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Abstract: Time-reversal symmetry is broken for mixed and possibly unstable Dirac neutrino propagation
through absorbing media. This implies that interplay between the neutrino mixing, refraction, absorption
and/or decay can be described by non-Hermitian quantum dynamics. We derive an identity which sets
up direct connection between the fundamental neutrino parameters (mixing angles, CP-violating phase,
mass-squared splittings) in vacuum and their effective counterparts in matter.
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1. Introduction

High-energy neutrinos, unique messengers of the most violent processes that occurred during
the evolution of the Universe, are under extensive study by the modern neutrino telescopes
(see reference [1] for a comprehensive recent review and further references). The propagation of
these particles through dense matter requires a theoretical consideration accounting for two major
phenomena. (i) The quantum coherence and decoherence, most clearly manifested in the neutrino
oscillation phenomenon, firmly established experimentally [2–10]. The corresponding theoretical
approaches rely on either quantum mechanical [11–13] or quantum field theory [14–20] considerations.
(ii) Neutrino production, inelastic interactions, and possible decays, typically considered by the
classical transport theory [21–23].

In this paper we consider a more particular aspect of the full problem—propagation of high-energy
neutrinos in dense environment with accounting for neutrino masses, mixing, CP violation, refraction,
and absorption. We do not consider neutrino energy loss through neutral-current (NC) interactions
and charged-current (CC) induced reaction chains, but of course we take into account disappearance
of the neutrinos due to all these processes. In other words, the formalism does not predict the
energy spectrum transformation due to the energy losses. This is acceptable in the case of sufficiently
narrow boundary energy spectrum or nearly-monochromatic neutrino source, when we are interested
in the flavor evolution at the same energy as on the boundary or in the source (e.g., annihilating
non-relativistic WIMS). Since, in this statement of the problem, neutrinos simply disappear with time
(due to both CC and NC interactions), the time-reversal symmetry is broken and the neutrino flavor
evolution can be described within a non-Hermitian formulation of quantum mechanics. The inclusion
of the neutrino energy loss effects is of course very important in more general and practically interesting
conditions, but it will also require the more universal formalism, like quantum kinetic equations or a
hybrid (approximate) technique based on the non-Hermitian dynamics and classical transport theory.
One of the simplest realization of the hybrid approach is in the replacement of the mean free paths Λα

(see Section 2) to effective functions Λ̃α derived from solution of the classical transport equations [22]
for the given initial spectrum/source and given profiles of density and composition of the medium
along the neutrino beam direction. Such a method conserves the generic results of the present study.
The approach based on the the non-Hermitian dynamics has been considered earlier in reference [24],
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for a generic three-level system and latter in reference [25], for a simplified two-flavor mixing model,
which included either the mixing between the active (standard) or active and sterile neutrinos; see also
references [26,27] for recent developments and further references. Here we follow these studies and
consider the Standard Model’s three-neutrino species.

Consideration of the neutrino oscillation phenomenon in the simplest adiabatic regime usually
requires a diagonalization of the corresponding Hamiltonian. The instantaneous eigenstates are
defined not uniquely but up to certain (“rephasing”) transformations, keeping the observable
transition and survival probabilities Pαβ ≡ Pνα→νβ

invariant. This is discussed in greater details
in Section 3. An important class of observables invariant under the same transformations is known as
flavor-symmetric Jarlskog invariants, introduced by Jarlskog [28] for quarks. In the three-generation
case, the nine Jarlskog invariants are equal and uniquely determine the amount of CP violation in the
quark sector of the Standard Electroweak Model. Similar rephasing invariants determine the amount
of CP violation in the lepton sector. In present work, we found an extension of the Jarlskog invariants
for the dissipating three-neutrino system; this is one of the results of this study.

As was first pointed out by Wolfenstein [29], the neutrino mixing is modified when neutrinos
propagate through normal C-asymmetric matter, owing to the CC forward scattering of electron
neutrinos on electrons in matter. In some circumstances, these ghostly interactions may drastically
modify the neutrino oscillation pattern [30,31]. It is however interesting that a nontrivial
observable proportional to the Jarlskog invariant, J, is also a “matter invariant”. More precisely,
in references [32,33] (see also reference [34] for a relevant result), an identity has been found which
relates the products of J and neutrino squared-mass splittings, ∆mij = m2

i − m2
j , in vacuum and

in matter:
J∆m2

23∆m2
31∆m2

12 = J̃∆m̃2
23∆m̃2

31∆m̃2
12. (1)

Here tilde marks the quantities perturbed by the matter. This identity has proved to be useful
in various phenomenological and mathematical aspects of the oscillating neutrino propagation in
matter [35–80]. The main result of the present work is a generalization of the identity (1) to the case of
the neutrino propagation in absorbing media, which can be described by non-Hermitian dynamics.
Since the quantities in the RHS of Equation (1) are defined as instantaneous functions, the adiabaticity
conditions are not formally essential (so we do not study the corresponding constraints). However,
the actual usage of the generalized identity is mainly reasonable in the environments where the
neutrino flavors evolve adiabatically or quasi-adiabatically. It is also pertinent to note that the adiabatic
solution can be adapted to form the basis of a numerical method: by dividing the medium into a
number of layers with slowly varying densities, the solution is obtained as chronological product of
the (non-unitary) evolution operators for each layer [25]. Though, our primary interest is motivated by
the neutrino oscillation phenomenon, the obtained identity has a much wider range of applicability
relevant to arbitrary quantum three-level system governed by a non-Hermitian Hamiltonian.

The paper is organized as follows. The master equation and appropriate theoretical framework
are considered in Section 2. In Section 3 we introduce two “mixing matrices” for a generic
three-level quantum dissipative system, describing, in particular, the neutrino mixing, refraction,
decay, and absorption due to standard or nonstandard inelastic neutrino-matter interactions. We show
that these matrices are not uniquely defined. In Section 4 we study the generalized “rephasing” and
“dynamic” invariants constructed from the elements of the mixing matrices and of the Hamiltonian
matrix, respectively. Then we put forward the relation generalizing the identity (1). The proof of
this relation is delivered in Appendix A. Finally, we draw the summary in Section 5. Some auxiliary
information is summarized in Appendix B.

2. Master Equation

The Schrödinger equation

i
d
dt
|ν f (t)〉 = H(t)|ν f (t)〉 (2)
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describes the time evolution of the three-neutrino state

|ν f (t)〉 =
(
|νe(t)〉, |νµ(t)〉, |ντ(t)〉

)T (3)

governed by a Hamiltonian H(t). The bold face is used for matrices in what follows. The flavor να

(α = e, µ, τ) and mass νi (i = 1, 2, 3) eigenstates are related to each other as

|να〉 =
3

∑
i=1

Vαi|νi〉. (4)

This definition differs from that used in quantum filed theoretical (QFT) description.
Their relationship is given by VQFT = V∗QM. Since the observables are flavor changing probabilities
Pαβ(t) = |〈νβ|να(t)〉|2, it is convenient to rewrite Equation (2) as one for the corresponding amplitudes

Sβα(t) = 〈νβ|να(t)〉 (5)

as follows
i

d
dt

S(t) = H(t)S(t) =
[
VH0V† + W(t)

]
S(t), (S(0) = 1) , (6)

where S(t) is a matrix with elements Sαβ(t) (evolution operator), V is the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix with elements Vαi, H0, and W(t)
are the free and neutrino-matter interaction Hamiltonians, respectively,

H0 =

E1 0 0
0 E2 0
0 0 E3

 , W(t) = −pν

ne(t)− 1 0 0
0 nµ(t)− 1 0
0 0 nτ(t)− 1

 , (7)

Ei =
√

p2
ν + m2

i ' pν + m2
i /2pν and mi are, respectively, the total energies and masses of the

neutrino mass eigenstates, and nα(t) are the complex indices of refraction; where we assume, as usual,
that neutrinos are ultrarelativistic, p2

ν ' E2
ν � max

(
m2

i
)
. In normal matter, the functions nα are linear

with respect to the densities of scatterers. The same is also true for hot media under the assumption that
introduction of a finite temperature does not break the coherent condition [81]. With these assumptions

nα(t) = 1 +
2πN0ρ(t)

p2
ν

∑
k

Yk(t) fναk(0), (8)

where N0 = 6.022× 1023 cm−3, fναk(0) is the amplitude for the να zero-angle scattering from particle k
(k = e, p, n, . . .), ρ(t) is the density of the matter (in g/cm3) and Yk(t) is the number of particles k per
AMU in the point t of the medium. The optical theorem says (see, e.g., reference [82]):

Im [ fναk(0)] =
pν

4π
σtot

ναk (pν) , (9)

where σtot
ναk (pν) is the total cross section for ναk scattering due to both CC and NC interactions.

This implies that

pνIm [nα(t)] =
N0ρ(t)

2 ∑
k

Yk(t)σtot
ναk (pν) =

1
2Λα(t)

, (10)

where Λα(t) is the (energy dependent) mean free path of neutrino να in the point t of the medium.
It is convenient to transform Equation (6) into the one with a traceless Hamiltonian. For this

purpose we define the matrix

S̃(t) = exp
{

i
3

∫ t

0
Tr
[
H0 + W(t′)

]
dt′
}

S(t). (11)



Symmetry 2020, 12, 1285 4 of 16

After substituting Equation (11) into Equation (6), we have

i
d
dt

S̃(t) = H(t)S̃(t), S̃(0) = 1, (12)

where

H(t) =

 We − qe Hτ H∗µ
H∗τ Wµ − qµ He

Hµ H∗e Wτ − qτ

 . (13)

The constantsWα andHα are determined by the elements of the PMNS matrix, V = ‖Vαi‖, and
by the neutrino masses mi:

Wα = ∑
i
|Vαi|2∆i, Hα = ∑

i
η

βγ
α VβiV∗γi∆i,

∆i =
m2

i − 〈m2〉
2pν

, 〈m2〉 = 1
3 ∑

i
m2

i .
(14)

The PMNS matrix is usually parameterized in terms of three mixing angles and the CP-violating
(Dirac) phase (see Appendix B); the two additional phases present in the Majorana case do not affect
the neutrino oscillation pattern in matter. Here and below, the symbol η

βγ
α is defined to be 1 if the

triplet (α, β, γ) is a cyclic permutation of the indices (e, µ, τ) and zero otherwise.
The traceless Hamiltonian (13) depends on the distance L = t through the set of optical potentials,

q = (qe, qµ, qτ), related to the neutrino indices of refraction, nα(t), for a given medium:

qα(t) = pν[nα(t)− 〈n(t)〉], 〈n(t)〉 = 1
3 ∑

α

nα(t). (15)

It is seen from Equation (15) that evolution of the neutrino flavors in arbitrary medium depends
on no more than two independent potentials qα(t) due to the identity

∑
α

qα(t) = 0.

In general, the indices of refraction nα(t) and thus optical potentials qα(t) are complex functions
(see below). Owing to radiative electroweak contributions, the real parts of the potentials for different
neutrino flavors α differ in magnitude, in both normal cold media [83,84] and hot CP-symmetric
plasma (such as the early Universe) [81]. The imaginary parts of the potentials are given by

Im qα(t) =
1
2

[
1

Λα(t)
− 1

Λ(t)

]
,

1
Λ(t)

=
1
3 ∑

α

1
Λα(t)

, (16)

and are in general nonzero functions of neutrino energy and distance. This makes the Hamiltonian (13)
non-Hermitian.

The neutrino flavor changing oscillation probabilities are just the squared absolute values of the
elements of the evolution matrix S(t),

P [να(0)→ να′(t)] ≡ Pαα′(t) = |Sα′α(t)|2 . (17)

Taking into account Equations (7), (10), (11) and (17) yields

Pαα′(t) = A(t)
∣∣∣S̃α′α(t)

∣∣∣2 , (18)



Symmetry 2020, 12, 1285 5 of 16

where

A(t) = exp
[
−
∫ t

0

dt′

Λ(t′)

]
. (19)

This factor accounts for the attenuation (due to inelastic scattering) of all flavors in the mean.
It is apparent that in the absence of mixing and refraction (that is an appropriate approximation at
superhigh energies),

S̃α′α = δα′α exp
[
−
∫ t

0
Im qα(t′)dt′

]
and, according to Equations (18) and (19), the survival and transition probabilities reduce to the
“classical limit”:

Pαα′(t) = δαα′ exp
[
−
∫ t

0

dt′

Λα(t′)

]
.

Owing to the complex potentials qα, the Hamiltonian in Equation (13) is non-Hermitian and
the evolution matrix S̃(t) is non-unitary. It is apparent that the matrix H(t) becomes Hermitian
when one neglects differences in the mean free paths of neutrinos of different flavors. In this
case, Equation (12) reduces to one describing the standard Mikheev–Smirnov–Wolfenstein (MSW)
mechanism [29–31]. Clearly, this approximation may not be good for very thick environments and/or
very high neutrino energies.

At essentially all energies, the CC total cross sections for e or µ production in the neutrino and
antineutrino interaction with nucleons are well above the one for the τ-lepton production,

σCC
νe,µ N > σCC

ντ N , σCC
νe,µ N > σCC

ντ N .

This is because of large value of the τ-lepton mass, mτ , which leads to several consequences (see,
e.g., references [85,86] and references therein):

(i) high neutrino energy threshold for τ production;
(ii) sharp shrinkage of the phase spaces for the CC interactions of ντ and ντ with protons, neutrons,

and nuclei;
(iii) kinematic correction factors (∝ m2

τ) to the nucleon structure functions (the corresponding
structures are negligible for the electron production and small for the muon production);

(iv) the differences σCC
νe,µ N − σCC

ντ N and σCC
νe,µ N − σCC

ντ N are relatively slow varying functions of
(anti)neutrino energy, having gently sloping maxima in the range of 10–100 PeV and vanishing at
super-high energies.

Since the Standard Model NC interactions are universal for all neutrino flavors, it is clear from
Equation (16), that the NC contributions to the total cross sections are canceled out from Im qα and
thus Im

(
qe,µ − qτ

)
> 0 at all energies. However, nonstandard NC interactions may be in general

different for different flavors and thus contribute to both real and imaginary parts of the potentials
qα. Moreover, flavor-changing interactions (see, e.g., references [87,88] and references therein) would
contribute to the non-diagonal elements of the Hamiltonian making these t-dependent.

Similar situation, although in different and rather narrow energy range, holds for νe interaction
with electrons. This is a particular case for the C-asymmetric media (planets, stars, astrophysical jets,
etc.) because of the W-boson resonance formed in the neighborhood of Eres

ν = m2
W/2me ≈ 6.33 PeV

through the reactions

νee− →W− → hadrons and νee− →W− → ν``
− (` = e, µ, τ).

Just at the resonance peak, σtot
νee ≈ 250 σtot

νe N (see, e.g., references [89–91] and references therein).
We conclude this section by explicitly emphasizing that the master equation to be solved is given

by Equation (12) and the relevant definitions are given by Equations (8) and (13)–(15).
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3. Mixing Matrices In Matter

Solution of the master equation (12) in adiabatic approximation has been found in reference [24].
In the present study we do not use the explicit form of that solution. Moreover, below we will
consider an abstract Hamiltonian, which is a 3× 3 complex matrix H describing a generic 3-level
quantum system with dissipation (through absorption, friction, decay, etc.); such a Hamiltonian
may, in particular, be used to describe the nonstandard neutrino interactions and decay. Below,
keeping in mind our particular problem (3ν oscillation in absorbing matter) we will use specific
notation. In the most general case the Hamiltonian H depends on time through a set of real parameters
(x1(t), . . . , xs(t)) ≡ x(t). We define these parameters in such a way that xk(t) = 0 in vacuum; in our
particular case, x = q and this condition holds automatically.

Let us now define the two “mixing matrices” V(m)(x) and V(m)(x) by the equations

H(x)V(m)(x) = V(m)(x)E(x), H†(x)V(m)(x) = V(m)(x)E†(x), (20)

with
E(x) = diag

(
EN1(x), EN2(x), EN3(x)

)
. (21)

The solution to Equations (20) can be found in two steps. First, one have to find the eigenvalues
and eigenvectors of the matrices H and H†,

H(x)|N; x〉 = EN(x)|N; x〉, H†(x)|N; x〉 = E∗N(x)|N; x〉, (22)

where

|N; x〉 =

UNe(x)
UNµ(x)
UNτ(x)

 , |N; x〉 =

UNe(x)
UNµ(x)
UNτ(x)

 , (23)

with N = −1, 0,+1 or simply −, 0,+. For simplicity we will neglect possible degeneracy of the energy
levels. Then the eigenvectors form a complete biorthonormal set:

〈N′; x|N; x〉 = δNN′ , ∑
N
|N; x〉〈N; x| = I, (24)

or, in the component-wise notation,

∑
α

U ∗
N′α(x)UNα(x) = δNN′ , ∑

N
U ∗

Nα(x)UNβ(x) = δαβ. (25)

Second, from simple algebra it follows that the matrices

U(x) ≡ ‖Uαj(x)‖ = (|N1; x〉, |N2; x〉, |N3; x〉) ,

U(x) ≡ ‖Uαj(x)‖ =
(
|N1; x〉, |N2; x〉, |N3; x〉

)
,

(26)

satisfy Equations (20) and thus diagonalize the Hamiltonian matrix H.
The solutions (26) are not however unique. In most general case, the following products

V(m)(x) = U(x)D†(x), V(m)(x) = U(x)D(x),

with arbitrary diagonal and nonsingular matrices D(x) and D(x), also satisfy Equation (20).
This freedom implies that not all elements of the mixing matrices V(m)(x) and V(m)(x) are physically
observable. Recall that the eigenvectors have been built so that

U(0) = U(0) = V
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and the following obvious conditions are assumed: Uiα(0) = UNiα(0) = Uiα(0) = UNiα(0) = Viα.
Equations (20) and (21) are universal, i.e., they are hold true for any medium and for any value of the
neutrino momentum. In particular, they are hold for vacuum. Therefore

V(m)(0) = V(m)(0) = V, (27)

where V is the vacuum mixing matrix (“correspondence principle”). Hence, according to Equation (27),
the matrices D(x) and D(x) must satisfy the condition

D(0) = D(0) = I.

As a less trivial limiting case, let us consider a medium, where the imaginary part of the optic
potentials can be neglected (this standard approximation is true in essence for any media if its thickness
is much smaller than the neutrino mean free path). In this case the eigenvalues EN(x) are real and the
following inequalities are valid [32]:

E−(x) ≤ E0(x) ≤ E+(x).

Considering these limiting cases one finds that the numeration of the diagonal elements in (21)
(i.e., the one-to-one congruence Ni ⇔ i) is given by the neutrino mass hierarchy. For example, N1 = −1,
N2 = 0, N3 = +1 for the “natural hierarchy”, m2

1 > m2
2 > m2

3 but N1 = +1, N2 = 0, N3 = −1 for
the following case: m2

3 < m2
2 < m2

1; other cases can be derived similarly. Thus, to simplify formulas,
we will use the notation ENi (x) = Ei(x), when it is suitable.

According to Equations (25) and (26)

∑
α

U∗αiUαj = ∑
α

U∗αiUαj = δij, (28)

or, equivalently,
U†(x)U(x) = U†(x)U(x) = I. (29)

It is reasonable to impose the same constraint on the mixing matrices:[
V(m)(x)

]†
V(m)(x) =

[
V(m)(x)

]†
V(m)(x) = I.

Then
D†(x)D(x) = D†(x)D†(x) = I

and therefore

D(x) = diag
(

e−a1+ib1 , e−a2+ib2 , e−a3+ib3
)

,

D(x) = diag
(

e+a1+ib1 , e+a2+ib2 , e+a3+ib3
)

,

where ak = ak(x) and bk = bk(x) are arbitrary real functions which vanish at x = 0.
As is generally known (see for example [92]), the vacuum mixing matrix for Majorana neutrinos

may be written in the form VDM, where

DM = diag
(

eiδM
1 , eiδM

2 , eiδM
3

)
and δM

k are the (real) CP-violating parameters (strictly speaking, in the three-neutrino case only
two ”Majorana parameters” δM

k are independent [92,93]). By analogy, one may call the functions
δk(x) = bk(x) + iak(x) and δk(x) = bk(x)− iak(x) the Majorana phases in matter. Just as in the vacuum
case, these phases play no part in neutrino oscillations at relativistic energies [92,93]. Here they merely
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show the ambiguity in the definition of the mixing matrices in matter. The additional CP-violating
Majorana phases are always associated with effects whose magnitude is suppressed by the factor(
mM

i /Eν

)2, where Eν is the neutrino energy in the relevant process and mM
i is the mass of the Majorana

neutrino taking part in the process [93,94].

4. Rephasing Invariant In Matter

Let us introduce two sets of functions

J±αi(x) =
1
2

η
βγ
α η

jk
i V(m)

βj (x)V(m)
γk (x)

[
V(m)

βk (x)V(m)
γj (x)

]∗
± 1

2
η

βγ
α η

jk
i V(m)

βj (x)V(m)
γk (x)

[
V(m)

βk (x)V(m)
γj (x)

]∗
,

which provide the straightforward generalization of the rephasing invariants considered in
references [32,33,95,96] (see also reference [34,97] for the Dirac neutrino case or in reference [94]
for the Majorana neutrino case (Cheng [94] considered so called second-class rephasing invariant
which contains the Majorana phases).

First of all, the functions J±αi(x) are independent of the Majorana phases, δk(x), δk(x),
i.e., these functions are independent of the D(x) and D(x) matrices. This fact elucidates the term
“rephasing invariant”. Therefore the functions J±αi(x) can be rewritten as

J±αi(x) =
1
2

η
βγ
α η

jk
i Uβj(x)Uγk(x)U

∗
βk(x)U

∗
γj(x)

± 1
2

η
βγ
α η

jk
i Uβj(x)Uγk(x)U∗βk(x)U

∗
γj(x). (30)

Let us rewrite Equation (29) in the form

U†(x) = U−1(x), U†(x) = U−1(x),

or, in terms of the matrix elements,

U∗αi(x) = |U|−1η
βγ
α η

jk
i

(
UβjUγk −UβkUγj

)
,

U∗αi(x) = |U|−1η
βγ
α η

jk
i

(
UβjUγk −UβkUγj

)
.

(31)

Using these identities, one finds from Equation (30) that the real functions

ReJ−αi(x) = +
1
2

Re
(

Ue1Uµ2Uτ3|U†| −Ue1Uµ2Uτ3|U†|
)
≡ R(x),

ImJ+αi(x) = −
1
2

Im
(

Ue1Uµ2Uτ3|U†|+ Ue1Uµ2Uτ3|U†|
)
≡ I(x),

(32)

as well as their complex combination

J(x) = I(x) + iR(x) (33)

are independent of indices α and i. Clearly, in the Hermitian case J−αi = 0 and therefore
J = I = −Im

(
Ue1Uµ2Uτ3|U†|

)
.

We consider now the following constructions:

J (x) =
1
2i

[
∏

α

η
βγ
α Hβγ(x)−∏

α

η
βγ
α Hγβ(x)

]
, (34)
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P(x) = ∏
α

η
βγ
α |Hβγ(x)|, P(x) = ∏

α

η
βγ
α |Hγβ(x)|, (35)

ϕ(x) = ∑
α

η
βγ
α arg Hβγ(x), ϕ(x) = ∑

α

η
βγ
α arg H∗γβ(x). (36)

It is easy to show that
J (x) = =(x) + i<(x),

where

=(x) = 1
2
[
P(x) sin ϕ(x) + P(x) sin ϕ(x)

]
,

<(x) = 1
2
[
P(x) cos ϕ(x)−P(x) cos ϕ(x)

]
.

In the absence of flavor-changing neutral currents the off-diagonal matrix elements of the
Hamiltonian are time independent and thus J is a complex constant (“dynamic invariant”). In the
most general case the following theorem holds true:

J (x) = ςJ(x)∏
L

ηMN
L [EM(x)− EN(x)] , (37)

where ς is the parity of the cyclic permutation

(
−1 0 +1
N1 N2 N3

)
. The proof of this theorem is given

in Appendix A. The obtained identity is very general and does not depend on explicit form of the
eigenvalues and eigenvectors, but the full the derivation of these quantities is discussed in detail in
reference [24].

To gain a further insight into the identity (37), it is instructive to consider an example
of neutrino propagation in matter governed by the Hamiltonian (7). Then, it is seen that
P(q) = P(q), ϕ(q) = ϕ(q) and these quantities are time independent:

P(q) = P(q) =
∣∣∣∣∣∑i

VµiV∗τi∆i

∣∣∣∣∣ ·
∣∣∣∣∣∑i

VeiV∗µi∆i

∣∣∣∣∣ ·
∣∣∣∣∣∑i

VτiV∗ei∆i

∣∣∣∣∣ ,

ϕ(q) = ϕ(q) = arg ∑
i

(
VµiV∗τi + VeiV∗µi + VτiV∗ei

)
∆i.

Therefore, < = 0 and J = = = P sin ϕ in this case. It can be verified that the LHS of Equation (37)
is exactly the product the Jarlskog invariant (see Appendix B)

J0 = J(0) =
1
8

sin δ cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 (38)

and the factor

∏
i

η
jk
i

m2
j −m2

k

2pν
= ∏

i
η

jk
i

∆m2
jk

2pν
.

Let us define the effective (complex) masses m̃i = m̃i(q) of the neutrino mass eigenstates in matter
by

Ei = ENi
def
=

m̃2
i − 〈m̃2〉

2pν
, 〈m̃2〉 = 1

3 ∑
i

m̃2
i ,

where we used the obvious identity ∑i Ei = 0 and analogy with the vacuum case (see Equation (14)).
Then Equation (37) can be written as

J(0)∆m2
23∆m2

31∆m2
12 = J(q)∆m̃2

23(q)∆m̃2
31(q)∆m̃2

12(q). (39)
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The obtained identity is evidently a generalization of the relation (1) to the case of
neutrino-absorbing environments. Remarkably that the effective masses are complex functions but the
RHS of Equation (39) is proved to be real. The form of Equation (39) confirms that Equations (32) and
(33) provide a non-Hermitian extension of the usual rephasing invariant.

5. Summary

In this paper we considered three-neutrino oscillations in thick (including neutrino opaque)
media by using the non-Hermitian quantum dynamics framework, which describes the interplay
between neutrino mixing, refraction and absorption. We proved an identity which relates (through
a product of splitting of the complex energy levels) a rephasing invariant in vacuum and absorbing
matter. These findings might be of certain interest in studies of soft-spectrum, high-energy neutrino
propagation through Earth or astrophysical objects (jets, blast waves, etc.) whose thickness along the
neutrino beam is comparable to or larger than the neutrino mean free path.

Author Contributions: Conceptualization, D.V.N. and V.A.N.; methodology, D.V.N. and V.A.N.; validation,
D.V.N., V.A.N., and D.S.S.; writing—original draft preparation, D.V.N., V.A.N., and D.S.S.; writing—review and
editing, D.V.N., V.A.N., D.S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PMNS Pontecorvo-Maki-Nakagawa-Sakata (mixing matrix)
MSW Mikheev-Smirnov-Wolfenstein (mechanism, equation)
KM Kobayashi-Maskawa (representation of mixing matrix)
CK Chau-Keung (representation of mixing matrix)
CC Charged Current
NC Neutral Current
AMU Atomic Mass Unit
CP Charge Parity
LHS Left-Hand Side
RHS Right-Hand Side
QED Quod Erat Demonstrandum (Lat.)

Appendix A. Proof of The Theorem

Using the definitions for the mixing matrices one can easily show that

J =
1
2i ∏

α

η
βγ
α ∑

i
UβiU

∗
γiEi −

1
2i ∏

α

η
βγ
α ∑

i
U∗βiUγiEi,

where we omitted argument x for short. Denote

Gijk = UeiUµjUτk, Gijk = UeiUµjUτk.

Then J can be written as

1
2i ∑

ijk
EiEjEk

(
GijkG∗kij − G∗ijkGkij

)
.

It can be shown from here that

J =
1
2i ∑

i
η

jk
i E2

i

(
Cj

i Ej + Ck
i Ek

)
, (A1)
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where
Cj

i = GiijG
∗
jii + GijiG

∗
iij + GjiiG

∗
iji − G∗iijGjii − G∗ijiGiij − G∗jiiGiji

and the coefficients Ck
i are defined in a similar way. To derive Equation (A1) it has been taken into

account that the terms in the sum over i, j, k with i = j = k, as well as with the i, j, and k which unequal
to each other, are vanish. This statement is apparent for the term

1
2i ∑

i
E3

i

(
GiiiG

∗
iii − G∗iiiGiii

)
.

As regards the term
1
2i ∑ijk

′EiEjEk

(
GijkG∗kij − G∗ijkGkij

)
(where prime indicates that all indices are different), it can be rewritten in the following form:

− i
2
|H|∑

i
η

jk
i

(
GijkG∗kij + GikjG

∗
jik − G∗ijkGkij − G∗ikjGjik

)
, (A2)

where it is taken into account that

E1E2E3 = E−E0E+ = |H|

By applying sequentially the identities (31), one can transform the term (A2) to the following
form:

− i
2
|H|∑

i
η

jk
i

(
Gijk|U|∗ − G∗ijk|U|

) (
Uτ jU∗τ j −UτkU∗τk

)
,

However, according to Equation (32),

1
2

η
jk
i

(
Gijk|U|∗ − G∗ijk|U|

)
= R− iI = −i J.

Hence the term (A2) vanishes.
Next, using the identities (28), (31), and definition (32) yields

η
jk
i Cj

i = −2i J, η
jk
i Ck

i = 2i J.

Direct substituting into Equation (A1) then gives

J = −J ∑
i

η
jk
i E2

i (Ej − Ek) = J ∏
i

η
jk
i (Ej − Ek) = ςJ ∏

L
ηMN

L (EM − EN) .

QED.

Appendix B. Rephasing Invariant In Vacuum

The imaginary part of the rephasing invariant in vacuum (Jarlskog invariant) may be written
in terms of the mixing angles and CP-violating Dirac phase dependent of the parametrization of the
PMNS mixing matrix. For example, in the Kobayashi–Maskawa (KM) representation [98],

V(KM) =

 c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3eiδ c1c2s3 + s2c3eiδ

−s1s2 c1s2c3 + c2s3eiδ c1s2s3 − c2c3eiδ


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(where si = sin θi and ci = cos θi for i = 1, 2, 3; 0 < θi < π/2, −π < δ ≤ π, det V(KM) = −eiδ),

J(KM)
0 = sin δ sin θ1 ∏

i
sin 2θi

In the now more conventional Chau–Keung (CK) representation [99],

V(CK) =

 c12c31 s12c31 s31e−iδ

−s12c23 − c12s23s31eiδ c12c23 − s12s23s31eiδ s23c31

s12s23 − c12c23s31eiδ −c12s23 − s12c23s31eiδ c23c31


(where sjk = sin θjk and cjk = cos θjk for j, k = 1, 2, 3; 0 < θjk < π/2 (θjk ≡ θjk), 0 ≤ δ < 2π,
det V(CK) = 1),

J(CK)
0 = sin δ cos θ31 ∏

i
η

jk
i sin 2θjk

Here the symbol η
jk
i has the same sense as η

βγ
α . Details about the interconnection between the KM

and CK representations can be found in references [99–101].

References

1. Pérez de los Heros, C. Probing Particle Physics with Neutrino Telescopes; World Scientific: Singapore, 2020.
[CrossRef]

2. Cleveland, B.T.; Daily, T.; Davis, R., Jr.; Distel, J.R.; Lande, K.; Lee, C.K.; Wildenhain, P.S.; Ullman, J.
Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 1998,
496, 505–526. [CrossRef]

3. Kaether, F.; Hampel, W.; Heusser, G.; Kiko, J.; Kirsten, T. Reanalysis of the GALLEX solar neutrino flux and
source experiments. Phys. Lett. B 2010, 685, 47–54. [CrossRef]

4. Abdurashitov, J.N.; Gavrin, V.N.; Gorbachev, V.V.; Gurkina, P.P.; Ibragimova, T.V.; Kalikhov, A.V.; Khairnasov,
N.G.; Knodel, T.V.; Mirmov, I.N.; Shikhin, A.A.; et al. Measurement of the solar neutrino capture rate with
gallium metal. III: Results for the 2002–2007 data-taking period. Phys. Rev. C 2009, 80, 015807. [CrossRef]

5. Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.;
Kasuga, S.; et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567.
[CrossRef]

6. Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G.J.; Bogert, D.; Cao, S.V.;
Castromonte, C.M.; et al. Combined analysis of νµ disappearance and νµ → νe appearance in MINOS using
accelerator and atmospheric neutrinos. Phys. Rev. Lett. 2014, 112, 191801. [CrossRef] [PubMed]

7. Ahn, M.H.; Aoki, S.; Bhang, H.; Boyd, S.; Casper, D.; Choi, J.H.; Fukuda, S.; Fukuda, Y.; Gajewski, W.;
Hara, T.; et al. Indications of neutrino oscillation in a 250 km long baseline experiment. Phys. Rev. Lett. 2003,
90, 041801. [CrossRef]

8. Ashie, Y.; Hosaka, J.; Ishihara, K.; Itow, Y.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.;
Moriyama, S.; et al. Evidence for an oscillatory signature in atmospheric neutrino oscillation. Phys. Rev. Lett.
2004, 93, 101801. [CrossRef]

9. Abe, S.; Ebihara, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto,
Y.; et al. Precision measurement of neutrino oscillation parameters with KamLAND. Phys. Rev. Lett. 2008,
100, 221803. [CrossRef]

10. An, F.P.; Bai, J.Z.; Balantekin, A.B.; Band, H.R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Boddy, K.;
Brown, R.L.; et al. Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 2012,
108, 171803. [CrossRef]

11. Beuthe, M. Oscillations of neutrinos and mesons in quantum field theory. Phys. Rept. 2003, 375, 105–218.
[CrossRef]

12. Giunti, C.; Kim, C.W. Fundamentals of Neutrino Physics and Astrophysics; Oxford University Press: Oxford,
UK, 2007. [CrossRef]

http://dx.doi.org/10.1142/11122
http://dx.doi.org/10.1086/305343
http://dx.doi.org/10.1016/j.physletb.2010.01.030
http://dx.doi.org/10.1103/PhysRevC.80.015807
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/10.1103/PhysRevLett.112.191801
http://www.ncbi.nlm.nih.gov/pubmed/24877929
http://dx.doi.org/10.1103/PhysRevLett.90.041801
http://dx.doi.org/10.1103/PhysRevLett.93.101801
http://dx.doi.org/10.1103/PhysRevLett.100.221803
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://dx.doi.org/10.1016/S0370-1573(02)00538-0
http://dx.doi.org/10.1093/acprof:oso/9780198508717.001.0001


Symmetry 2020, 12, 1285 13 of 16

13. Kayser, B.; Kopp, J. Testing the wave packet approach to neutrino oscillations in future experiments. arXiv
2010, arXiv:hep-ph/1005.4081.

14. Grimus, W.; Stockinger, P. Real oscillations of virtual neutrinos. Phys. Rev. D 1996, 54, 3414–3419. [CrossRef]
[PubMed]

15. Cardall, C.Y.; Chung, D.J.H. The MSW effect in quantum field theory. Phys. Rev. D 1999, 60, 073012.
[CrossRef]

16. Stockinger, P. Introduction to a field-theoretical treatment of neutrino oscillations. Pramana 2000, 54, 203–214.
[CrossRef]

17. Beuthe, M. Towards a unique formula for neutrino oscillations in vacuum. Phys. Rev. D 2002, 66, 013003.
[CrossRef]

18. Giunti, C.; Kim, C.W.; Lee, J.A.; Lee, U.W. On the treatment of neutrino oscillations without resort to weak
eigenstates. Phys. Rev. D 1993, 48, 4310–4317. [CrossRef]

19. Akhmedov, E.K.; Kopp, J. Neutrino oscillations: Quantum mechanics vs. quantum field theory. J. High
Energy Phys. 2010, 1004, 8. [CrossRef]

20. Naumov, D.V.; Naumov, V.A. A Diagrammatic treatment of neutrino oscillations. J. Phys. G 2010, 37, 105014.
[CrossRef]

21. Berezinsky, V.S.; Gazizov, A.Z.; Zatsepin, G.T.; Rozental, I.L. On penetration of high-energy neutrinos
through earth and a possibility of their detection by means of EAS. Sov. J. Nucl. Phys. 1986, 43, 406.

22. Naumov, V.A.; Perrone, L. Neutrino propagation through dense matter. Astropart. Phys. 1999, 10, 239–252.
[CrossRef]

23. Vincent, A.C.; Argüelles, C.A.; Kheirandish, A. High-energy neutrino attenuation in the Earth and its
associated uncertainties. J. Cosmol. Astropart. Phys. 2017, 1711, 12. [CrossRef]

24. Korenblit, S.E.; Kuznetsov, V.E.; Naumov, V.A. Geometric phases for three-level non-Hermitian system.
In Proceedings of the International Workshop on “Quantum Systems: New Trends and Methods”, Minsk,
Belarus, 23–29 May 1994; Barut, A.O., Feranchuk, I.D., Shnir, Y.M., Tomil’chik, L.M., Eds.; World Scientific:
Singapore, 1995; pp. 209–217.

25. Naumov, V.A. High-energy neutrino oscillations in absorbing matter. Phys. Lett. B 2002, 529, 199–211.
[CrossRef]

26. Huang, G.-Y. Sterile neutrinos as a possible explanation for the upward air shower events at ANITA.
Phys. Rev. D 2018, 98, 043019. [CrossRef]

27. Luo, S. Neutrino oscillation in dense matter. Phys. Rev. D 2020, 101, 033005. [CrossRef]
28. Jarlskog, C. Commutator of the quark mass matrices in the standard electroweak model and a measure of

maximal CP nonconservation. Phys. Rev. Lett. 1985, 55, 1039–1042. [CrossRef]
29. Wolfenstein, L. Neutrino oscillations in matter. Phys. Rev. D 1978, 17, 2369–2374. [CrossRef]
30. Mikheyev, S.P.; Smirnov, A.Y. Resonance amplification of oscillations in matter and spectroscopy of solar

neutrinos. Sov. J. Nucl. Phys. 1985, 42, 913–917.
31. Mikheev, S.P.; Smirnov, A.Y. Resonant amplification of neutrino oscillations in matter and solar neutrino

spectroscopy. Nuovo Cim. C 1986, 9, 17–26. [CrossRef]
32. Naumov, V.A. Three neutrino oscillations in matter and topological phases. Sov. Phys. JETP 1992, 74, 1–8.
33. Harrison, P.F.; Scott, W.G. CP and T violation in neutrino oscillations and invariance of Jarlskog’s determinant

to matter effects. Phys. Lett. B 2000, 476, 349–355. [CrossRef]
34. Krastev, P.I.; Petcov, S.T. Resonance amplification and T-violation effects in three neutrino oscillations in the

Earth. Phys. Lett. B 1988, 205, 84–92. [CrossRef]
35. Yokomakura, H.; Kimura, K.; Takamura, A. Matter enhancement of T violation in neutrino oscillation.

Phys. Lett. B 2000, 496, 175–184. [CrossRef]
36. Parke, S.J.; Weiler, T.J. Optimizing T violating effects for neutrino oscillations in matter. Phys. Lett. B 2001,

501, 106–114. [CrossRef]
37. Xing, Z.-Z. Sum rules of neutrino masses and CP violation in the four neutrino mixing scheme. Phys. Rev. D

2001, 64, 033005. [CrossRef]
38. Yasuda, O. Vacuum mimicking phenomena in neutrino oscillations. Phys. Lett. B 2001, 516, 111–115.

[CrossRef]
39. Guo, W.-L.; Xing, Z.-Z. Rephasing invariants of CP and T violation in the four neutrino mixing models.

Phys. Rev. D 2002, 65, 073020. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.54.3414
http://www.ncbi.nlm.nih.gov/pubmed/10021013
http://dx.doi.org/10.1103/PhysRevD.60.073012
http://dx.doi.org/10.1007/s12043-000-0017-1
http://dx.doi.org/10.1103/PhysRevD.66.013003
http://dx.doi.org/10.1103/PhysRevD.48.4310
http://dx.doi.org/10.1007/JHEP04(2010)008
http://dx.doi.org/10.1088/0954-3899/37/10/105014
http://dx.doi.org/10.1016/S0927-6505(98)00046-2
http://dx.doi.org/10.1088/1475-7516/2017/11/012
http://dx.doi.org/10.1016/S0370-2693(02)01258-3
http://dx.doi.org/10.1103/PhysRevD.98.043019
http://dx.doi.org/10.1103/PhysRevD.101.033005
http://dx.doi.org/10.1103/PhysRevLett.55.1039
http://dx.doi.org/10.1103/PhysRevD.17.2369
http://dx.doi.org/10.1007/BF02508049
http://dx.doi.org/10.1016/S0370-2693(00)00153-2
http://dx.doi.org/10.1016/0370-2693(88)90404-2
http://dx.doi.org/10.1016/S0370-2693(00)01288-0
http://dx.doi.org/10.1016/S0370-2693(01)00111-3
http://dx.doi.org/10.1103/PhysRevD.64.033005
http://dx.doi.org/10.1016/S0370-2693(01)00920-0
http://dx.doi.org/10.1103/PhysRevD.65.073020


Symmetry 2020, 12, 1285 14 of 16

40. Gluza, J.; Zrałek, M. Parameters’ domain in three flavor neutrino oscillations. Phys. Lett. B 2001, 517, 158–166.
[CrossRef]

41. Harrison, P.F.; Scott, W.G. Neutrino matter effect invariants and the observables of neutrino oscillations.
Phys. Lett. B 2002, 535, 229–235. [CrossRef]

42. Kimura, K.; Takamura, A.; Yokomakura, H. Exact formula of probability and CP violation for neutrino
oscillations in matter. Phys. Lett. B 2002, 537, 86–94. [CrossRef]

43. Minakata, H.; Nunokawa, H.; Parke, S.J. CP and T trajectory diagrams for a unified graphical representation
of neutrino oscillations. Phys. Lett. B 2002, 537, 249–255. [CrossRef]

44. Kimura, K.; Takamura, A.; Yokomakura, H. Exact formulas and simple CP dependence of neutrino oscillation
probabilities in matter with constant density. Phys. Rev. D 2002, 66, 073005. [CrossRef]

45. Yokomakura, H.; Kimura, K.; Takamura, A. Overall feature of CP dependence for neutrino oscillation
probability in arbitrary matter profile. Phys. Lett. B 2002, 544, 286–294. [CrossRef]

46. Leung, C.N.; Wong, Y.Y.Y. T violation in flavor oscillations as a test for relativity principles at a neutrino
factory. Phys. Rev. D 2003, 67, 056005. [CrossRef]

47. Wong, Y.Y.Y. T violation tests for relativity principles. J. Phys. G 2003, 29, 1857–1860. [CrossRef]
48. Jacobson, M.; Ohlsson, T. Extrinsic CPT violation in neutrino oscillations in matter. Phys. Rev. D 2004,

69, 013003. [CrossRef]
49. Harrison, P.F.; Scott, W.G.; Weiler, T.J. Exact matter covariant formulation of neutrino oscillation probabilities.

Phys. Lett. B 2003, 565, 159–168. [CrossRef]
50. Xing, Z.-Z. Flavor mixing and CP violation of massive neutrinos. Int. J. Mod. Phys. A 2004, 19, 1–80.

[CrossRef]
51. Kimura, K.; Takamura, A.; Yokomakura, H. Analytic formulation of neutrino oscillation probability in

constant matter. J. Phys. G 2003, 29, 1839–1842. [CrossRef]
52. Zhang, H.; Xing, Z.-Z. Leptonic unitarity triangles in matter. Eur. Phys. J. C 2005, 41, 143–152. [CrossRef]
53. Jarlskog, C. Invariants of lepton mass matrices and CP and T violation in neutrino oscillations. Phys. Lett. B

2005, 609, 323–329. [CrossRef]
54. Xing, Z.-Z.; Zhang, H. Reconstruction of the neutrino mixing matrix and leptonic unitarity triangles from

long-baseline neutrino oscillations. Phys. Lett. B 2005, 618, 131–140. [CrossRef]
55. Takamura, A.; Kimura, K. Large non-perturbative effects of small ∆m2

21/∆m2
31 and sin θ13 on neutrino

oscillation and CP violation in matter. J. High Energy Phys. 2006, 1, 53. [CrossRef]
56. Nunokawa, H.; Parke, S.J.; Valle, J.W.F. CP violation and neutrino oscillations. Prog. Part. Nucl. Phys. 2008,

60, 338–402. [CrossRef]
57. Kneller, J.P.; McLaughlin, G.C. Three flavor neutrino oscillations in matter: Flavor diagonal potentials, the

adiabatic basis and the CP phase. Phys. Rev. D 2009, 80, 053002. [CrossRef]
58. Chiu, S.H.; Kuo, T.K.; Liu, L.X. Neutrino mixing in matter. Phys. Lett. B 2010, 687, 184–187. [CrossRef]
59. Oki, H.; Yasuda, O. Sensitivity of the T2KK experiment to the non-standard interaction in propagation.

Phys. Rev. D 2010, 82, 073009. [CrossRef]
60. Asano, K.; Minakata, H. Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments.

J. High Energy Phys. 2011, 6, 22. [CrossRef]
61. Zhou, Y.-L. The Kobayashi-Maskawa parametrization of lepton flavor mixing and its application to neutrino

oscillations in matter. Phys. Rev. D 2011, 84, 113012. [CrossRef]
62. Xing, Z.-Z. Leptonic commutators and clean T violation in neutrino oscillations. Phys. Rev. D 2013, 88, 017301.

[CrossRef]
63. Minakata, H.; Parke, S.J. Simple and compact expressions for neutrino oscillation probabilities in matter.

J. High Energy Phys. 2016, 1, 180. [CrossRef]
64. Xing, Z.-Z.; Zhu, J.-Y. Analytical approximations for matter effects on CP violation in the accelerator-based

neutrino oscillations with E . 1 GeV. J. High Energy Phys. 2016, 7, 11. [CrossRef]
65. Denton, P.B.; Minakata, H.; Parke, S.J. Compact perturbative expressions for neutrino oscillations in matter.

J. High Energy Phys. 2016, 6, 51. [CrossRef]
66. Li, Y.-F.; Zhang, J.; Zhou, S.; Zhu, J.-Y. Looking into analytical approximations for three-flavor neutrino

oscillation probabilities in matter. J. High Energy Phys. 2016, 12, 109. [CrossRef]
67. Zhou, S. Symmetric formulation of neutrino oscillations in matter and its intrinsic connection to

renormalization-group equations. J. Phys. G 2017, 44, 044006. [CrossRef]

http://dx.doi.org/10.1016/S0370-2693(01)00962-5
http://dx.doi.org/10.1016/S0370-2693(02)01764-1
http://dx.doi.org/10.1016/S0370-2693(02)01907-X
http://dx.doi.org/10.1016/S0370-2693(02)01946-9
http://dx.doi.org/10.1103/PhysRevD.66.073005
http://dx.doi.org/10.1016/S0370-2693(02)02545-5
http://dx.doi.org/10.1103/PhysRevD.67.056005
http://dx.doi.org/10.1088/0954-3899/29/8/360
http://dx.doi.org/10.1103/PhysRevD.69.013003
http://dx.doi.org/10.1016/S0370-2693(03)00749-4
http://dx.doi.org/10.1142/S0217751X04016969
http://dx.doi.org/10.1088/0954-3899/29/8/356
http://dx.doi.org/10.1140/epjc/s2005-02163-7
http://dx.doi.org/10.1016/j.physletb.2005.01.057
http://dx.doi.org/10.1016/j.physletb.2005.05.016
http://dx.doi.org/10.1088/1126-6708/2006/01/053
http://dx.doi.org/10.1016/j.ppnp.2007.10.001
http://dx.doi.org/10.1103/PhysRevD.80.053002
http://dx.doi.org/10.1016/j.physletb.2010.03.035
http://dx.doi.org/10.1103/PhysRevD.82.073009
http://dx.doi.org/10.1007/JHEP06(2011)022
http://dx.doi.org/10.1103/PhysRevD.84.113012
http://dx.doi.org/10.1103/PhysRevD.88.017301
http://dx.doi.org/10.1007/JHEP01(2016)180
http://dx.doi.org/10.1007/JHEP07(2016)011
http://dx.doi.org/10.1007/JHEP06(2016)051
http://dx.doi.org/10.1007/JHEP12(2016)109
http://dx.doi.org/10.1088/1361-6471/aa5fd9


Symmetry 2020, 12, 1285 15 of 16

68. Yang, Y.; Kneller, J.P.; Perkins, K.M. Multi-flavor effects in stimulated transitions of neutrinos. arXiv 2017,
arXiv:hep-ph/1706.01339.

69. Xing, Z.-Z.; Zhou, S.; Zhou, Y.-L. Renormalization-group equations of neutrino masses and flavor mixing
parameters in matter. J. High Energy Phys. 2018, 5, 15. [CrossRef]

70. Xing, Z.-Z.; Zhou, S. Naumov- and Toshev-like relations in the renormalization-group evolution of quarks
and Dirac neutrinos. Chin. Phys. C 2018, 42, 103105. [CrossRef]

71. Petcov, S.T.; Zhou, Y.L. On neutrino mixing in matter and CP and T violation effects in neutrino oscillations.
Phys. Lett. B 2018, 785, 95–104. [CrossRef]

72. Wang, X.; Zhou, S. Analytical solutions to renormalization-group equations of effective neutrino masses and
mixing parameters in matter. J. High Energy Phys. 2019, 5, 35. [CrossRef]

73. Denton, P.B.; Parke, S.J. Simple and precise factorization of the Jarlskog invariant for neutrino oscillations in
matter. Phys. Rev. D 2019, 100, 053004. [CrossRef]

74. Xing, Z.-Z.; Zhu, J.-Y. Sum rules and asymptotic behaviors of neutrino mixing in dense matter. Nucl. Phys. B
2019, 949, 114803. [CrossRef]

75. Denton, P.B.; Parke, S.J.; Zhang, X. Neutrino oscillations in matter via eigenvalues. Phys. Rev. D 2020,
101, 093001. [CrossRef]

76. Wang, X.; Zhou, S. On the properties of the effective Jarlskog invariant for three-flavor neutrino oscillations
in matter. Nucl. Phys. B 2020, 950, 114867. [CrossRef]

77. Xing, Z.-Z. Flavor structures of charged fermions and massive neutrinos. Phys. Rept. 2020, 854, 1–147.
[CrossRef]

78. Zhou, S. Continuous and discrete symmetries of renormalization group equations for neutrino oscillations
in matter. arXiv 2020, arXiv:hep-ph/2004.10570.

79. Zhu, J.-Y. Radiative corrections to the lepton flavor mixing in dense matter. J. High Energy Phys. 2020, 5, 97.
[CrossRef]

80. Minakata, H. Neutrino amplitude decomposition: Toward observing the atmospheric—Solar wave
interference. arXiv 2020, arXiv:hep-ph/2006.16594.

81. D’Olivo, J.C.; Nieves, J.F.; Torres, M. Finite temperature corrections to the effective potential of neutrinos in a
medium. Phys. Rev. D 1992, 46, 1172–1179. [CrossRef]

82. Goldberger, M.L.; Watson, K.M. Collision Theory; John Wiley & Sons, Inc.: New York, NY, USA, 1967.
83. Botella, F.J.; Lim, C.S.; Marciano, W.J. Radiative corrections to neutrino indices of refraction. Phys. Rev. D

1987, 35, 896–901. [CrossRef]
84. Horvat, R.; Pisk, K. Radiative corrections for forward coherent neutrino scattering. Nuovo Cim. A 1989,

102, 1247–1253. [CrossRef]
85. Paschos, E.A.; Yu, J.Y. Neutrino interactions in oscillation experiments. Phys. Rev. D 2002, 65, 033002.

[CrossRef]
86. Kuzmin, K.S.; Lyubushkin, V.V.; Naumov, V.A. Fine-tuning parameters to describe the total charged-current

neutrino-nucleon cross section. Phys. Atom. Nucl. 2006, 69, 1857–1871. [CrossRef]
87. Blennow, M.; Coloma, P.; Fernandez-Martinez, E.; Hernandez-Garcia, J.; Lopez-Pavon, J. Non-unitarity,

sterile neutrinos, and non-standard neutrino interactions. J. High Energy Phys. 2017, 4, 153. [CrossRef]
88. Capozzi, F.; Chatterjee, S.S.; Palazzo, A. Neutrino mass ordering obscured by nonstandard interactions.

Phys. Rev. Lett. 2020, 124, 111801. [CrossRef]
89. Gandhi, R.; Quigg, C.; Reno, M.H.; Sarcevic, I. Ultrahigh-energy neutrino interactions. Astropart. Phys. 1996,

5, 81–110. [CrossRef]
90. Gandhi, R.; Quigg, C.; Reno, M.H.; Sarcevic, I. Neutrino interactions at ultrahigh-energies. Phys. Rev. D

1998, 58, 093009. [CrossRef]
91. Huang, G.; Liu, Q. Hunting the Glashow resonance with PeV neutrino telescopes. J. Cosmol. Astropart. Phys.

2020, 2003, 5. [CrossRef]
92. Langacker, P.; Petcov, S.T.; Steigman, G.; Toshev, S. On the Mikheev–Smirnov–Wolfenstein (MSW) mechanism

of amplification of neutrino oscillations in matter. Nucl. Phys. B 1987, 282, 589–609. [CrossRef]
93. Bilenky, S.M.; Petcov, S.T. Massive neutrinos and neutrino oscillations. Rev. Mod. Phys. 1987, 59, 671–754.

[CrossRef]
94. Cheng, H.-Y. Cosmological baryon production in spontaneous CP violating models without strong CP

problem. Phys. Rev. D 1986, 34, 3824–3830. [CrossRef]

http://dx.doi.org/10.1007/JHEP05(2018)015
http://dx.doi.org/10.1088/1674-1137/42/10/103105
http://dx.doi.org/10.1016/j.physletb.2018.08.025
http://dx.doi.org/10.1007/JHEP05(2019)035
http://dx.doi.org/10.1103/PhysRevD.100.053004
http://dx.doi.org/10.1016/j.nuclphysb.2019.114803
http://dx.doi.org/10.1103/PhysRevD.101.093001
http://dx.doi.org/10.1016/j.nuclphysb.2019.114867
http://dx.doi.org/10.1016/j.physrep.2020.02.001
http://dx.doi.org/10.1007/JHEP05(2020)097
http://dx.doi.org/10.1103/PhysRevD.46.1172
http://dx.doi.org/10.1103/PhysRevD.35.896
http://dx.doi.org/10.1007/BF02800335
http://dx.doi.org/10.1103/PhysRevD.65.033002
http://dx.doi.org/10.1134/S1063778806110081
http://dx.doi.org/10.1007/JHEP04(2017)153
http://dx.doi.org/10.1103/PhysRevLett.124.111801
http://dx.doi.org/10.1016/0927-6505(96)00008-4
http://dx.doi.org/10.1103/PhysRevD.58.093009
http://dx.doi.org/10.1088/1475-7516/2020/03/005
http://dx.doi.org/10.1016/0550-3213(87)90699-7
http://dx.doi.org/10.1103/RevModPhys.59.671
http://dx.doi.org/10.1103/PhysRevD.34.3824


Symmetry 2020, 12, 1285 16 of 16

95. Naumov, V.A. Three neutrino oscillations in matter, CP violation and topological phases. Int. J. Mod. Phys. D
1992, 1, 379–399. [CrossRef]

96. Naumov, V.A. Berry’s phases for three neutrino oscillations in matter. Phys. Lett. B 1994, 323, 351–359.
[CrossRef]

97. Toshev, S. Maximal T violation in matter. Phys. Lett. B 1989, 226, 335–340. [CrossRef]
98. Kobayashi, M.; Maskawa, T. CP Violation in the renormalizable theory of weak interaction. Prog. Theor. Phys.

1973, 49, 652–657. [CrossRef]
99. Chau, L.L.; Keung, W.Y. Comments on the parametrization of the Kobayashi–Maskawa matrix.

Phys. Rev. Lett. 1984, 53, 1802–1805. [CrossRef]
100. Fritzsch, H. How to describe weak-interaction mixing and maximal CP violation? Phys. Rev. D 1985,

32, 3058–3061. [CrossRef]
101. Kuznetsov, V.E.; Naumov, V.A. Relationship between the Kobayashi–Maskawa and Chau–Keung

presentations of the quark mixing matrix. Nuovo Cim. A 1995, 108, 1451–1456. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1142/S0218271892000203
http://dx.doi.org/10.1016/0370-2693(94)91231-9
http://dx.doi.org/10.1016/0370-2693(89)91205-7
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevLett.53.1802
http://dx.doi.org/10.1103/PhysRevD.32.3058
http://dx.doi.org/10.1007/BF02821061
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Master Equation
	Mixing Matrices In Matter
	Rephasing Invariant In Matter
	Summary
	Proof of The Theorem
	Rephasing Invariant In Vacuum
	References

