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Abstract: Traditional data analytics tools are designed to deal with the asymmetrical type of data i.e.,
structured, semi-structured, and unstructured. The diverse behavior of data produced by different
sources requires the selection of suitable tools. The restriction of recourses to deal with a huge volume
of data is a challenge for these tools, which affects the performances of the tool’s execution time.
Therefore, in the present paper, we proposed a time optimization model, shares common HDFS
(Hadoop Distributed File System) between three Name-node (Master Node), three Data-node, and
one Client-node. These nodes work under the DeMilitarized zone (DMZ) to maintain symmetry.
Machine learning jobs are explored from an independent platform to realize this model. In the first
node (Name-node 1), Mahout is installed with all machine learning libraries through the maven
repositories. The second node (Name-node 2), R connected to Hadoop, is running through the
shiny-server. Splunk is configured in the third node (Name-node 3) and is used to analyze the logs.
Experiments are performed between the proposed and legacy model to evaluate the response time,
execution time, and throughput. K-means clustering, Navies Bayes, and recommender algorithms are
run on three different data sets, i.e., movie rating, newsgroup, and Spam SMS data set, representing
structured, semi-structured, and unstructured data, respectively. The selection of tools defines data
independence, e.g., Newsgroup data set to run on Mahout as others cannot be compatible with
this data. It is evident from the outcome of the data that the performance of the proposed model
establishes the hypothesis that our model overcomes the limitation of the resources of the legacy
model. In addition, the proposed model can process any kind of algorithm on different sets of data,
which resides in its native formats.

Keywords: hadoop; MapReduce; big data; response time; symmetrical streaming; machine Learning

1. Introduction

The term Big Data reflects a volume of data that is huge and yet growing exponentially with
time. Such large and complex data is too difficult to process and manage effectively, with the help of
traditional data management tools. Big data has novel values, which originate out of necessity for
hefty firms such as Yahoo, Google, and Facebook, to evaluate large amounts of information [1]. Due to
a revolution in technology, these days, millions of people produce large amounts of data (for example
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via Facebook) using devices such as computers, cell phones, etc.; apart from that, remote sensors are
also responsible for generating heterogeneous data at large scale. This kind of heterogeneous data may
be in the structured form or unstructured form.

Since the creation of PCs, a lot of information has been produced at a quick rate. This situation
is the key inspiration for present and imminent research boundaries. Present era devices such as
mobile phones, digital sensors, communications devices, etc. have abilities to store bulk amounts of
symmetrical (showing similarity) data [2]. From corporate pioneers to civil organizers and academics,
a huge amount of information is the subject of consideration, and it is somewhat fearsome. The abrupt
rise of this huge amount of information has made numerous researchers improvise. Within five years,
the world’s total amount of data has increased nine times according to the IT company Industrial
Development Corporation (IDC) [3], and it is expected to double every two years [4]. Several
enlightenments from 3Vs (Volume, Variety, and Velocity) to 6Vs (Volume, Velocity, Variety, Veracity,
Validity, and Value) have been introduced to outline big data [5–11].

The dimensions of datasets are growing at a very fast pace because of the expansion of digitalization.
It involves four additional Vs consisting of the variability that denotes inconsistency speed in data,
volatility shows the unstable or changeability of data, vulnerability to ensure the data privacy, and
visualization, which define the image of the data. In this way, we are in the stage of 10Vs concept to
express the big data as shown in Table 1.

Table 1. 10Vs of Big Data.

Volume Data at rest
Velocity Data in motion
Variety Data in many form
Veracity Data in doubt

Variability Data in inconsistency speed
Validity Data for accuracy

Volatility Data is unstable or changeable
Vulnerability Data for privacy
Visualization Data for imagination

Value Data for benefits

Big data can be structured, semi-structured, or unstructured, which causes hurdles in handling.
The solution to this problem is Hadoop, Hadoop with R and on Spark to enhance the performance
of parallelism and scalability [12–26]. Data handling (catching and storing enormous information)
has increased critical consideration in recent years, for example, the MapReduce model. Nowadays,
the necessity of further development of platforms is realized, which can bridle these innovations
to increase significant understanding to settle on knowledgeable commercial decisions. The usage
of data analytics on such datasets is normally termed as big data analytics. Data mining and AI
strategies are now utilized over a wide scope of enterprises to help associations in improving their
business, reduce risks, and increment productivity. Areas utilizing these strategies incorporate venders,
banking establishments, and insurance agencies as well as health-related fields [27,28]. In the present
marketplace, data analytics has turned into a business prerequisite for many organizations hoping to
increase a viable lead on virtualization and distributed computing [29]. This has been significantly
perceived in the technical support space of leading multinationals. Call centers have considered the
use of information application as an approach to streamlining the commercial and adding knowledge
in esteems to client’s desires, a necessity in an industry-tested by financial weights, and prolonged
challenges [30].

The requirement for proficient, scale-out responses to help component failures and give data
consistency persuaded the advancement of the Google File System (GFS) [31] and the MapReduce [32]
model in the mid-2000s. The reason behind the Google File System and MapReduce is to circulate
data over the product servers to such an extent that computation of information is performed, where
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the information is stored. This methodology dispenses with the need to move the data over the
network system to be prepared. Moreover, strategies for assuring the flexibility of the cluster and
load adjustment of processing were indicated. GFS and MapReduce structure are the reason for the
Apache Hadoop venture, involving two principal parts: the Hadoop Distributed File System (HDFS)
and Hadoop MapReduce [33].

HDFS is the appropriate storage element of Hadoop with sharing nodes succeeding in a
master/slave manner. All data is captured in HDFS [34] are divided into chunks, which are imitated
and distributed across over various slave nodes on the cluster recognized as data nodes, with a master
node recognized as name node, keeping metadata for example chunks involving files, wherein the
cluster these chunks are found.

MapReduce [35] is a programming model of the Hadoop and governed by a software daemon
recognized as the Job Tracker. A Job is a MapReduce program that includes the implementation
of Map and Reduces function over a dataset. The MapReduce programming model also depends
on a master/slave design. The Job Tracker runs on the master node and allocates Map and Reduce
assignments to the slave node on the cluster. The slave nodes run different software daemon termed as
Task-Tracker that is liable for starting up the Map and Reduce function and revealing the advancement
back to the Job Tracker. The prolonged Hadoop ecosystem embraces a growing list of results that
integrate or enlarge Hadoop’s competences, such as the mahout machine library (such as collaborative
filtering, classification, and clustering algorithms), which is an open-source tool able to run on the top
of the Hadoop, to deliver distributed analytics abilities [36]. HBase, which is a distributed database,
gives real-time read/write ability for the dataset that resides in the HDFS [37]. Hive is a query language
that alters the MapReduce task using HiveQL queries for execution on a cluster [38]. However, some
studies have shown their experiments in machine learning such as Mahout k-means clustering used
on a 1.1 GB data set for scalability quality assessment [39]. System performance is evaluated by
clustering algorithms on an 11 GB Wikipedia data set [40], for the evaluation of the performance of the
clustering algorithms over the Hadoop environment using the 1987 Reuters dataset [41]. However,
some significant contribution, Discovery Information using Community detection (DICO) for online
social networking to provide cyber security have been nicely discussed by various workers [42–44].

In the present era, traditional distributed techniques are not capable to store and capture data
because of its less scalability of the environment. On the other hand, relational databases have limited
schema and data warehouses are not capable to process its entire data due to huge size. Due to the
above limitations, big data requires a novel model, which is flexible and perform equivalent processing
efficiently. In the present paper, we proposed a model (A Three Master Node (Name Node) Model),
which is platform-independent for big data analytics and delivers faster results in comparison to
traditional systems. Performance test (such as response time of the system, execution time (time taken
by the MapReduce programming model), and throughput) between the proposed model and the
legacy model (existing model) is done on three different data sets. These sets have different behaviors
and uses diverse algorithms such as K-Means clustering, Navies Bayes, and the Recommender system
for inspection of its application capabilities.

2. Proposed Hybrid Framework: A Three Master Node (Name Node) Model

In the present proposed model (Figure 1), we attached three master nodes (Name-Nodes), three
Data-Nodes and one client node, which works in the demilitarized zone (called an edge node),
i.e., the Resource manager will run on the Master node and the Data-Node services, and application
master and node manager will run on the Data-Node. Different tools are used for machine learning
to make it suitable for any kind of data processing. The analytical tools are put on the master node
(all the master nodes share their respective recourses with each other) to keep the services as well as
data movement in a symmetrical synchronization. Mahout, R, and Splunk is installed on the system.
Splunk is the log analytical tool, which has taken the logs of the system and help the user to analyze
the logs for the error or any kind of security or data breaches.
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The proposed model includes the High Availability (HA) concept, which comes out to be a
scalable and enhanced model in terms of time and performance. Hadoop runs on the top of java. Thus,
in the proposed model, there is no restriction on the Java Virtual Machine (JVM), as it depends on the
number of sessions created by the user on the Name-Node, which actually works for user queries (read
and write). Each write and read will create a JVM, which is the Application master container in our
environment. There is no compulsion that only one application master can run on a data node. This
means more than one JVM can run on a single Data-Node as per the data and the user request.

The present model includes the concept of the high availability, which means if one master server,
which is the Active Name-Node, went down or somehow experienced a high load making it unable to
work, then the standby Name-Node automatically changes its state to active and start to serve the
user request. This happens because of an on daemon called the secondary Name-Node, which is
basically the service that keeps track of edit logs and file system images (FS image), and whenever the
Name-Node went down it provides the latest logs to help the standby Name-Node to get active.

All the master services are hosted on the master servers and three Data-Nodes are the nodes, where
the real data will reside. In this experiment, the replication factor is 3, and block size we configured
128 MB. This value will help to run the job (Hadoop job or user query is called an application or job in
Hadoop) in an efficient manner as the default size of a block is 64 MB. Block is a storage unit, where the
data is kept on the HDFS. Data is in the form of the data blocks in the cluster. All the nodes, i.e., three
Master nodes and three Data-Nodes share the common HDFS. The (HDFS) is a distributed file system
designed to run on commodity hardware, which is highly fault-tolerant, designed, and developed to
be deployed on low-cost hardware. HDFS provides high throughput access to application data. It is
suitable for applications that have large data sets. HDFS enables symmetrical streaming access to file
system data.

According to the working scenario of the proposed model, the Client node sends the request and
the query to the name node, this request or query can be a read or write request. The Master service,
Mahout, is deployed on Name-Node 1 (Active), R-Hadoop on Name-Node 2 (Standby), and Splunk on
Name-Node 3 (standby). If a user opens a session of R-Hadoop and Mahout at the same time, then
they can use both the services at the same time. After the processing, the processed data is sent to
HDFS to get stored. Following equations is taken for setting up a Hadoop infrastructure/Proposed
model. Size of the Data (Ds) is taken (where Ds ≥ 1 GB || Ds ≤ 10 GB) for the experimental outcomes,
since the construction of Hadoop cluster data size and the resource size (RAM and cores) might vary
as per the user’s needs. Equations defines the correct HDFS size (HS) and the Number of data nodes
(ND) required when forming the new Hadoop infrastructure/Proposed model (see Algorithm 1):

HS = A*B*S(D)/(1−C) *120% (1)
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ND = HS/S(d) (2)

In Equation (1), A symbolizes the Compression ratio. A = 1, when no compression is deployed
and it can be changed if the specific type compression is applied (for example snappy, etc.) B signifies
the Replication factor; commonly, it is 3 for the production cluster. S(D) describes the actual data size,
when data is injected in Hadoop. C is the transitional data factor; typically, it is 1/3 or 1/4. This is the
Hadoop’s Intermediate employed storage deployed to stacking transitional results of Map Jobs, which
is 120% or 1.2 times of the entire size; this is due to fundamental of the HDFS that wishes possibility
for the file system. For example, assume the total size of the cluster is 1200 TB but it is recommended
to utilize up to 1000 TB. By Equation (2), S(d) expresses the disk space existing per node.

Algorithm 1. HYB_NAME_NODE for the Proposed Model

*//All the algorithms are implemented on DN (Data-Node), Controlled by the Name-Node (Master Node)//*
HYB_NAME_NODE (Ds, Ds ext, S(D), N1, N2, N3, CM, Sp, Bp, DN)
Ds = Data
Ds ext = Data extension
S(D) = Data Size
N1 = Name-Node (Master Node 1)//Shared resources
N2 = Name-Node (Master Node 2)//Shared resources
N3 = Name-Node (Master Node 3)//Shared resources
CM = Client-Node (Client Machine)
Sp = Stream Data
Bp = Batch Data
DN = Data-Node
Step 1- Input the Data Ds from CM
Step 2- If (S(D) ≤ 1 GB && Ds ∈ Sp || Ds ∈ Bp)

Process N2
Else if (S(D) >1 GB && Ds ∈ Sp || Ds ∈ Bp)

Process N1
Else if (Ds ext = “. Log”)

Process N3
Exit (0);

Step 3- Name-Node (M1, M2, M3) process the Job, given by the CN (User/Client machine)
Step 4- if (job request Algo = K-Means)//All 3 algorithms are used for the application purpose//

{
Launch = K-Means ()
Result ()

}
Else if (job request Algo = Recommender)

{
Launch = Recommender ()
Result ()

}
Else if (job request Algo = Naïve Bayes)

{
Launch = Naïve Bayes ()
Result ()

}
Exit (0);

Step 5- If the result is final (result after reducer/completion of the algo)
{
Output stores in HDFS
}
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The proposed model follows the above algorithm, which work on three equations, i.e.:

(S(D) ≤ 1 GB && Ds ∈ Sp || Ds ∈ Bp) (3)

(S(D) > 1 GB && Ds ∈ Sp || Ds ∈ Bp) (4)

(Ds ext = “. Log”) (5)

The above three equations are accountable for the selection of the one managerial (administrative)
power from N1, N2, or N3. All three Name-Node has shared resources. According to Equation (3),
the size of S(D) is 1 GB or less and Ds belongs to Sp or Bp processing, N2 administrative power will
start processing the job. Similarly, in Equation (4) if S(D) is more than 1 GB and Ds belongs to Sp or Bp

processing, N1 managerial power will start processing the job. Equation (5) is functional when Ds

ext (extension) is “. Log”, which means, when Log analytics is needed, N3 administrative power will
start working.

As stated above, respective recourses of all the three Name-Node, has shared with each other.
Therefore, managerial (administrative) power of the one Name-Node will work as the collective three
Name-Node. After the assortment of the administrative power, Master node (Name-Node) will start
processing the Job provided by the CM. For this purpose, we have selected three different algorithms
such as K-Means (Clustering), Naïve Bayes (classification), and Recommender (collaborative filtering).
After finalizing the reducer phase/successful completion of the algorithm, the result are stored in HDFS.

Contribution

As per the traditional (legacy model) Hadoop infrastructure, there is one Name-Node (Master
Node) that is coupled with the several Data-Node (worker nodes), which implement on compatible
data sets, i.e., dedicated for the specific algorithm (expresses the dependency of the platform).

In the present proposed model, three frameworks, namely mahout to work on machine learning,
R for machine learning as well as data analysis, and log analysis Splunk, were established:

1. For smooth running of the system, a maven repository for the mahout is build, which can easily
use the machine learning library.

2. core-site.xml, yarn-site.xml arrangements are altered as per the requirement of cluster. This is
Twisted for the HA (High Availability) formation.

3. To make R work on Linux and Hadoop, an R-server is built.
4. To simplify a feasible condition of this combined cluster requires multiple repositories and OS

repository for accessing and building “YUM,” which can work on Linux.

Worker nodes elect the master based on availability (distance, i.e., the same rack would be given
preference), available resources, i.e., cores and rams, and the connection that is the SSH (Secure shell)
communication between the master and the worker nodes. This way, the ensemble (worker nodes)
chose the master of the cluster.

5. Serialization is tuned in yarn-site.xml with respect to the Data Node RPC (Remote Procedure Call,
which is the heartbeat signal offers the communication among the Name-Node and Data-Node
and accountable to allot job processing location) and movement of the data directly in the form of
input splits from the HDFS.

By the mutual HDFS, any kind of data can be kept, which might come from diverse sources or
nodes. In other words, the proposed model can manage the whole data lake. The data lake is just
like a pond, which has numerous organisms, stones, gravels, and sand in its own native environment.
The basic idea behind the data lake is to have a centralize storage for all the enterprise data in the
captive from raw data (which is just generated and no transformation is applied on this data) to
fully processed data, which is further utilized to have an insight from the data by applying analytics,
machine learning techniques, and visualizations.
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3. Legacy Model

In the legacy model, there is a single node, which is composed of all the demons (services) running
in a single machine. It provides a full environment to run Hadoop related jobs. There is one JVM,
i.e., java virtual machine, which helps to run the MapReduce jobs in the single node cluster. Whenever
the job is submitted by the client (i.e., the user), first the job is analyzed by the Name-node and sent to
the resource manager. The resource manager coordinates with the node manager and the application
master for providing the container and the resources. Thereafter, the job proceeds with the different
stages for processing.

As mentioned above, there is one JVM, which means one master node is applied. Furthermore if
the master node went down somehow, then the whole cluster will be dissolved, i.e., the whole cluster
will be destroyed, and to save this single point failure there is the concept of the secondary name
node, which is responsible for taking the edit logs as well as the File system image (Fs image), but still,
to make the master node or the Name-Node alive from dead, it takes a downtime in which the Hadoop
admin figure out and analyze the edit logs and fs image to get the cause of the Name-Node down.
Several forms of algorithms, such as frequent itemset mining, classification (Navies Bayes), Clustering
(K-Means), and collaboration filtering (recommender algorithms), have been presented and executed
separately by the legacy model to demonstrate the parallelism and scalability [12–26,45,46].

In traditional Hadoop infrastructure, there is one Name-Node (Master Node) that is connected
with the multiple worker nodes (Data-Node) and creates a single HDFS, which executes a compatible
data set, i.e., assigned for the particular algorithm (which shows the dependency of the platform), that
restricts the performance to maintain the data streaming. Therefore, there is a need for a model that
shares common HDFS, which enables the symmetrical streaming access of the data for the multiple
nodes configured with the different variety of tools. The present proposed model reflects the novelty
of performance with respect to job execution processing time on different data sets.

4. Results

4.1. Data Description

To perform this experiment, three-dummy data sets are considered from reliable sources. The size
of each data sets is 9 GB (9216 MB) and the description of the data sets are as follows:

Data set 1: Twenty News group data is the set of information, which contains a survey on persons
through the website, i.e., what kind of updates they read and what they like [47].

Data set 2: The movie dataset contains numerous files, which have a customer_id that describes who
watches the movie, the movie id, and the year of release. These movies are separated as per
the votes and score provided by the users. The movie id is in a range from 1 to 17,770 [48].

Data set 3: The Spam SMS dataset consists of a message per line with the label and the raw text. This
The SMS is not always spam, but can be a message between two individuals. This is a
completely text-based dataset. It has 6000+ rows of messages and two columns. The spam
message is mined from website with the help of a web crawler [49].

4.2. Job Execution Process in Hadoop Infrastructure

The Performance of the proposed and the existing model has also measured on the basis of
response time, execution time (time taken by the MapReduce programing model), and throughput. In
this experiment, in the system configuration of the proposed model, each node has 2 GB of memory
and two cores for processing, whereas the legacy model memory and CPU size are increased up to
6 GB and four cores with stable 9 GB datasets of three different kinds. Each dataset between legacy
and proposed model is run three times. Outputs of the experiment are given as mean ± SE. Student’s
t-test is applied in between the output results of legacy and proposed model to observe Significance
difference. Steps of the job execution is as follows
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1. New stage: When a user provide instruction to the Name-Node to execute any job, it comes
under a new stage.

2. Submitted stage: When the Name-Node accepts and submits the job to the Resource manager
for further execution, it comes under submitted stage.

3. Analyzing stage: The Resource manager will do some validation and check for the input path
and output path and the data.

4. Accepted stage: After completing the submitting and analyzing stage the job will wait
for the Application Master (AM) container to be launched. This stage is just above the
execution/running stage.

5. Running stage: When the Application master (AM) container assigned, the job starts running in
the cluster, where the data resides, i.e., on the Data-Nodes.

1. Map stage: The map stage is the stage where the data is processed and converted in the Key
Value pairs and these key value pairs are then given to reducer.

2. Reducer Stage: In the reducer stage, the key value pairs are club together as per the
characteristics, such as what are the values associated with key 1 and so on.

3. Committer stage: In the committer stage, the output from the reducer process are clubbed
into a single output file so that instead of having multiple part files user can have a single
output file.

6. Finished stage: when the resource manager marked the job to be finished and AM container is
cleaned up by the node manager in simple word the job is successfully completed.

4.2.1. Response Time Comparison between Proposed and Legacy Model

Response time is the total time taken by new stage, submitted stage, analyzing stage and accepted
stage. Below, Table 2 defines the response time of K-Means, Naïve Bayes, and recommender algorithms
using three different datasets of 9 GB on both models.

Table 2. Response time (in millisecond).

Algorithms with Environment Dataset 1 Dataset 2 Dataset 3

K-Means Legacy Model * 2500 ± 2.59 * 2700 ± 2.82 * 2000 ± 2.72
K-Means Proposed Model * 1155 ± 3.57 * 1075 ± 1.86 * 1150 ± 1.41

Recommender Legacy Model * 2100 ± 1.41 * 1800 ± 0.94 * 2100 ± 1.41
Recommender Proposed Model * 1009 ± 1.86 * 900 ± 2.82 * 1100 ± 2.82

Naïve Bayes Legacy model * 2400 ± 2.35 * 2500 ± 1.88 * 1900 ± 1.41
Naïve Bayes Proposed Model * 1300 ± 1.41 * 1000 ± 0.94 * 975 ± 1.41

Significant, when student’s t-test is applied in between response time of legacy and proposed model- * (P < 0.01).
Values are given as mean ± SE.

Response time defines the quick behavior towards the job instruction submitted to the Name-Node.
It is clear from Figure 2 that performance of the proposed model is better than the legacy model in
terms of response.
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Figure 2. Response time of both models.

4.2.2. Time Taken (Running Time) by the MapReduce Programming Model

MapReduce programming model has three different phases such as Mapper, Reducer, and
Committer. All are processed in a sequence manner. Table 3 shows the time taken by MapReduce
programing model (running Stage), to complete three different algorithms using three different data
sets on both models.

Table 3. Total time taken by the MapReduce Programming Model.

Algorithms with Environment Dataset 1 Dataset 2 Dataset 3

K-Means Legacy Model * 0:33:55 ± 0.28 * 0:33:46 ± 0.02 * 0:31:00 ± 0.02
K-Means Proposed Model * 0:16:50 ± 0.24 * 0:17:28 ± 0.04 * 0:15:16 ± 0.02

Recommender Legacy Model * 0:37:00 ± 0.03 * 0:37:01 ± 0.01 * 0:34:46 ± 0.02
Recommender Proposed Model * 0:19:01 ± 0.01 * 0:16:34 ± 0.02 * 0:16:37 ± 0.03

Naïve Bayes Legacy model * 0:34:13 ± 0.01 * 0:36:00 ± 0.01 * 0:34:17 ± 0.03
Naïve Bayes Proposed Model * 0:16:15 ± 0.02 * 0:18:15 ± 0.01 * 0:16:20 ± 0.03

Significant when student’s t-test is applied in between response time of legacy and proposed model—* (P < 0.01).
Values are given as mean ± SE.

Figure 3 defines the total time taken by the MapReduce programming model on both models
(Proposed and Legacy), while running the K-Means, Recommender, and Naïve Bayes algorithms using
three different data sets of 9 GB.
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4.2.3. Throughput (Time Taken by the Single Mapper of Map Function)

The throughput defines a single unit of work done over a specified time period to evaluate the
efficiency of the system [50]. For this, we have calculated the execution time (shown in Table 4) for the
single Mapper while executing three different algorithms using three different data sets on both models.

Table 4. Execution time (for single Mapper) in seconds.

Algorithms with Environment Dataset 1 Dataset 2 Dataset 3

K-Means Legacy Model (Single Mapper) * 17.04 ± 0.01 * 16.02 ± 0.01 * 17.62 ± 0.01
K-Means Proposed Model (Single Mapper) * 9.16 ± 0.01 * 8.51 ± 0.01 * 7.75 ± 0.02

Recommender Legacy Model (Single Mapper) * 17.5 ± 0.18 * 19.4 ± 0.18 * 16.06 ± 0.02
Recommender Proposed Model (Single Mapper) * 10.0 ± 0.47 * 8.45 ± 0.02 * 9.2 ± 0.09

Naïve Bayes Legacy model (Single Mapper) * 16.67 ± 0.07 * 17.78 ± 0.03 * 18.34 ± 0.01
Naïve Bayes Proposed Model (Single Mapper) * 9.17 ± 0.03 * 10.1 ± 0.13 * 8.67 ± 0.03

Significant when student’s t-test is applied in between response time of legacy and proposed model—* (P < 0.01).
Values are given as mean ± SE.

Figure 4 defines throughput measurement, that shows time taken by the single Mapper (single
unit of work done) of the MapReduce programming model on both (Proposed and Legacy) models,
while running the K-Means, Recommender, and Naïve Bayes algorithms using three different data sets
of 9 GB.
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5. Discussion

The present paper deals with the performance of the proposed model with respect to the legacy
model to measure the difference of response time, running time (time taken by the MapReduce
programing model), and throughput. The validation of the proposed model is the process and activities
intended to verify its performance as expected, in line with their design objectives. The validation also
identifies the potential limitations and assumptions, and assesses their possible impact. The proposed
model system configuration, which contains three Name-Node, three Data-Node, and one client node,
in which each node has 2 GB of memory and two cores for processing, whereas in the legacy model,
memory and CPU size are increased up to 6 GB with four cores. In this way both models have stable
9 GB datasets of three different kinds. In the present work it was expected and assumed that the
proposed model should be better response time, running time, and throughput.

Response time in data set 1 of the legacy model and proposed model on three algorithms,
i.e., K-means, recommender, and Naïve Bayes, reduced from 2.5 to 1.1, 2.1 to 1.0, 2.4 to 1.3 s,
respectively, which is also noticed in Data set 2 and Data set 3. It shows that the proposed model
gives a quick response to the job process as compare to the legacy model. MapReduce (Running
Time) completion time in data set 1 of the legacy model and proposed model on three algorithms,
i.e., K-means, recommender, and Naïve Bayes reduced from 0.33 to 0.16, 0.37 to 0.19, 0.34 to 0.16 h,
respectively. When Data set 2 and Data set 3 are run, the same trend of MapReduce completion time is
found. It defines that the proposed model completed the Mapper, Reducer, and Committer phase of
the MapReduce programming model in less time as compared to the legacy model. Throughput in
data set 1 of the legacy model and proposed model on three algorithms, i.e., K-means, recommender,
and Naïve Bayes reduced from 17.04 to 9.16, 17.5 to 10, 16.67 to 9.17 s, respectively. A similar pattern is
observed in Data set 2 and Data set 3. It defines that the proposed model took less time to complete a
single Mapper, which is 128 MB as compared to the Legacy model. The improved performance of the
proposed model establishes the hypothesis that our model overcomes the limitation of the resources of
the legacy model. The present proposed model configuration performance is given for the first time,
so that comparative published/known findings are lacking.
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Table 2 defines comparative response time of the both models. It is measured on the basis of total
time taken by the four initial stages of the job execution, i.e., the new stage, submitted stage, analyzing
stage, and accepted stage. It is evident from Table 2 and Figure 2 that the response time of the three
algorithms (K-Means, Naïve Bayes, and recommender) using three different datasets on the proposed
model is significantly (P < 0.01) less compared to the legacy model. That denotes the quick response of
the proposed model (Infrastructure).

The experiment of the execution time/running stage (time taken by the MapReduce programming
model) shown in Table 3 defines MapReduce programing model/running stage (total time taken by the
MapReduce programming model) on both models (the proposed and the existing model), respectively.
Table 3 clearly indicates that three algorithms (K-Means, Naïve Bayes, and recommender) on three
different datasets for proposed model completed their jobs faster than the existing model. In fact,
the proposed model took significantly (P < 0.01) less time as compare to the legacy model, as shown in
Figure 3.

Table 4 defines the throughputs of the both models using three algorithms (K-Means, Naïve Bayes,
and recommender) on three different datasets. According to the definition of the throughput, a single
unit of work is done in the specified time period to evaluate the efficiency of the system, so that in this
experiment the time taken to complete job by the single mapper of Map function is calculated. It is
measured with the help of a data set with chunks the size of a single mapper, which is 128 MB in case
of YARN (Yet Another Resource Negotiator). The present study demonstrates that the proposed model
is significantly (P < 0.01) efficient compared to the legacy model, as shown in Figure 4.

Therefore, the above findings clearly indicate that the proposed model is better than the legacy
model in terms of response time of the system, execution time/running stage (time taken by the
MapReduce programing model), and throughput. In addition to this, the proposed model is highly
efficient to configure any kind of algorithms and any kind of data of different size simultaneously.

6. Conclusions

Conclusively, the present paper demonstrates that a time-efficient proposed model that shares
common HDFS with the integration of three Name-node (having Mahout, R-Hadoop, and Splunk),
three Data-node, and one client node, can communicate and share their business demands with all three
Name-nodes. Time optimization of our model is done by the performance evaluation of the response
time, execution time, and throughput using three different algorithms (K-means clustering, Navies
Bayes, and Recommender system) on three different data sets. With the outcome of the definition and
the experiments in the present study, it can be concluded that the proposed model is highly efficient
compared to the legacy model. In addition to this, by the common HDFS, all the Data-node and
Name-node can access any data residing in the HDFS, whether it is processed or used by any other
node. Any algorithms on the different types of data can be run efficiently with the help of our present
proposed model for Big Data analytics. In the future, the performance of the model can be explored for
a bigger number of master nodes as well as data nodes.
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