2
1,−1 b10 b01 + 24 a2

00 b1,−1 b00 b10 b01 − 4 a−1,1 b2
1,−1 b00 b10 b01 + 20 a00 b1,−1 b2

00 b10 b01 −
8 a2

00 b2
1,−1 b2

01 + 12 a−1,1 b3
1,−1 b2

01 − 40 a00 b2
1,−1 b00 b2

01.

3. If for a vector of parameters (a∗, b∗) ∈ V(I31) there is a real solution α, β, γ, δ of system (32) with
ρ = σ = 0, then the system belongs to L3.

4. If for a vector of parameters (a∗, b∗) ∈ V(I32) there is a real solution α, β, γ, δ, ρ, σ, w of system (32) with
additional equation 1− wρ = 0, then such a system is a member of A3.

Proof. In this case we apply steps (1)–(5) on page 10. We firstly generate the ideal J0, see (33),
and then J(6) as the 6th elimination ideal, eliminating α, β, γ, δ, ρ, σ by applying eliminate of
SINGULAR. A Gröbner basis of this ideal consists of 11 generators; this gives the ideal I3 (http:
//www.camtp.uni-mb.si/camtp/amade/Code-rotations.txt). It turns out that the ideal I3 has two
minimal associated primes provided by the routine minAssGTZ in SINGULAR, the ideals I31 and I32.
As we have not imposed any conditions on the translation vector (ρ, σ) so far, the variety V(I3)

contains all systems which can be transformed to a Z3-equivariant one by a linear or non-linear affine
transformation.

We repeated the above procedure once more, adding equations ρ = 0 and σ = 0 to the equations
h1 = . . . = h16 = 0 and then the computation of minimal associated primes actually resulted in I31.
To handle non-linear transformations, we have to implement the condition that (ρ, σ) is non-zero.
We have found the following. It suffices to add only the condition ρ 6= 0 by introducing a new variable
w1, constructing a new ideal as the intersection J0 ∩ 〈1−w1ρ〉, and, then computing its 7-th elimination
ideal J(7) by eliminating variables α, β, γ, δ, ρ, σ, w1. It turns out that this ideal has only one minimal
associated prime, say J71. Repeating the same procedure with σ replacing ρ, adding a variable w2,
computing the elimination ideal eliminating α, β, γ, δ, ρ, σ, w2 and decomposing it into its minimal
associated primes, gives again a sole ideal, let us name it J72. They happen to be not only equal,
J71 = J72, but also equal to the second component I32 of I3. Therefore, as the condition (ρ, σ) 6= (0, 0)
gives rise to the solution of problem of describing A3, it can be implemented as introducing the union

http://www.camtp.uni-mb.si/camtp/amade/Code-rotations.txt
http://www.camtp.uni-mb.si/camtp/amade/Code-rotations.txt
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of ideals (J0 ∩ 〈1− w1ρ〉) ∪ (J0 ∩ 〈1− w2σ〉) and computing its minimal associated primes, which by
the above consideration is only one, equal to I32.

We next describe the transformation to reversible Zq-equivariant systems. Here we set ε = −1
throughout. Only even q′s make sense, as we know, and the only non-trivial cases, as we shall see,
occur when q = 2, q = 4 or q = 6.

Theorem 8.

1. System (27) belongs to rL2 if and only if it is reversible Z2-equivariant, that is, all linear terms are zero.
2. If system (27) belongs to rA2, then its parameters belong to the variety of the ideal

I2 =〈4b00a12b21 − b00a01b10 − 2b1,−1a12b10 + a−1,1b2
10 + 2b1,−1a01b01 − 4a−1,1b21b01,

2b00a01b21 − 2b00a10b10 − b1,−1a01b10 + a00b2
10 + 4b1,−1a10b01 − 4a00b21b01,

b00a2
01 − 4b00a10a12 − a−1,1a01b10 + 2a00a12b10 + 4a−1,1a10b01 − 2a00a01b01,

b1,−1a2
01 − 4b1,−1a10a12 − 2a−1,1a01b21 + 4a00a12b21 + 2a−1,1a10b10 − a00a01b10〉.

(35)

3. Conversely, if for a vector of parameters (a∗, b∗) ∈ V(I2) there is a real solution ρ, σ of system (32) with
additional constrain (ρ, σ) 6= (0, 0), then such a system is a member of rA2.

Proof. Here we have to take into account only Equation (23) with B = −Id. Inserting α = δ = −1 and
β = γ = 0 into (29) gives equations

0 = −a00 − 2a10ρ− a01σ,

0 = −a−1, 1− aa01ρ− 2a12σ,

0 = b1,−1 + 2b21ρ + b10σ,

0 = b00 + b10ρ + 2b01σ.

(36)

Setting ρ = σ = 0 instantly gives (1).
For establishing (2), eliminating parameters ρ, σ and computing minimal associated primary

components, gives us one component, the ideal I2.
Assertion in (3) follows by extension of partial solutions.

Finally, let us present the last almost trivial cases, for q ≥ 4.

Theorem 9.

1. System (27) belongs to rL4 if and only if it is linear and, if being non-trivial, the Jacobian has a pair of
antipodal real eigenvalues.

2. If a system (27) belongs to rL6, then the parameters belong to V(I6),

I6 = 〈a00, b00, a−1,1, b1,−1, a01 − 2b01, b10 − 2a10〉.

Conversely, if for a vector of parameters (a∗, b∗) ∈ V(I6) there exist real α, β, γ, δ solving the system (32)
with ρ = σ = 0 and ε = −1, then such a system is a member of rL6.

3. Only trivial systems belong to rLq for q = 2l > 6.
4. Only trivial systems belong to rAq when q ≥ 4.

Proof.

(1) As R2
4 = R2 = −Id, rL4 ⊂ L2, only linear systems belong to rL4. A linear system belongs to rL4,

if and only if its Jacobian matrix F1 satisfies F1B + BF1 = 0, B = SR4S−1, for some invertible S.
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Then, S−1F1S must Jordan commute with R4 which implies that F1 is similar to a member of the
family T in (b) of Lemma 1. Therefore, F1 is of the required form.

(2) Ideal I6 is obtained by executing steps on page 10. The second claim follows by extending
partial solutions.

(3) Notice that R2
q = Rl which implies that rLq ⊂ Ll , and by (2) of Theorem 6, Ll contains only

trivial systems for all l ≥ 4.
(4) Similarly as above, rAq ⊂ Al , l ≥ 2. If l = 2, the systems in Al are all linear with the singular

Jacobian matrix, see (2) of Theorem 6. On the other hand, the Jacobian matrix F1 must also satisfy
F1B + BF1 = 0, B = SR4S−1, for some invertible S. Then it follows that S−1F1S must Jordan
commute with R4. The only singular matrix Jordan commuting with R4 is the zero matrix by (2)
of Lemma 1. Thus, F1 = 0.

For q ≥ 6, we can apply a geometrical reasoning. If the system has a line of singular points,
then as a such cannot be reversible Z6-equivariant unless being trivial. The computational procedure
does not give any real solutions in this case. Alternatively, if the translation point would have been an
isolated singular point, due to reversible Zq symmetry, the system would have 7 singular points which
for a planar quadratic system is not possible. For q ≥ 8 we can apply similar argument or, we can use
the relation rAq ⊂ Al and (2) of Theorem 6.

4. Examples

The following examples illustrate our work.

Example 1. The vector of coefficients of the system

ẋ = −x− 2x2 + 2xy + y2

ẏ = −2x2 − y + 4xy− y2,
(37)

see Figure 1, belongs to the variety V(I31), so it is quite likely that there exists a linear transformation which
brings this system to a Z3-equivariant one. After setting ε = 1, q = 3 and ρ = σ = 0 in equations
h1 = . . . = h16 = 0 and solving this system for α, β, γ, δ, we get the solution

B =

[
α β

γ δ

]
=

√6−1
2 − 3

2

√
3
2√

3
2

−
√

6−1
2

 ,

which is not unique since the inverse of B is a generating symmetry as well. For finding the linear transformation
S which will change the system in the Z3-equivariant one, we do the following. By the eigenvalue decomposition
R3 = SRdiag(e2iπ/3, e4iπ/3)S−1

R and B = SBdiag(e2iπ/3, e4iπ/3)S−1
B , we get B = (SBS−1

R )R3(SBS−1
R )−1.

Therefore, the transformation matrix is

S = SBS−1
R =

[√
2

2 1
0 1

]
.

Now, the transformation x =
√

2
2 u + v, y = v, converts the system to

u̇ = −u− 2uv

v̇ = −u2 − v + v2,
(38)

which is clearly Z3-equivariant with a node at the origin, see Figure 2.
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Figure 1. System (37).
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Figure 2. System (38).

Example 2. The next system will be one which we transform to a reversible Z6-equivariant system by a bijective
linear tranformation. We claim that the system below is a member of rL6,

ẋ = x2 + xy− 2y2

ẏ = 2x2 − 2xy− y2/2,
(39)

see Figure 3. Similarly as above, but this time taking ideal I6 instead, we get the system

u̇ =
3
32

√
23u2 +

23
16

uv− 3
32

√
23v2

v̇ =
23
32

u2 − 3
16

√
23uv− 23

32
v2,

(40)

see Figure 4. Moreover, we have the symmetry matrix

B =

[
α β

γ δ

]
=

[
23−7

√
69

46
9
√

69
46

−4
√

69
23

23+7
√

69
46

]
,

and the linear transformation

S =

[
−
√

23
8

7
8

0 1

]
.
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Figure 3. System (39).
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Figure 4. System (40).

Example 3. An example of system in A3 will be constructed so that we first fix the origin to be a saddle, then
we choose a member (a, b) ∈ V(I32) such that the corresponding system has four singular points. As above we
find the matrix S representing the linear part of transformation and additionally the translation vector (ρ, σ).
We start with

ẋ = −x− x2 + 4xy

ẏ = y + 2xy− 2y2,
(41)

see Figure 5, which parameter-vector belongs to V(I32). The transformed system is now

u̇ = v/
√

3 +
√

3(u2 − v2)

v̇ = −u/
√

3− 2
√

3uv,
(42)

see Figure 6, where the affine map (x, y) = S(u, v) + (ρ, σ) is defined by

S =

[
−
√

3 1
0 1

]
, (ρ, σ) = (−1/3, 1/6).

We obtain exactly two solutions, the other one is the inverse map (u, v) 7→ S−1(x, y)− S−1(ρ, σ).
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Figure 5. System (41).
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Figure 6. System (42).

Example 4. Our last example presents a system which can be send to a reversible Z2-equivariant one, here we
actually need only translation because R2 = −Id. Starting with the system

ẋ = 2x2 − y− xy +
25
8

y2

ẏ = x + 4x2 − 8xy + y2,
(43)

depicted in Figure 7, and transformed to

u̇ = − 1
12

+ 2u2 − uv +
25
8

v2

v̇ =
1

48
+ 4u2 − 8uv + v2,

(44)

which phase portrait is drawn in Figure 8.
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Figure 7. System (43).
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Figure 8. System (44).

Note that this provides a simple method to construct a system with two singular points of the same kind.
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