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Abstract: Narrow markets are typically considered those that due to limited liquidity or peculiarities
in its investor base, such as a particularly high concentration of retail investors, make the stock market
less efficient and arguably less predictable. We show in this article that neural networks, applied to
narrow markets, can provide relatively accurate forecasts in narrow markets. However, practical
considerations such as potentially suboptimal trading infrastructure and stale prices should be
taken into considerations. There is ample existing literature describing the use of neural network
as a forecasting tool in deep stock markets. The application of neural networks to narrow markets
have received much less literature coverage. It is however an important topic as having reliable
stock forecasting tools in narrow markets can help with the development of the local stock market,
potentially also helping the real economy. Neural networks applied to moderately narrow markets
generated forecasts that appear to be comparable, but typically not as accurate, as those obtained
in deep markets. These results are consistent across a wide range of learning algorithms and
other network features such as the number of neurons. Selecting the appropriate network structure,
including deciding what training algorithm to use, is a crucial step in order to obtain accurate forecasts.

Keywords: narrow markets; neural networks; forecasting

1. Introduction and Related Work

A narrow stock market can be defined in several ways. In the context of this article a narrow
market is considered as one that, either, is not very liquid, i.e., the investor pool is not too large, or that
it has some peculiarities, such as a high proportion of retail investors, making price discovery more
difficult. The objective of this article is to get a better sense of the feasibility [1], under relatively realistic
assumptions, of the applicability of neural networks as a forecasting tool in narrow markets. Even in
this type of narrow market, we will show that neural networks are robust enough to generate relatively
accurate forecasts. The forecasts that we obtained in this type of market were comparable to those of
deeper market but, at least in most cases, of moderately lower accuracy.

Neural networks are an algorithm commonly used for forecasting purposes [2–4] that does not
require any previous modeling of the underlying system. However, there is a very large amount of
factors to take into consideration when building a network ranging from the number of neurons to
the critically important decision of the training algorithm applied. When forecasting stocks or equity
indexes one of the most important factors, together with the chosen algorithm, is deciding what input
to use. In this case we decided to use several moving averages that will be defined in later sections.
Moving averages are some of the most frequently used indicators for stock performance [5–9] and they
are easily obtained.

In this article we cover equity indexes representative of countries that are classic examples of
markets with different levels of narrowness. This will range from extremely deep markets such as
the U.S., represented with the Dow Jones index, to very narrow markets such as the Tanzanian case.
As the forecasting accuracy will depend on the structure of the neural network a relatively large
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amount of configurations will be tested, including ten different learning algorithms as well as varying
number of neurons.

It should be taken into account that some of the most narrow markets might have stale prices
as some quoted prices are not representative of an actual trade in the day analyzed but of trades on
previous days as there was no or very little trading activity on the day analyzed. This might cause the
price level of the index to have an estimated volatility lower than its real volatility. This should be
taken into considerations when developing investment strategies based on neural networks.

A large amount [10–12] of stock forecasting techniques have developed overtime with an increase
in the number of such techniques in recent years as asset prices became easily available and computer
power not only significantly increased but also became more affordable. Narrow markets tend to be
defined in the literature in the sense of a thin market, or in other words markets with low liquidity.
It should be noted that in the context of this article, narrow market is understood as, not only,
encompassing relatively illiquid markets but also markets that while having relatively ample liquidity
might present significant price distortions due to structural factors such as having a large percentage
of the traded volume done by individual investors. Markets with a large proportion of institutional
investors are usually considered as reflecting prices in a more rational way than in markets were the
predominant investors is retail. The underpinning of this idea is that institutional investors have better
information and more training and, hence, would make, on average, more reasonable investment
decisions. Two important conclusions frequently cited in the literature [13] regarding thin markets are
that price discovery is more difficult, as prices do not necessarily reflect the actual price of the stock,
and that thin markets are more easily manipulated than deep markets. For instance, an unscrupulous
investor with a relatively small amount of capital could “corner the market” becoming the dominant
player in a security, distorting prices. Such a type of malpractice would be much more difficult in a
deep liquid market where the investor represents just a very small part of the total traded volume and
becomes in practice, at least to some degree, a price taker.

An example of a thin, or in our context narrow, market could be the equity market in Switzerland.
Switzerland has a very large, particularly when compared to its overall GDP, financial sector but
its domestic stock market is relatively small. Bruand [14] selected this market as representative of
a thin market. One of the main conclusions of [14] was that the introduction of derivatives in that
market seemed to have had some positive effects, helping improving liquidity. In our paper we
differentiate between moderately narrow markets such as the one in Switzerland and very narrow
markets, for instance in Namibia. In a related article, Ilkka and Paavo [15] treated the Helsinki Stock
exchange as a thin market and tried to determine if accurate forecasts could be done. They concluded
that forecasts were doable in this thin market, obtaining better results for a one-month time horizon
than for quarterly predictions.

One of the main objectives of this paper is to show that neural networks are an applicable tool
for stock forecasting on narrow markets. Narrow stock markets, perhaps because they tend to be
located in less developed economies, have attracted considerably less academic research. Having tools
that can generate acceptably accurate stock forecasts can be useful for the development of the stock
market in those narrow markets. In turn, the development of the stock market can also potentially
help the development of the economy of that country. Therefore, it seems of importance to analyze if
well-known techniques, such as neural networks, are actually applicable for stock market forecasting
purposes on narrow markets.

The question if the stock market can be forecasted using techniques, such as neural networks,
using historical prices is not a trivial one, regardless if the particular market analyzed is considered
narrow or otherwise. The efficient market hypothesis, created by Fama [16], supports the idea that
stock prices cannot forecasted using only inputs such as historical prices and trading volumes. To be
more precise there are three versions of the market efficient hypothesis: Weak, semi-strong and strong.
The weak version states that all the information contained in historical stocks prices is already entirely
reflected in the current prices. Or in other words, regardless of the technique used it is not possible to
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forecast future stock prices using only historical prices. The semi-strong version states that current
prices reflect not only all the information from historical prices but also from fundamental analysis of
the companies. In other words, this hypothesis defends the postulate that investment analysts cannot
generate accurate stock forecast using fundamental analysis of companies, such as the analysis of
their financial statements and business model. The semi-strong case includes all public information
(including historical stock prices). The strong version of the efficient market hypothesis states that all
information, both public and private information (including historical stock prices), is immediately
reflected in the current stock price of the company. The strong version of the efficient market hypothesis
states that not even insiders of the company, such as for instance a CEO, can generate an accurate stock
forecast and benefit from it using all the public and private information available to them. There is
ample literature in support and against the efficient market hypothesis. One of the underlying implied
assumptions of the efficient market hypothesis is that information flows, almost immediately, as stock
prices reprice, basically, instantly reacting to all new (private and public) information. In this context,
narrow markets are particularly interesting because it is conceivable that the information flow in
narrow stocks markets, like for instance in Tanzania, being slower and arguably less efficient than in
markets, such as the United States, that have a better telecommunication infrastructure.

Assuming that markets are not completely efficient, in which case there is no point in using any
type of stock forecasting tool, then finding tools that generate relatively accurate forecasts is of a topic
of clear importance. As previously mentioned, narrow markets, perhaps, because they tend to be
(but clearly not always) associated with smaller economies have not received the same level of interest
by much less existing literature covering those markets. Nevertheless, there are some interesting
articles in the topic. For instance, Idowu et al. [17], found that neural networks are applicable tool
for forecasting stock prices in the Nigerian stock market, which is an example of a narrow markets.
The neural network used in this article was a feedforward network. Idowu et al. [17] mentioned
in their paper a small number of academic articles analyzing markets such as the Nigerian market.
Another interesting article is from Senol and Ozturan [18], that analyzes the stock forecasting abilities of
neural networks in the stock market of Turkey, which is another narrow market. Senol and Ozturan [18]
concluded that their results seem to contradict the efficient market hypothesis. Similar results were
found by Samarawickrama [19] in the case of the stock market of Sri Lanka. The similarity of these
papers is that they tend to analyze one specific country without considering similarities, such as
classifying countries according to their level on narrowness. They also tend to use a relatively small
number of learning algorithms, and they usually do not compare those results with the ones obtained
in other markets, such as the US or Europe.

1.1. Neural Networks

Over the last few decades there has been an increase in the amount of quantitative and machine
learning techniques applied to stock forecasting, one of these techniques is neural networks [20–24].
Neural networks are very flexible tools with applications in many forecasting areas. There are some
basic characteristics necessary to define a neuronal network such as the number of neurons or the
learning algorithm (supervised learning) that will be used to train the network. There are typically
at least three steps when creating a neural network. In the first step the basic network architecture
is chosen. In the second step, when the basic structure is already in place the network is trained.
After that, in the last step, the network is used to create forecasts from previously unseen data (set aside
during the training phase) and the forecasting accuracy is calculated. This last step is typically done to
avoid the issue of over-fitting which can cause the network to generalize poorly or in other words
perform poorly when applied to new (unseen) data. The choice of learning algorithm as well as
the number of neurons used can have a very significant impact on the results. There have been an
increasing number of articles [24–28] covering applications of neural networks for stock forecasting
purposes. An example of an application of neural network in a moderately narrow market can be
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found in [29]. In this article the author analyzed the stock market of Kuwait, concluding that neural
networks are an appropriate tool for that market.

1.2. Stale Prices and Data Availability

Stale prices and data availability are typically not real concerns in the stock markets of many
developed economies but some of the equity markets that we analyzed in this article, namely Namibia,
do present some data issues. In some periods there was no or very little trading in the Namibian index.
This leads to the classic issue of stale price as the quoted price might not reflect the current “true” price
but the latest transaction that might have happened on a previous day. A related issue is when trading
has occurred on a stock on that day but the amount traded is too small to be useful as an indication of
the current price for a trade. This is of particular importance for institutional investors that tend to
trade larger amounts than retail investors.

Stale prices are likely to produce artificially good forecasts as the estimate for the volatility of the
stock is likely underestimating the real volatility. In Figure 1 the normalized traded volume for the
2012 to 2017 period can be seen. The normalization was done by dividing the daily traded volume
in the market by the maximum traded volume in a single day during that period. During 120 days,
representing approximately 8.0% of the days, the traded volume did not reach 0.05% of the total peak
traded volume. In 401 days, accounting for 26.8% of the total days, the traded volume did not reach
0.5%. In Figure 2 shows an extreme example for illustrative purposes. For the three months period
from 5 January 2011 to 31 March 2011 there were four days in which there appears an ending price
level for the index but there is no recorded traded volume. It should be noted that this period was not
included in the analysis and that it is shown only as an example. For the majority of the other indexes
the issues of stale prices and data availability were not as apparent as in the case of Namibia.
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2. Methods

We analyzed equity indexes from ten countries which are typically associated with narrow or deep
markets. These ten countries were grouped into four categories according to the perceived narrowness
of its equity capital market. Those four categories were: (1) very deep, (2) deep, (3) moderately narrow
and (4) narrow. The US equity market is so large and deep that it is really on a category of its own
and was the only country selected for the very deep category. The Dow Jones index was selected as
a representative index for the US equity market. The deep category is composed of the FTSE (UK),
DAX (Germany) and CAC (France) indexes. The moderately narrow category contains the CSI (China),
IBEX (Spain) and RIGSE (Latvia) indexes. The Chinese equity market is one of the largest in the world,
but it is typically associated with narrow markets because of the high proportion of retail (individual)
investors compared to other markets in which institutional investors account for the bulk of the trading
volume. The Chinese equity market is a liquid market, but it is likely not very efficient from a pricing
point of view due to this large proportion of individual investors. The market indexes for Tunisia,
Tanzania and Namibia were included in the narrow category. A list of all the indexes is showed in
Table 1.

Table 1. Country equity indexes.

Indexes Countries Abbreviation

Very deep market
Dow Jones Industrial Average U.S. DJ

Deep markets
FTSE 100 Index U.K. FTSE

Deustche Bourse DAX Germany DAX
CAC 40 Index France CAC

Moderately narrow market
IBEX 35 Spain IBEX
CSI 300 China CSI

OMX Riga (RIGSE) Latvia RIGSE
Narrow markets

Tunisia Stock Exchange Index (Tusise) Tunisia Tusise
FTSE Namibia Namibia Namibia

Tanzania All Share Index Tanzania Tanzania

Daily closing prices of the indexes for the period from 2012 to 2017 were obtained from Bloomberg.
The 50, 100 and 200 day moving averages were also calculated for each of the previously mentioned
indexes. The moving average at any given time is just the average price over a predetermined number
of previous days, see Equation (1). For instance, the 50 day moving average will be the sum of the
closing prices over the last 50 days divided by 50. In Figure 3 an example for the RIGSE index and its
50-day, 100-day and 200-day moving averages can be seen.

MAN=
1
N

∑N

i
pricei (1)

The forecasting capability of neural networks for all the previously mentioned ten indexes,
representing very deep, deep, moderately narrow and narrow markets were estimated. The structure
followed for the neural network consisted of one hidden layer. The amount of neurons was increased
from 10 to 100 in steps of 5. Then, the network was created using an input of one of the moving
averages and the index as the target value. The process was repeated for all three moving averages
(50-day, 100-day and 200-day). Due to different randomly generated initial conditions two neural
networks with the same inputs, output and structure are likely to generate slightly different results
(forecasts). In order to account for that 100 networks were estimated for each configuration. Each of
these forecasts was regressed against the actual target. In this way a probability distribution for the
R-square value was obtained. The standard procedure of setting aside 15% of the data for testing
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purposes was followed. It will be shown that increasing the number of neurons, for most cases, did not
increase the accuracy of the forecasts. The opposite was actually true in many cases with accuracy
gradually declining. A typical outcome can be seen in Figure 4.
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Figure 4. Results for CAC index (France) using the 100-day moving average (MA) and quasi Newton
(BFG) training algorithm. After a certain point, around 30 neurons, the forecasting accuracy, measured
as the R-squared of the regression between the actual and forecasted values, decreases as the number of
neurons increases.

2.1. Training Algorithms

In this section a very brief description of the training algorithms used for the neural networks
is shown. All of them are well-known algorithms with applications in several areas. All the actual
implementation of the algorithms was done in Matlab [30] and we followed, for clarity purposes,
its notation and acronyms.
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2.1.1. Quasi Newton

The quasi Newton (BFG) [31] is a powerful and relatively fast training algorithm but it is costly
from a computing power requirement point of view. The basic algorithm is showed in Equation (2).

Xi+1= Xi + f (Hessian gradient) (2)

2.1.2. Conjugate Gradient

Conjugate gradient methods, described in Equations (3) and (4), are a popular training algorithm
tool. In its most common version, it is done through an iterative process in which the steepest direction
is followed, following in the first iterative step the negative value of the gradient. In the next iteration
it follows the previous value, multiplied by a distance factor and by a direction function:

Xi+1= Xi + Distance2
i (3)

Directioni= −Gradienti + Parameteri·Directioni (4)

In the case of the Fletcher Reeves (CGF) algorithm [32] the parameter is calculated as described in
Equation (5).

Parameteri=
GradientT

i · Gradienti

GradientT
i−1· Gradienti−1

(5)

In the case of the [33,34] Polak Ribiere (CGP) variant the parameter is described in Equation (6).

Parameteri=
∆GradientT

i · Gradienti

GradientT
i−1 · Gradienti−1

(6)

Another of the conjugate gradient variants is the Fletcher Powell (CGB) algorithm [35].
Powell describes the idea as automatically resetting the search direction (restart) and it is done
according to some conditions on the orthogonality of the gradient at successive steps. If Equation (7) is
satisfied, then the search direction is the negative value of the gradient.∣∣∣GradientT

i−1·Gradienti
∣∣∣ ≥ 0.2 ‖Gradienti‖

2 (7)

2.1.3. Gradient Descent

Gradient decent algorithms are among the most popular training techniques for neural networks
due to their relative simplicity, and they use as the main component for the changes in each iteration
the gradient. We use three different types of gradient descent algorithms. The first one was the gradient
descent with momentum (DM) [30]. This algorithm adds momentum considerations in an attempt
to avoid the issue of local minima. Another training algorithm used was the gradient descent with
adaptive learning (DA) variant. In this approach the learning rate is dynamically adjusted, taking into
consideration the accuracy of the forecasts in each iteration. A third variant used was a combination of
the previous two. This method is called gradient descent with momentum and adaptive learning (DX).

2.1.4. Other Methods

We also used some other methods such as the Levenberg Marquardt (LM) approach. This is a
relatively simple approach with moderate computational requirements. The basic iterative process is
showed in Equation (8):

Xi+1 = Xi − (JacobianTJacobian + Constant·I)
−1

JacobianT
· Error (8)
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Another method used was the [36] Secant approach (OSS). This is a straightforward technique in
which the iterative change in values is dictated by a function of the current gradient and the gradient
in the previous iteration. The last technique used was resilient backpropagation (RP). This is another
frequently used training algorithm in which the increase in each iteration is defined by Equation (9):

dX = ∆X·sign of the gradient (9)

In total 10 learning algorithms were used, see Table 2, as a forecasting tool for the previously
mentioned 10 country stock indexes. The moving average was used as an input for the neural network
(the process was repeated for all the three moving averages considered). As previously mentioned,
15% of the data was designated as testing data and not used during the training period. The R-squared
values showed in the results are the R-squared obtained when regressing the actual value with the
estimated generated for the testing data set. This is the standard procedure to try to ensure that the
trained neural network generalizes reasonably well when faced with new data, which is a critical
step for neural networks. Choosing the appropriate learning algorithm for the neural network is
of clear importance but it will be showed that there appear to be some general trends for all the
ten learnings algorithms analyzed, supporting the hypothesis that neural networks are actually an
appropriate forecasting tool for stock prices in narrow markets. Calculating 100 networks per index
and per configuration allowed for the estimation of confidence intervals. This was done in order to
avoid having results that are relatively accurate but that can be obtained because a one off or relatively
unlikely events.

Table 2. Learning algorithm and standard Matlab abbreviation.

Abbreviation Algorithm

BFG Quasi Newton training algorithm
CGB Conjugate Gradient (with restarts)
CGF Conjugate Gradient Fetcher Powell
CGP Conjugate Gradient Polak Ribiere
DA Gradient Descent (adaptive learning)
DM Gradient Descent (momentum)
DX Gradient Descent (momentum and adaptive learning)
LM Levenberg Marquardt
RP Resilient backpropagation

OSS Secant training algorithm

As an example, in Figure 5 it is shown the forecasting accuracy measured as the R-squared of
the regression between the actual and forecasted values, using the OSS training algorithm, for all the
indexes increasing the number of neurons and using the 50-day, 100-day and 200-day moving averages,
which are denoted in the figures as MA50, MA100 and MA200. This analysis was carried out for all the
previously mentioned 10 training algorithms. The results for all the other training algorithms can be
seen in Appendix A (Figures A1–A9).

It could be also useful to compare how, given a specific configuration and choice of moving
average, would the multiple neural network perform for each country, rather than just comparing
several networks and moving averages for the same country index. In Figure 6 an example of this
approach can be seen. This figure showed the accuracy of forecasts using the BFG training algorithm
for all the indexes analyzed. The results for all other training algorithms can be seen in Appendix B
(Figures A10–A18). The Namibian case appears to be the one with the best forecasting accuracy
regardless of the choice of moving average but this is, as previously mentioned, likely a result of stale
price as there were periods with no or very little market activity.
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3. Results

Of the models analyzed the best results, from a forecasting accuracy point of view, were those
using the 50-day moving average and a relatively small number of neurons, typically 10. Increasing the
number of neurons in the network did not increase the forecasting accuracy. This result was relatively
consistent among most of the indexes, regardless if they belong to very deep, deep, moderately narrow
or narrow categories, as well as across most of the training algorithms analyzed. The results in the
Namibian case, a particularly narrow market, should be taken with caution and present some unique
characteristics. The forecasts for the Namibian case appear to be remarkably accurate, see for instance
Figure A8, but this could be related to the stale price issue and the accuracy hence overstated. Liquidity
is very low in the Namibian case and occasionally the quoted price does not correspond with an
executed trade that day but with the closing price on a previous day. The result in this way could
appear to be very accurate but a practical application of such a model for trading purposes could
lead to disappointing results if the price quoted does not match the price at which a transaction can
be actually done. It is also interesting to notice (Figure A8) that in the case of Namibia, using the
Levenberg Marquardt method the forecasting accuracy appears to increase as the number of neurons
increases, which is not the case for the vast majority of other indexes and configurations. In this case
there also appears to be no statistically significant difference between using the 50-day, 100-day or
200-day moving averages, which is again in direct contrast with the results from most of the other
indexes. The case of Tanzania and Spain (IBEX) with the same configuration (Figure A8) are examples
of typical results with the 50-day moving average generating better results than any of the other indexes
analyzed and forecasting accuracy gradually decreasing as the number of neurons increases. It should
also be noted that the forecasting accuracy of the Dow Jones index, using the same configuration,
did marginally increase when the number of neurons were increased. Another peculiarity showed by
the Dow Jones index is that the selection of the moving average (50-day, 100-day or 200-day) did not
have a significant impact on the forecasting accuracy for most of the configurations analyzed.

3.1. Training Algorithm

In general terms the accuracy of the training algorithms was comparable. One of the noticeable
exceptions was the gradient descent momentum (Figure A6) that generated the worst results among
all the training algorithms used. These poor results were obtained for all the 10 indexes and regardless
of the number of neurons used. All the other training algorithms provided comparable results for the
indexes regardless on the classification of the index. All the narrow and moderately narrow markets
analyzed, with the previously mentioned caveat for the Namibian market, generated forecasts that are
comparable to deep and very deep markets.

3.2. Indexes

While the forecasting accuracy is good for all the indexes, regardless if it is a narrow market or not,
there are some apparent differences with for instance moderately narrow markets, particularly in the
case of the Spanish (IBEX) and Chinese (CSI) generating for most of the configurations analyzed slightly
poorer forecasts than in the case of the other indexes, see for instance Figures 6 and A11. The difference
appears to be particularly large in the case of the gradient descent with adaptive learning (Figure A12).

4. Discussion

Neural networks appear to be an applicable tool for stock forecasting purposes on narrow markets
with performance that is comparable but typically lower than in deeper markets. Forecasts in some
particularly narrow markets might appear to be very accurate but that could be related to stale
prices. This phenomenon appear when the quoted price is not representative of an actual transaction
on the analyzed day but of some transaction on a previous day. This is typically associated with
illiquid markets. Besides, for this type of extreme case, it would appear that neural networks do
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a relatively good job forecasting stock performance in the countries analyzed. The 50-day moving
average provided results that were at least statistically not worse than the 100-day or 200-day moving
averages for most of the neural network configurations analyzed. For other, deeper, markets, such as
the U.S. market, there appears to be less statistically significant differences between these different
moving averages regarding forecasting accuracy. It should also be noted that increasing the number of
neurons did, in most cases, not only not increase forecasting accuracy but it decreased it. This was
a general trend observed when using virtually all of the training algorithms with basically all the
ten stock indexes analyzed. This might be related to the issue of local minima in neural networks.
As the number of neurons increases the neural network might get stuck in a local minimum, basically
losing generalization power. Therefore, an important takeaway is that naively increasing the level of
complexity of a neural networks, by adding large amounts of neurons to the network, is not likely to
translate into more accurate stock forecasts.

The fact that neural networks appear to be applicable for stock forecasting in narrow markets
suggest that while there are clearly very big differences between narrow and deep markets they might
also share some features that allow the successful use of the same forecasting technique, such as
neural networks, in both types of markets. As previously mentioned the flow of information is likely
very different in some of the narrow markets analyzed, with relatively poor telecommunication and
trading infrastructure, compared to countries such as the United States, but, interestingly, it appears
that regardless of these obvious differences neural networks have comparable levels of applicability,
for stock forecasting purposes, in narrow and deep markets.

5. Conclusions

Besides the many differences between narrow and deep stock markets it appears that neural
networks are an efficient forecasting tool for both types of markets. This is a rather surprising result as
the differences between those markets could be rather large with the basic expectation being that their
behavior and, hence, the appropriate tool for forecasting the dynamics of its stock markets being rather
different. This does not appear to be the case with neural networks generating relatively accurate
forecasts for narrow, moderately narrow, deep and very deep markets. Just to put it into perspective,
the results suggest that the same technique (neural network) of stock forecasting is applicable to stock
markets as different as the ones in Namibia, Tanzania and the United States. One issue that should
however be taken into account is that some of those are narrow stock markets, particularly in the case
of Namibia is stale prices. Some of the prices quoted in a narrow stock market might not reflect the
“true” price of a stock as for example that stock might not have traded in a given day with the price
quoted being that of the previous day. That would decrease the volatility of the quoted stock prices,
compared to the actual price of the stocks (at which a stock transaction can be actually carried out).
This reduction in volatility might make the forecasting task easier but less reliable as an investment tool.
Nevertheless, even after accounting for the issue of stale prices it would appear that neural networks
can be successfully applied to different stocks markets with varying degrees of narrowness.

It is interesting that the results, while comparable, seem to indicate that the forecast for moderately
narrow markets are slightly less accurate than those for deep markets. This might be due to the
previously mentioned differences in quality and reliability of the information and trading platform
in those markets. It is also interesting to observe that the results support the idea that the analyzed
markets are not perfectly efficient, even those that are very deep, as forecasting tools such as neural
network are able, using only historical data (moving averages are constructed using only historical
data) to generate relatively accurate forecasts, which would seem to contradict the efficient market
hypothesis, which is a result in line with other paper analyzing the predicting capabilities of neural
networks in the stock market. Perhaps one of the most important takeaways is that the results support
the hypothesis that both narrow and deep markets are not perfectly efficient and that stock forecasting
tools can be used successfully.
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Appendix A

Each graph in this appendix contains the evolution of the forecasting accuracy as the number
of neurons is increased, for all the different stock indexes analyzed for a given learning algorithm,
for instance, Figure A1 shows how the forecasting accuracy, measured as R-squared, tends to decrease
as the number of neurons increases for all the equity index (see Table 1) for the quasi Newton
learning algorithm (BFG). In Table 2 it can be seen the key for the abbreviations of the different
learning algorithms.

Symmetry 2020, 12, 1272 12 of 22 

 

Author Contributions: Conceptualization, G.A. and D.R.R.; methodology, G.A.; software, G.A. and D.R.R.; 
validation, G.A. and D.R.R.; formal analysis, G.A. and D.R.R.; investigation, G.A. and D.R.R.; resources, G.A. 
and D.R.R.; data curation, G.A.; writing—original draft preparation, G.A.; writing—review and editing, G.A. 
and D.R.R.; visualization, G.A. and D.R.R.; supervision, G.A. and D.R.R.; project administration, G.A. and 
D.R.R.; funding acquisition, D.R.R. All authors have read and agreed to the published version of the manuscript. 

Funding: This work has received support by Ministerio de Ciencia e Innovación of Spain under project PID2019-
106212RB-C41. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Each graph in this appendix contains the evolution of the forecasting accuracy as the number of 
neurons is increased, for all the different stock indexes analyzed for a given learning algorithm, for 
instance, Figure A1 shows how the forecasting accuracy, measured as R-squared, tends to decrease 
as the number of neurons increases for all the equity index (see Table 1) for the quasi Newton learning 
algorithm (BFG). In Table 2 it can be seen the key for the abbreviations of the different learning 
algorithms. 

 
Figure A1. Forecasting accuracy comparison of different moving averages using the quasi Newton 
(BFG) training algorithm (99% confidence interval). 

 
Figure A2. Forecasting accuracy comparison of different moving averages using the conjugate 
gradient (with restarts) training algorithm (99% confidence interval). 

Figure A1. Forecasting accuracy comparison of different moving averages using the quasi Newton
(BFG) training algorithm (99% confidence interval).

Symmetry 2020, 12, 1272 12 of 22 

 

Author Contributions: Conceptualization, G.A. and D.R.R.; methodology, G.A.; software, G.A. and D.R.R.; 
validation, G.A. and D.R.R.; formal analysis, G.A. and D.R.R.; investigation, G.A. and D.R.R.; resources, G.A. 
and D.R.R.; data curation, G.A.; writing—original draft preparation, G.A.; writing—review and editing, G.A. 
and D.R.R.; visualization, G.A. and D.R.R.; supervision, G.A. and D.R.R.; project administration, G.A. and 
D.R.R.; funding acquisition, D.R.R. All authors have read and agreed to the published version of the manuscript. 

Funding: This work has received support by Ministerio de Ciencia e Innovación of Spain under project PID2019-
106212RB-C41. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Each graph in this appendix contains the evolution of the forecasting accuracy as the number of 
neurons is increased, for all the different stock indexes analyzed for a given learning algorithm, for 
instance, Figure A1 shows how the forecasting accuracy, measured as R-squared, tends to decrease 
as the number of neurons increases for all the equity index (see Table 1) for the quasi Newton learning 
algorithm (BFG). In Table 2 it can be seen the key for the abbreviations of the different learning 
algorithms. 

 
Figure A1. Forecasting accuracy comparison of different moving averages using the quasi Newton 
(BFG) training algorithm (99% confidence interval). 

 
Figure A2. Forecasting accuracy comparison of different moving averages using the conjugate 
gradient (with restarts) training algorithm (99% confidence interval). 

Figure A2. Forecasting accuracy comparison of different moving averages using the conjugate gradient
(with restarts) training algorithm (99% confidence interval).



Symmetry 2020, 12, 1272 13 of 22Symmetry 2020, 12, 1272 13 of 22 

 

 
Figure A3. Forecasting accuracy comparison of different moving averages using the conjugate 
gradient Fetcher Powell training algorithm (99% confidence interval). 

 
Figure A4. Forecasting accuracy comparison of different moving averages using the conjugate 
gradient Polak Ribiere training algorithm (99% confidence interval). 

Figure A3. Forecasting accuracy comparison of different moving averages using the conjugate gradient
Fetcher Powell training algorithm (99% confidence interval).

Symmetry 2020, 12, 1272 13 of 22 

 

 
Figure A3. Forecasting accuracy comparison of different moving averages using the conjugate 
gradient Fetcher Powell training algorithm (99% confidence interval). 

 
Figure A4. Forecasting accuracy comparison of different moving averages using the conjugate 
gradient Polak Ribiere training algorithm (99% confidence interval). 

Figure A4. Forecasting accuracy comparison of different moving averages using the conjugate gradient
Polak Ribiere training algorithm (99% confidence interval).



Symmetry 2020, 12, 1272 14 of 22Symmetry 2020, 12, 1272 14 of 22 

 

 
Figure A5. Forecasting accuracy comparison of different moving averages using the gradient descent 
(adaptive learning) training algorithm (99% confidence interval). 

 
Figure A6. Forecasting accuracy comparison of different moving averages using the gradient descent 
(momentum) training algorithm (99% confidence interval). 

Figure A5. Forecasting accuracy comparison of different moving averages using the gradient descent
(adaptive learning) training algorithm (99% confidence interval).

Symmetry 2020, 12, 1272 14 of 22 

 

 
Figure A5. Forecasting accuracy comparison of different moving averages using the gradient descent 
(adaptive learning) training algorithm (99% confidence interval). 

 
Figure A6. Forecasting accuracy comparison of different moving averages using the gradient descent 
(momentum) training algorithm (99% confidence interval). 

Figure A6. Forecasting accuracy comparison of different moving averages using the gradient descent
(momentum) training algorithm (99% confidence interval).



Symmetry 2020, 12, 1272 15 of 22
Symmetry 2020, 12, 1272 15 of 22 

 

 
Figure A7. Forecasting accuracy comparison of different moving averages using the gradient descent 
(momentum and adaptive learning) training algorithm (99% confidence interval). 

 
Figure A8. Forecasting accuracy comparison of different moving averages using the Levenberg 
Marquardt training algorithm (99% confidence interval). 

Figure A7. Forecasting accuracy comparison of different moving averages using the gradient descent
(momentum and adaptive learning) training algorithm (99% confidence interval).

Symmetry 2020, 12, 1272 15 of 22 

 

 
Figure A7. Forecasting accuracy comparison of different moving averages using the gradient descent 
(momentum and adaptive learning) training algorithm (99% confidence interval). 

 
Figure A8. Forecasting accuracy comparison of different moving averages using the Levenberg 
Marquardt training algorithm (99% confidence interval). 

Figure A8. Forecasting accuracy comparison of different moving averages using the Levenberg
Marquardt training algorithm (99% confidence interval).



Symmetry 2020, 12, 1272 16 of 22Symmetry 2020, 12, 1272 16 of 22 

 

 
Figure A9. Forecasting accuracy comparison of different moving averages using the resilient 
backpropagation training algorithm (99% confidence interval). 

Appendix B 

In this appendix every figure is divided into three subplots. From top to bottom this graph 
represents the analysis for the 50, 100 and 200 days moving averages showing how the forecasting 
accuracy evolves as the number of neurons is increased. For instance, Figure A10 illustrates the 
evolution of the forecasting accuracy of the conjugate gradient (with restarts) learning algorithm for 
all the ten stock indexes considered in this paper. 

 
Figure A10. Results using conjugate gradient (with restarts) training per country, 99% confidence 
interval, using the 50, 100 and 200 days moving average. 

Figure A9. Forecasting accuracy comparison of different moving averages using the resilient
backpropagation training algorithm (99% confidence interval).

Appendix B

In this appendix every figure is divided into three subplots. From top to bottom this graph
represents the analysis for the 50, 100 and 200 days moving averages showing how the forecasting
accuracy evolves as the number of neurons is increased. For instance, Figure A10 illustrates the
evolution of the forecasting accuracy of the conjugate gradient (with restarts) learning algorithm for all
the ten stock indexes considered in this paper.
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