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Abstract: We present a theoretical study of the excitation of a charged quantum linear oscillator by
chirped laser pulse with the use of probability of the process throughout the pulse action. We focus
on the case of the excitation of the oscillator from the ground state without relaxation. Calculations
were made for an arbitrary value of the electric field strength by utilizing the exact expression for the
excitation probability. The dependence of the excitation probability on the pulse parameters was
analyzed both numerically and by using analytical formulas.
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1. Introduction

The rapid development of the technique for generating short laser pulses with given parameters,
including a frequency chirp [1], necessitates the development of adequate methods for the theoretical
description of photo-processes in the field of such pulses with prescribed parameters. Along with the
amplitude, carrier frequency, and pulse duration, an important parameter is the frequency chirp of the
pulse. In papers [2–6], the features of excitation of a two-level system by chirped laser pulses were
investigated. In work [2], the dependence of the population of the upper level of the quantum system
on the chirp was calculated numerically and analytically for various values of the pulse duration and
field amplitude. In particular, it was shown that in a certain range of parameters, the populations of
a two-level system can be effectively controlled by variation of the chirp. In article [3], an effective
scheme for controlling the superposition state of a two-level system using an ultrashort chirped laser
pulse was proposed. In work [4], a high-precision population transfer was studied in a two-level
model using a chirped Gaussian pulse.

In paper [7], the excitation of a classical Morse oscillator by a laser pulse with a linear frequency
chirp was studied numerically for various values of the electric field strength and pulse duration.
In particular, it was shown that there is a strong dependence of the oscillator excitation energy on the
magnitude of the chirp, especially for multicycle pulses.

Paper [8] was devoted to numerical investigation of H atom ionization by chirped laser pulse.
It was shown that chirped pulse more effectively ionizes atoms than the pulse with zero chirp.

In our previous paper [9], we investigated in detail the excitation of a quantum oscillator by short
laser pulses without chirp using exact expression for the excitation probability obtained in [10]. It was
shown that excitation probability as a function of carrier frequency and pulse duration is strongly
dependent on the electric field amplitude in the pulse. In particular, criteria were established for the
appearance of additional maxima in the probability of excitation for two types of envelopes of the
laser pulse.
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This work is a generalization of papers [9,10] in the case of a laser pulse with a linear frequency
chirp. The main attention is paid to the influence of the frequency chirp on the probability of excitation
of a quantum oscillator for various values of the carrier frequency and pulse duration.

2. Results

We considered a linear quantum oscillator excited by a laser pulse from the ground state.
We assumed that pulse duration τ was sufficiently short so the condition τ < 1/γ was fulfilled (γ is
oscillator relaxation constant) and the relaxation of the oscillator could be neglected.

According to paper [11], the following expression is appropriate for the probability of oscillator
excitation from the ground state during the entire time of the pulse action:

Wn0 =

⇀
n

n

n!
exp(−n). (1)

Here, n is the average number of energy quanta at own frequency absorbed by oscillator during
excitation. It is equal to (for the oscillator without relaxation)

n =
q2

2m}ω0

∣∣∣E(ω0)
∣∣∣2 (2)

Here, q, m, and ω0 are the charge, mass, and own frequency of oscillator. E(ω) is the Fourier
transform of electric field strength in the laser pulse. Furthermore, we considered pulse with Gaussian
envelope and the linear frequency chirp.

Fourier transform of electric field strength in the Gaussian pulse with the linear frequency chirp
has the form [12]:
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Here, E0 is the field amplitude, ω and τ are the carrier frequency and duration of laser pulse, α is
the dimensionless chirp, and ∆ω is the spectral width of the pulse which is equal to

∆ω =

√
1 + α2
√

2τ
. (4)

In the resonance approximation |ω−ω0| << ω0 one has
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Let us introduce the following dimensionless parameters:

ζ =
4√

1 + α2 Ω10

ω0
, β =

ω0τ
√

1 + α2
, ∆ =

ω−ω0

ω0
, (6)

where

Ω10 =
d10E0

} =
qE0

}
√

2mω0
(7)

is the resonance Rabi frequency and d10 is the matrix element of the electric dipole moment for the 0→
1 transition in the linear quantum oscillator. It is convenient for the analytical description of oscillator
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excitation to express the average number of absorbed quanta n via dimensionless parameters in the
form

n(∆, β, ζ) =
π
2
ζ2β2 exp

(
−β2∆2

)
. (8)

Here, we used Formulas (2) and (5)–(7).
Substituting Equation (8) in Equation (1), we obtained the formula for the numerical and analytical

description of the excitation probability of the quantum linear oscillator by chirped laser pulse from
the ground state.

The results of the numerical calculations are presented in the figures below for the excitation
probability of transition 0→ 1 in the quantum oscillator for weak and strong fields and various values
of the dimensionless frequency chirp. Calculations were made with the use of oscillator parameters q,
m, and ω0 corresponding to the vibration of the CO molecule in harmonic approximation.

Let us consider analytically the spectral dependence of the excitation probability of the transitions
0→ n in the quantum oscillator. It was easy to obtain the position of spectral maxima using Formulas
(1) and (8). In a weak field regime when

Ω10τ <

√
2n
π

4√
1 + α2 (9)

there is only one maximum at ∆ = 0 (see Figure 1a). With increasing electric field strength (i.e., Rabi
frequency Ω10), this maximum became a minimum. When the inverse to (9) inequality held, two
maxima appeared at the following detunings of the carrier frequency from the own oscillator frequency
(according to Figure 1b): ∣∣∣∆1,2

∣∣∣ = √1 + α2

ω0τ

√
ln

 π2n
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10τ

2

√
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 (10)

One can see from this formula that the spectral distance between maxima in a strong field regime
grew with the increase in chirp modulus and amplitude of the field.

The central spectral maximum turned into a minimum with the increasing field amplitude due to
the depopulation of the ground state under the action of a laser pulse with a carrier frequency equal
to the own frequency of the oscillator. The appearance of two maxima at a qualitative level can be
associated with the emergence of quasienergy states under the action of a laser field.

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 7 

 

 

(a) 

 
(b) 

Figure 1. Spectrum of the excitation probability of transition 01 in quantum oscillator for weak 
field —E0 = 10−3 a.u. (a) strong field—E0 = 0.04 a.u. (b) and different values of the dimensionless 
frequency chirp: solid line— = 0, dotted line— = 0.5, dashed line— = 1. 

Figure 2 demonstrates the dependence of the oscillator excitation probability at transition 01 
as a function of dimensionless pulse duration (parameter ) for a weak (a) and strong (b) field and 
for different values of the frequency chirp. 

Figure 1. Cont.
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Figure 1. Spectrum of the excitation probability of transition 0→ 1 in quantum oscillator for weak field
—E0 = 10−3 a.u. (a) strong field—E0 = 0.04 a.u. (b) and different values of the dimensionless frequency
chirp: solid line α = 0, dotted line—α = 0.5, dashed line—α = 1.

Figure 2 demonstrates the dependence of the oscillator excitation probability at transition 0→ 1
as a function of dimensionless pulse duration (parameter β) for a weak (a) and strong (b) field and for
different values of the frequency chirp.

Figure 2 shows that as the field amplitude increased, the maximum that was at β = (100–150) in
Figure 2a disappeared and became the minimum. Two new maxima appeared: one at β << 100 and
the other at β > 200. The distance between the two maxima increased with the increasing magnitude
of the chirp and of the field amplitude.

For the weak field amplitude, when the following inequality held (here, e is the base of the
natural logarithm)

Ω10 <

√
2ne
π
|ω−ω0|
4√

1 + α2
(11)

we had

τmax =

√
1 + α2

|ω−ω0|
. (12)

For strong fields, when inverse to (11) inequality holding only an approximate analytical description
of these maxima was possible. Then, one could obtain the following relations:
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The resonance case (∆ = 0) should be treated separately and the result was:

τmax =

√
2n
π

4√
1 + α2

Ω10
(14)
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In conclusion, we gave an expression for the electric field strength amplitude corresponding to
the maximum probability of the excitation of transition 0→ n with other fixed parameters:

E0max =
}ω0

d10

√
2n
π

√
1 + α2

ω0τ
exp

 (ω−ω0)
2τ2

2(1 + α2)

. (15)

Note that the effects considered in this paper in a strong field are due to the nonlinear nature of
the interaction of the laser pulse with the quantum oscillator. The presence of chirp only modifies
their manifestation.
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Figure 2. Excitation probability of transition 0→ 1 in the quantum oscillator as function of dimensionless
pulse duration (β) for a weak field—E0 = 10−3 a.u. (a) strong field—E0 = 0.04 a.u. (b) and different
values of dimensionless chirp: solid line—α = 0, dotted line—α = 0.5, dashed line—α = 1.
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3. Conclusions

Using the exact formula for the probability of exciting a quantum linear oscillator, we investigated
the dependence of this probability on the carrier frequency and the pulse duration of laser pulse with
Gaussian envelope at different values of the frequency chirp. Analytical expressions were derived that
describe the features of oscillator excitation for different magnitudes of pulse parameters including
frequency chirp. It was shown, in particular, that for weak fields the probability of excitation has
one maximum as a function of the carrier frequency and pulse duration. With increasing electric
field strength, a second maximum appears, the position of which depends on the frequency chirp
value. With an increase in the magnitude of the chirp, these maxima shift to the region of large values
of frequency detuning and pulse duration. In this case, the width of the maxima increases. Thus,
by changing the magnitude of the chirp, one can control the probability of excitation of the quantum
oscillator in a desired way.
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