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Abstract: We discuss the application of ambit fields to the construction of stochastic vector fields in
two dimensions that are divergence-free and statistically homogeneous and isotropic but are not
invariant under the parity operation. These vector fields are derived from a stochastic stream function
defined as a weighted integral with respect to a Lévy basis. By construction, the stream function
is homogeneous and isotropic and the corresponding vector field is, in addition, divergence-free.
From a decomposition of the kernel in the Lévy-based integral, necessary conditions for the violation
of parity symmetry are inferred. In particular, we focus on such fields that allow for skewness of
projected increments, which is one of the cornerstones of the Kraichnan–Leith–Bachelor theory of
two-dimensional turbulence.
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1. Introduction

The term ambit field or ambit stochastics originated in [1] in relation to the modeling of stylized
statistical features of turbulent flows. The term ambit is associated with a subset of the underlying
space that is able to affect a given stochastic field. This domain of influence is called the associated
ambit set. Ambit fields are then defined as weighted integrals over ambit sets with respect to infinitely
divisible and independently scattered random measures.

With a view to applications, a main objective of ambit stochastics is the design of random fields
according to prescribed statistical properties. A review of ambit stochastics with an emphasis on
applications, including turbulence, finance and the modeling of growth processes can be found in [2].

Partly inspired by applications, ambit stochastics also constitutes an active area of research from
the statistical and mathematical side. The monograph [3] provides a comprehensive presentation of
statistical and mathematical issues of ambit stochastics, including aspects related to the numerical
simulation of ambit fields (see also [4]). Some topics on the efficiency of numerical methods are further
discussed in [5,6].

The present paper adds another application of ambit fields within the realm of turbulence.
The most prominent and fundamental theories of turbulence in two spatial dimensions and in
three spatial dimensions are based on non-zero skewness of projected velocity increments in
divergence-free and homogeneous and isotropic turbulent flows [7,8]. We refer to these properties
as the fundamental properties. In such a situation the turbulent velocity vector field is statistically
invariant under translations and rotations, but not invariant under reflections. An account of a general
framework for such vector fields provides the basics for more elaborated approaches that allow to
model additional properties of turbulent flows; but already, the general explicit set-up of such vector
fields is a non-trivial problem, as is reflected in previous works that fail to include one or more of these
fundamental properties of turbulent flows or are, in many respects, not analytically tractable [6,9–11].
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In [6], a vector model in arbitrary dimensions based on ambit stochastics was introduced, which
is homogeneous and isotropic, but fails to incorporate skewness of projected velocity increments.
Moreover, the issue of differentiability and zero divergence of the vector field is not discussed.
A wavelet-based approach is presented in [10], which reflects homogeneity and skewness of increments.
However, the authors only discuss a one-dimensional model describing one component of the turbulent
velocity vector in the time domain. In this set-up, the notion of isotropy and divergence plays
no role. This restriction to the modeling of a scalar field is also behind the approach discussed in [9].
This one-dimensional model is a simplification of the three-dimensional homogeneous, isotropic,
divergence-free and skewed vector model in [11]. In both versions, the models involve integration
with respect to Gaussian white noise and an integrand that depends on this white noise, which makes
these models analytically not tractable. In particular, skewness of projected increments can only be
shown in the limit of small distances.

To our knowledge, the present work is the first contribution that reproduces all the fundamental
properties in a stochastic framework that is analytically tractable, explicitly models a vector field in two
dimensions and clearly identifies the necessary model ingredients for these fundamental properties.
The tractability of the model allows to extract an exact expression for the skewness of projected
increments, which is not available in the approaches cited above. Furthermore, additional degrees
of freedom can be extracted with a view to more detailed statistical properties that are genuine to
two-dimensional turbulent flows. Ambit stochastics provides the necessary stochastic framework and
the approach discussed here is not restricted to turbulence applications. From a more theoretical point
of view, the method used here can be characterized as deriving a vector field in two dimensions as
the tangent of curves in space that are contour lines of a scalar field. It is then obviously of interest to
derive properties of the vector field from the properties of the underlying scalar field. In this respect,
the present study can be seen as an example that focusses on increment statistics.

This paper is organized as follows. The next section provides the necessary background on ambit
fields and also presents a very brief introduction on two-dimensional turbulence as far as it is of
importance to set the present work into context. Section 3 is devoted to the derivation and discussion
of the ambit field approach to model the fundamental properties of divergence-free, isotropy and
homogeneity, while the property of skewness of projected increments is covered in Section 4, which
also presents the main result summarizing necessary conditions for the fundamental properties to be
realized within the proposed framework. A key example of a specific realization is briefly discussed in
Section 5. We conclude with an additional discussion of our results in Section 6. Part of the proof of
the main result is delegated to Appendix A.

2. Background

To motivate and to set the present work into context we provide a very brief account of basic
turbulence theory in two dimensions that discusses the importance of the fundamental properties
to be modeled within the framework of ambit fields. Some definitions that are fundamental for the
construction of ambit fields are also provided in this Section. The principal elements are ambit sets,
Lévy bases and the corresponding spot variable.

2.1. Two-Dimensional Turbulence

The most fundamental theories of turbulence in two spatial dimensions (Kraichnan–Leith–Bachelor [8])
and in three spatial dimensions (Kolmogorov–Obukhov theory [7]) refer to turbulent flows
in situations where the flow is statistically homogeneous (invariant under spatial translations),
isotropic (invariant under spatial rotations) and where the turbulent velocity field ~v(~r) at position~r is
divergence-free, i.e.,

∇ ·~v(~r) = 0, (1)
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where ∇ is the Nabla operator in two or three dimensions and · denotes the Euclidean scalar product.
A cornerstone of these theories in two and three spatial dimensions is the observation that the turbulent
velocity field~v(~r) shows skewness of projected velocity increments. This skewness is usually measured
in terms of the so-called third-order structure function S3 defined as (using homogeneity of ~v)

S3(∆~r) = E

{(
(~v(~r + ∆~r)−~v(~r)) · ∆~r

||∆~r||

)3
}

. (2)

Here E{·} denotes the expectation and || · || is the Euclidean norm. These four properties,
i.e., homogeneity, isotropy, divergence-free (1) and skewness S3 6≡ 0 constitute the fundamental properties
that we want to realize within the framework of ambit fields in two spatial dimensions for a class of
vector fields ~v.

An important conclusion from these fundamental properties is the fact that the velocity field ~v(~r)
is not invariant under the parity operation, i.e., ~v→ −~v,~r → −~r. For otherwise S3 ≡ 0 since

S3(∆~r) = E

{(
(−~v(−~r− ∆~r) +~v(−~r)) · −∆~r

|| − ∆~r||

)3
}

= −S3(∆~r),

where we use homogeneity and replace −~r by~r + ∆~r. Thus, a necessary condition for skewness is the
violation of the parity symmetry.

So far, the discussion does not depend on whether we consider two-dimensional or
three-dimensional turbulence. However, the dimensionality of the flow plays an important role
in many other respects. An essential difference is the widely-used concept of a stream function Ψ that
is available only in two spatial dimensions (see, for instance [12]).

In Cartesian coordinates we write~r = (x, y), and let Ψ(~r) be a twice differentiable scalar field. We
may define the velocity field ~v(~r) as

~v(~r) =
(

∂Ψ(~r)
∂y

,−∂Ψ(~r)
∂x

)
. (3)

We then have ∇ ·~v(~r) = 0, and the modeling of the four fundamental properties reduces to the
modeling of three properties, i.e., homogeneity, isotropy and skewness of projected increments. It is
this simplification that will be employed in the present approach.

2.2. Lévy Bases

A main ingredient for the construction of ambit fields is that of a Lévy basis on Rk. A family of
random vectors {L(A) : A ∈ Bb(S)} in Rd constitutes an Rd-valued Lévy basis on S if:

(a) L(A) is infinitely divisible for all A ∈ Bb(S);
(b) L(A1), . . . , L(An) are independent for disjoint subsets A1, . . . , An ∈ Bb(S);
(c) For disjoint subsets A1, A2, . . . ∈ Bb(S) with ∪∞

i=1 Ai ∈ Bb(S) we have

L (∪∞
i=1 Ai) =

∞

∑
i=1

L(Ai) a.s.

Here, Bb(S) denotes the bounded Borel sets of S ⊆ Rk.
For each s ∈ S there exists an Rd-valued random variable L′(s), called the (associated)

spot variable. The cumulant-generating function of L(A), A ∈ Bb(S) can then be represented as

C(z, L(A)) = log E
[
ez·L(A)

]
=
∫

A
C(z, L′(s))λ(ds), (4)
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where λ is the control measure of the Lévy basis (see [6] and references therein for more details).
The Lévy basis is called homogeneous if the distribution of L′(s) does not depend on s and if λ is the
Lebesgue measure on S.

For a homogeneous Lévy basis, a deterministic function f and a field σ on S that is independent
of the Lévy basis L, it follows that [13]

C
(

z,
∫

A
f σL(ds)

)
= log E

[
exp

(∫
A

C
(
( f (s)σ(s))T z, L′(s)

)
ds
)]

. (5)

Here, ·T denotes the transpose.
The integral in (5) is an extension of integration of deterministic functions f defined as the limit

in probability ∫
A

f (s)L(ds) = lim
j→∞

∫
A

f j(s)L(ds).

Here, ( f j)
∞
j=1 is a sequence of simple functions, defined as linear combinations of

indicator functions, with f j → f λ-a.s. and such that (
∫

A f jL(ds))∞
j=1 converges in probability. For a

field σ, independent of L, and under the assumption that f σ is a.s. L-integrable, the integral
∫

S f σL(ds)
is then defined conditional on σ. Necessary and sufficient conditions for the L-integrability of f in
relation to the characteristics of L are stated in Theorem 2.7 in [13], showing that the space of integrable
functions defines a Musielak–Orlicz modular space.

2.3. Ambit Fields

For s ∈ S, we choose subsets A(s) ⊂ S and conceive A(s) as being attached to the points s.
These sets are then called the (associated) ambit sets to s. An Rd-valued ambit field is then defined as

Y(s) =
∫

A(s)
g(s, z)σ(z)L(dz). (6)

Here g is a deterministic function and σ a stochastic fields such that gσL has values in Rd.
The integral may be defined in the sense of integration with respect to an independently scattered
random measure [13], and we assume that g, σ are suitable for the integral to exist.

In what follows, we restrict attention to the case where σ = 1 and where S ⊂ R2 and interpret
(x, y) ∈ S as the position in a two-dimensional spatial domain. Furthermore, we will concentrate on
homogeneous (translational invariant) ambit fields of the form

Y(x, y) =
∫

A(x,y)
g(x− s, y− ξ)L(dξds), (7)

where the ambit sets A(x, y) are homogeneous, A(x, y) = (x, y) + A, and L is assumed to be
a homogeneous Lévy basis. A sufficient condition for the stochastic integral in (7) to exist is that g is
absolutely-integrable and square-integrable over A(x, y).

The process Y is by definition homogeneous in space. To include as a further symmetry invariance
under rotations of the coordinate system (isotropy), one may require that

g(x− s, y− ξ) = ḡ((x− s)2 + (y− ξ)2), (8)

and that A has a circular shape.
The above definition of ambit fields (7) can straightforwardly be extended to the case of

a homogeneous Lévy basis L on the torus [0, 2π]×R2 and the field Y defined as

Y(x, y) =
∫ 2π

0

∫
A(x,y)

g(φ, x− s, y− ξ)L(dφdξds). (9)
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This extension (9) allows to relax the severe condition (8) for isotropy, which is needed later to
model vector fields that are homogeneous and isotropic and have a non-zero skewness of projected
increments. In fact (see Section 6), isotropic and homogeneous versions of (7) do not allow for non-zero
skewness of projected increments. In other words, models of the type (7) with the specification (8) and
a circular ambit set A are isotropic and homogeneous and, in addition, invariant under reflections
of the coordinate system (parity). The extension (9) allows to avoid the parity symmetry without
destroying homogeneity and isotropy.

3. Modeling Framework

The basic idea behind the proposed approach for modeling a stochastic vector field in two
dimensions is to model a stochastic stream function Ψ according to (9) that is homogeneous and
isotropic and derive the model for the vector field following (3). Conditions on the existence of specific
models within this framework that allow for skewness of projected increments will be discussed in
Section 4.

This approach is restricted to two-dimensional space and, moreover, it requires that the stream
function Ψ is differentiable. We require that the stream function is twice differentiable, which then
implies that the derived vector field is differentiable and that its divergence is identically zero.

3.1. Stream Function

We define the stream function Ψ at P ∈ R2 according to (9) as

Ψ(P) =
∫ 2π

0

∫
A(P)

h(||P−Q||) f (Rφ(P−Q)L(dφdQ), (10)

where L is a homogeneous Lévy basis on the torus [0, 2π]×R2. We choose L such that the spot variable
L′ has zero mean, κ1 = E{L′} = 0, and a non-zero third-order moment, κ3 = E{L′3} 6= 0. The ambit
set A(P) = P + A is a disc with a center P and a fixed radius r, independent of P. We assume that h f
is absolutely-integrable and square-integrable over A. Rφ denotes the two-dimensional (clockwise)
rotation matrix.

To ensure Ψ being twice differentiable it is moreover assumed that f and h are differentiable [14] with

h(r) = h′(r) = 0. (11)

The model (10) is composed of an homogeneous Lévy basis and the integrand only depends
on P− Q, which implies that Ψ is homogeneous. Moreover, the circular shape of the ambit set A
together with the specific form of the deterministic kernel h f implies that Ψ and the resulting model
for the derived vector field ~v is isotropic. To construct the vector field, a certain fixed Cartesian
coordinate system will be chosen. However, this does not destroy homogeneity and isotropy, since we
have a uniform average over all directions φ in (10). These symmetry properties, homogeneity and
isotropy, are independent of the choice of the deterministic kernels h and f . It remains to choose these
kernels such that the resulting model for the vector field incorporates non-zero skewness of projected
increments, i.e., it is not parity invariant.

3.2. Vector Field

Choosing a fixed Cartesian coordinate system, we set P = (p1, p2), and denote the components of
the vector field ~v as

~v(P) = (u(P), w(P)).

Using the condition of differentiability (11) and (3) we arrive at the expressions [14]
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u(P) =
∫ 2π

0

∫
A(P)

∂

∂p2

{
h(||P−Q||) f (Rφ(P−Q))

}
L(dφdQ),

w(P) = −
∫ 2π

0

∫
A(P)

∂

∂p1

{
h(||P−Q||) f (Rφ(P−Q))

}
L(dφdQ).

The resulting vector field ~v is, by definition, homogeneous, isotropic and divergence-free.

4. Skewness

Due to homogeneity and isotropy, the third-order structure function (2) may be written as

S3(||(x, y)||) = E

{(
(~v(x, y)−~v(0, 0)) · (x, y)

||(x, y)||

)3
}

.

Furthermore, we may consider the case where y = 0, and choose the two spatial positions
symmetrically to the origin, which gives, for 0 ≤ x ≤ 2r, and using (5)

S3(x) =E
{
(u(x/2, 0)− u(−x/2, 0))3

}
= κ3

∫ 2π

0

∫
A(x/2,0)∩A(−x/2,0)

F3(x, φ, q1, q2)dφdq1dq2, (12)

where

F(x, φ, q1, q2) =
∂

∂p2

{
h(||P−Q||) f (Rφ(P−Q))

}∣∣∣∣
P=(x/2,0)

− ∂

∂p2

{
h(||P−Q||) f (Rφ(P−Q))

}∣∣∣∣
P=(−x/2,0)

. (13)

Note that the third-order structure function is obtained by integration over the overlap of the two
associated ambit sets located at (−x/2, 0) and (x/2, 0), as depicted in Figure 1.

q2

q1

Figure 1. Symmetries of A(x/2, 0) ∩ A(−x/2, 0).

In relation to symmetry considerations, we may rewrite the limits of integration for φ in (12) as
[−π, π] instead of [0, 2π]. From this and from Figure 1 a necessary condition for non-zero skewness of
projected increments becomes obvious. In case the kernel F3(x, φ, q1, q2) is an odd function of one of
its arguments φ, q1, q2 then the skewness is zero for all x. In other words F3(x, φ, q1, q2) must contain,
after a decomposition in even and odd functions of its variables φ, q1, q2, a term that is even in all
these variables. The next section will relate this property to the symmetry properties of the kernel f .

4.1. Decomposition

We will now derive necessary conditions on the deterministic kernel f for non-zero skewness
of projected increments of the vector field ~v. To facilitate calculations we introduce some notation.
We define
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(x̃, ỹ) = Rφ

( x
2
− q1,−q2

)
,

or explicitly

x̃(x, q1, q2, φ) =
( x

2
− q1

)
cos φ− q2 sin φ,

ỹ(x, q1, q2, φ) = −
( x

2
− q1

)
sin φ− q2 cos φ.

The basic idea for the derivation of necessary conditions on f for non-zero skewness of projected
increments of the vector field ~v is to decompose f according to its symmetry properties. In particular
we decompose f as a sum of even (E) and odd (O) functions of specific combinations of its arguments

f (x̃(x, q1, q2, φ), ỹ(x, q1, q2, φ)) = ∑
s1∈{E,O}

∑
s2∈{E,O}

∑
s3∈{E,O}

fs1s2s3(x, q1, q2, φ),

where the first index s1 denotes the even–odd symmetry with respect to x̃, the second index s2 denotes
the even–odd symmetry with respect to q2 and the third index s3 denotes the even–odd symmetry
with respect to φ.

In a slightly different way we decompose F as

F(x, q1, q2, φ) = ∑
s1∈{E,O}

∑
s2∈{E,O}

∑
s3∈{E,O}

Fs1s2s3(x, q1, q2, φ), (14)

where the first index s1 denotes the even–odd symmetry with respect to q1, the second index s2 denotes
the even–odd symmetry with respect to q2 and the third index s3 denotes the even–odd symmetry
with respect to φ. The special choice of the decomposition with respect to even–odd symmetries of f
directly relates to the relevant even–odd symmetries of F(x, q1, q2, φ) with respect to q1, q2, φ as shown
in the Appendix A.

Using the decomposition of F and the symmetries of the integration domain for S3, it is
straightforward to conclude that out of the possible terms of F3 arising from the decomposition
of F only 12 terms do not necessarily integrate to zero. These are those that combine to integrands F3

that are even in q1, even in q2 and even in φ. The surviving term is

F3
EEE + 3FEEEF2

EEO + 6FEEEF2
OOE + 6FEEEF2

OOO + 12FEEOFOOEFOOO

+ 3FEEEF2
OEE + 3FEEEF2

OEO + 6FEEOFOEEFOEO + 6FEOEFOEEFOOE

+ 6FEOEFOEOFOOO + 6FEOOFOEEFOOO + 6FEOOFOEOFOOE. (15)

As will be shown in Appendix A, it is straightforward to prove that the non-vanishing of this
surviving term requires that certain terms in the decomposition of f must be present.

Theorem 1. (preliminary necessary condition)
A necessary condition for non-zero skewness of projected increments of the vector field ~v is that there is at

least one triplet out of

{ fOOE, fOOE, fOOE} , { fOOE, fEOO, fEOO} , { fOOE, fEEE, fEEE} , { fOOE, fOEO, fOEO} ,

{ fEOO, fEEE, fOEO} , { fOOE, fEOE, fEOE} { fOOE, fOOO, fOOO} , { fEOO, fEOE, fOOO} ,

{ fOEE, fEOE, fEEE} , { fOEE, fOOO, fOEO} , { fEEO, fEOE, fOEO} , { fEEO, fOOO, fEEE} ,

such that the product of its terms is not identically zero.
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4.2. Triads

The necessary condition for non-zero skewness of projected increments of the vector field ~v
discussed in the previous section can be further sharpened by considering the detailed implications of
the decomposition of f with respect to the even–odd symmetry in φ. For that we consider yet another
decomposition in terms of Fourier series (assumed to exist), i.e.,

fs1s2E(x̃(x, q1, q2, φ), ỹ(x, q1, q2, φ)) =
∞

∑
n=0

as1s2E
n (x, q1, q2) cos(nφ),

and

fs1s2O(x̃(x, q1, q2, φ), ỹ(x, q1, q2, φ)) =
∞

∑
n=0

as1s2O
n (x, q1, q2) sin(nφ).

The integrand in the expression for S3 in combination with the necessary condition stated in
Theorem 1 will involve triple products of the form

cos(nφ) cos(mφ) cos(pφ)

and
cos(nφ) sin(mφ) sin(pφ).

when integrating these terms with respect to φ, all combinations of m, n and p for which

n + m = p

or
m + p = n

is not fulfilled will vanish. We thus conclude that the indices of the corresponding Fourier coefficients
must allow these conditions to be met. We denote this property as forming a triad.

Definition 1. Three sets A = {an, n ∈ N0}, B = {bn, n ∈ N0} and C = {cn, n ∈ N0} of functions are said
to have triads if there are triplets (an, bm, cl) such that anbmcl 6≡ 0 and n + m = l or m + l = n or n + l = m.

With this notion we arrive at the following necessary condition for non-zero skewness of projected
increments of the vector field ~v.

Theorem 2. S3(x) 6= 0 for some x ∈]0, 2r[ implies that there are triads among at least one of the combinations(
AOOE, AOOE, AOOE

)
,
(

AOOE, AEOO, AEOO
)

,
(

AOOE, AEEE, AEEE
)

,
(

AOEO, AOOE, AOEO
)

,(
AEOO, AEEE, AOEO

)
,
(

AOOE, AOEE, AOEE
)

,
(

AOOE, AEEO, AEEO
)

,
(

AEOO, AOEE, AEEO
)

,(
AEOE, AOEE, AEEE

)
,
(

AEOE, AEEO, AOEO
)

,
(

AOOO, AOEE, AOEO
)

,
(

AOOO, AEEO, AEEE
)

,

where
As1s2s3 =

{
as1s2s3

n (x, ·), n ∈ N0
}

.

5. Key Example

The lowest order polynomial that meets the conditions of Theorem 2 is

f (x̃, ỹ) = c1 x̃ỹ + c2 x̃, (16)

where c1 6= 0 and c2 6= 0 are constants. In this case
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f = fOOE + fOEO + fOEE + fOOO,

where

fOEO(x, q1, q2, φ) =
1
2

c1c2

(
q2

2 −
( x

2
− q1

)2
)

sin(2φ) = aOEO
2 (x, q1, q2) sin(2φ),

fOOE(x, q1, q2, φ) =− c1c2q2

( x
2
− q1

)
cos(2φ) = aOOE

2 (x, q1, q2) cos(2φ),

fOEE(x, q1, q2, φ) =c2

( x
2
− q1

)
cos φ = aOEE

1 (x, q1, q2) cos φ,

fOOO(x, q1, q2, φ) =− c2q2 sin φ = aOOO
1 (x, q1, q2) sin φ,

which allow for triads for {AOOE, AOOO, AOOO} and {AOEO, AOEE, AOOO}.
In geometrical terms, the condition Ψ(P) = constant defines a curve in space with the

corresponding ~v(P) being tangential. In physical terms, in the present time-independent set-up,
such curves correspond to the path of fluid elements in a flow that have the velocity ~v(P).
In this scenario, a stream function of the form Ψ(x, y) = x reflects a motion parallel to the y-axis,
while a stream function of the form Ψ(x, y) = xy describes a distribution of curves that are of saddle
point type. We may then interpret the scalar field Ψ resulting from (16) as an isotropic superposition
of streaks and saddle points, which indeed seems to be characteristic of turbulent flows; see, for
instance [15].

As a specific application of the key example we numerically evaluated the integral (12) using
a shifted and modified gamma kernel

h(x) = (x + x0)
αe−λ(x+x0)(r− x)2. (17)

This type of kernel allows to approximately reproduce a specific scaling behavior of the third-order
structure function that is fundamental in two dimensional turbulence theory [8]. In high Reynolds
number flows with forcing at intermediate scales there exists a range of small separations x where

S3(x) ∝ x3,

and a range of larger separations where
S3(x) ∝ x.

Such a specific form of the third-order structure function can be approximately reproduced by
choosing λ = 0.00001, α = −0.79, x0 = 0.001 and r = 1024 as illustrated in Figure 2 in double
logarithmic representation. We have arbitrarily chosen κ3 such that the maximum of the displayed
values of S3 is normalized to one. The shifted and modified gamma kernel used in Figure 2 only serves
as an example that illustrates the flexibility of the modeling framework, which distinguishes the ambit
approach from previous works [9–11]. We do not intend to give specific physical meaning to this
choice of the kernel h.
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1
0

−
8

1
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4

1

x

S3(x)

Figure 2. Third-order structure function S3(x) as a function of x in double-logarithmic representation
for the kernel (17). The straight line for small x indicates a scaling behavior ∝ x3 and the straight line
for large x indicates a linear behavior ∝ x.

6. Discussion

The presented modeling framework for the construction of a stochastic stream function reproduces
the required fundamental properties relevant in the turbulent context under the assumption that the
kernel f allows for triads. This rather mild condition on f together with the degrees of freedom in
choosing the kernel h and the Lévy basis L constitute the flexibility of the proposed ambit-based
approach, which then may allow to further develop the model to include more stylized features of
two-dimensional turbulent flows. An example for such an additional property is the specific choice
of the kernel h in Section 5, which clearly shows that the important property of scaling third-order
structure functions can be incorporated.

The focus of the work described here lies mainly on the possibility to realize the fundamental
properties within the ambit framework. However, since the cumulant-generating functions for the
stream function Ψ and the vector field ~v are available, other statistical properties of the corresponding
ambit models can be explicitly calculated. Of particular interest are general structure functions of order
n, defined as the n-th order moments of projected increments. Such an additional detailed statistical
investigation may allow to further clarify the specific role of the model ingredients.

The construction of the model for the vector field ~v and its ability to reflect the fundamental
properties depends crucially on the presence of the rotation matrix Rφ in (10). To highlight its
importance we consider the class of homogeneous and isotropic fields

Ψ̄(P) =
∫

A(P)
h(||P−Q||)L(dQ), (18)

where L is a homogeneous Lévy basis on R2. Again, we choose L such that the spot variable L′ has
zero mean, κ1 = E{L′} = 0, and a non-zero third-order moment, κ3 = E{L′3} 6= 0. The ambit set
A(P) = P + A is, as before, a disc with a center P and a fixed radius r, independent of P. We again
assume that h is absolutely-integrable and square-integrable over A with h(r) = h′(r) = 0.

In this set-up we arrive at (see (12))

S3(x) = κ3

∫
A(x/2,0)∩A(−x/2,0)

F3(x, q1, q2)dq1dq2, (19)

where

F(x, q1, q2) = −
∂

∂q2

{
h̃(x, q1, q2)− h̃(−x, q1, q2)

}
.
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Since h̃ is an even function in q2, F is an odd function in q2 and S3 will be identically zero. Models
of the type (18) do not allow to incorporate non-zero skewness of projected increments.

A further remark relates to possible extensions of (10). The presented modeling framework (10)
relies on the existence of a scalar field Ψ that determines the vector field ~v. As such, this approach is
restricted to two spatial dimensions. However, it is possible to extend the model to include dynamics
in time without destroying the fundamental properties in space. An obvious possibility would be
to replace the circular ambit set A in (10) by a cone along the time direction. To be more precise,
the definition of the scalar field Ψ(P, t) at position P and time t may involve a homogeneous Lévy basis
on the torus [0, 2π]×R3 and a conical ambit set A(P, t) = {(Q, s) ∈ R2× [t− T, t] : ||P−Q|| ≤ r(s)},
where r(s) is a time-dependent radius function describing the extension of the cone. In this formulation,
the cone extends to the past and T may be interpreted as a decorrelation time.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Proof of Theorem 1. We define

h̃(x, q1, q2) = h (||(x/2, 0)− (q1, q2)||) ,

and

k(x, q1, q2, φ) =h̃(x, q1, q2) f (x̃(x, q1, q2, φ), ỹ(x, q1, q2, φ))

− h̃(−x, q1, q2) f (x̃(−x, q1, q2, φ), ỹ(−x, q1, q2, φ)),

and rewrite F, using ∂/∂p2 = −∂/∂q2 in (13), as

F(x, q1, q2, φ) =− ∂

∂q2
k(x, q1, q2, φ).

We decompose k as we did for F in (14) as

k(x, q1, q2, φ) = ∑
s1∈{E,O}

∑
s2∈{E,O}

∑
s3∈{E,O}

ks1s2s3(x, q1, q2, φ),

where the first index denotes the even–odd symmetry with respect to q1, the second index denotes
the even–odd symmetry with respect to q2 and the third index denotes the even–odd symmetry with
respect to φ. For example, kEEE is given as

8kEEE(x, q1,q2, φ) = k(x, q1, q2, φ) + k(x,−q1, q2, φ) + k(x, q1,−q2, φ) + k(x,−q1,−q2, φ)

+ k(x, q1, q2,−φ) + k(x,−q1, q2,−φ) + k(x, q1,−q2,−φ) + k(x,−q1,−q2,−φ). (A1)

The decomposition of k is related to the corresponding decomposition for F as

FEEE(x, q1, q2, φ) = − ∂

∂q2
kEOE(x, q1, q2, φ), FEEO(x, q1, q2, φ) = − ∂

∂q2
kEOO(x, q1, q2, φ),

FEOE(x, q1, q2, φ) = − ∂

∂q2
kEEE(x, q1, q2, φ), FEOO(x, q1, q2, φ) = − ∂

∂q2
kEEO(x, q1, q2, φ),

FOEE(x, q1, q2, φ) = − ∂

∂q2
kOOE(x, q1, q2, φ), FOEO(x, q1, q2, φ) = − ∂

∂q2
kOOO(x, q1, q2, φ),

FOOE(x, q1, q2, φ) = − ∂

∂q2
kOEE(x, q1, q2, φ), FOOO(x, q1, q2, φ) = − ∂

∂q2
kOEO(x, q1, q2, φ),
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due to the fact that the operation ∂
∂q2

only changes the even–odd symmetry with respect to q2.
Translating the expression (15) in terms of k implies, as a necessary condition for non-zero

skewness of projected increments of the vector field ~v, that there must be at least one triplet out of

{kEOE, kEOE, kEOE} , {kEOE, kEOO, kEOO} , {kEOE, kOEE, kOEE} , {kEOE, kOEO, kOEO} ,

{kEOO, kOEE, kOEO} , {kEOE, kOOE, kOOE} , {kEOE, kOOO, kOOO} , {kEOO, kOOE, kOOO} ,

{kEEE, kOOE, kOEE} , {kEEE, kOOO, kOEO} , {kEEO, kOOE, kOEO} , {kEEO, kOOO, kOEE} ,

such that the product of its terms is not identically zero.
The next step is to relate the terms listed above to those in the decomposition of f . For that we

use the symmetry relations

h̃(x,−q1, q2) = h̃(−x, q1, q2),

x̃(x, q1, q2, φ) = −x̃(−x,−q1, q2,−φ), (A2)

ỹ(x, q1, q2, φ) = ỹ(−x,−q1, q2,−φ),

which straightforwardly imply that

kEEE(x, q1, q2, φ) =h̃(x, q1, q2) fOEE(x, q1, q2, φ)− h̃(−x, q1, q2) fOEE(−x, q1, q2, φ),

kEEO(x, q1, q2, φ) =h̃(x, q1, q2) fEEO(x, q1, q2, φ)− h̃(−x, q1, q2) fEEO(−x, q1, q2, φ),

kEOE(x, q1, q2, φ) =h̃(x, q1, q2) fOOE(x, q1, q2, φ)− h̃(−x, q1, q2) fOOE(−x, q1, q2, φ),

kEOO(x, q1, q2, φ) =h̃(x, q1, q2) fEOO(x, q1, q2, φ)− h̃(−x, q1, q2) fEOO(−x, q1, q2, φ),

kOEE(x, q1, q2, φ) =h̃(x, q1, q2) fEEE(x, q1, q2, φ)− h̃(−x, q1, q2) fEEE(−x, q1, q2, φ),

kOEO(x, q1, q2, φ) =h̃(x, q1, q2) fOEO(x, q1, q2, φ)− h̃(−x, q1, q2) fOEO(−x, q1, q2, φ),

kOOE(x, q1, q2, φ) =h̃(x, q1, q2) fEOE(x, q1, q2, φ)− h̃(−x, q1, q2) fEOE(−x, q1, q2, φ),

kOOO(x, q1, q2, φ) =h̃(x, q1, q2) fOOO(x, q1, q2, φ)− h̃(−x, q1, q2) fOOO(−x, q1, q2, φ),

which immediately gives Theorem 1.
To illustrate how these relations arise, we pick one of them, say the one for kEEE. From (A1) and

using the symmetry relation (A2) for h̃ we get

8k̃EEE(x, q1,q2, φ) = h̃(x, q1, q2) { f (x̃(x, q1, q2, φ), ỹ(x, q1, q2, φ)) − f (x̃(−x,−q1, q2, φ), ỹ(−x,−q1, q2, φ))

+ f (x̃(x, q1,−q2, φ), ỹ(x, q1,−q2, φ))− f (x̃(−x,−q1,−q2, φ), ỹ(−x,−q1,−q2, φ))

+ f (x̃(x, q1, q2,−φ), ỹ(x, q1, q2,−φ))− f (x̃(−x,−q1, q2,−φ), ỹ(−x,−q1, q2,−φ))

+ f (x̃(x, q1,−q2,−φ), ỹ(x, q1,−q2,−φ)) − f (x̃(−x,−q1,−q2,−φ), ỹ(−x,−q1,−q2,−φ))}

− h̃(−x, q1, q2) { f (x̃(−x, q1, q2, φ), ỹ(−x, q1, q2, φ)) − f (x̃(x,−q1, q2, φ), ỹ(x,−q1, q2, φ))

+ f (x̃(−x, q1,−q2, φ), ỹ(−x, q1,−q2, φ))− f (x̃(x,−q1,−q2, φ), ỹ(x,−q1,−q2, φ))

+ f (x̃(−x, q1, q2,−φ), ỹ(−x, q1, q2,−φ))− f (x̃(x,−q1, q2,−φ), ỹ(x,−q1, q2,−φ))

+ f (x̃(−x, q1,−q2,−φ), ỹ(−x, q1,−q2,−φ)) − f (x̃(x,−q1,−q2,−φ), ỹ(x,−q1,−q2,−φ))} .
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The last step is to invoke the symmetry relations (A2) for x̃ and ỹ to finally get

8k̃EEE(x, q1,q2, φ) = h̃(x, q1, q2) { f (x̃(x, q1, q2, φ), ỹ(x, q1, q2, φ)) − f (−x̃(x, q1, q2,−φ), ỹ(x, q1, q2,−φ))

+ f (x̃(x, q1,−q2, φ), ỹ(x, q1,−q2, φ))− f (−x̃(x, q1,−q2,−φ), ỹ(x, q1,−q2,−φ))

+ f (x̃(x, q1, q2,−φ), ỹ(x, q1, q2,−φ))− f (−x̃(x, q1, q2, φ), ỹ(x, q1, q2, φ))

+ f (x̃(x, q1,−q2,−φ), ỹ(x, q1,−q2,−φ)) − f (−x̃(x, q1,−q2, φ), ỹ(x, q1,−q2, φ))}
− h̃(−x, q1, q2) { f (x̃(−x, q1, q2, φ), ỹ(−x, q1, q2, φ)) − f (−x̃(−x, q1, q2,−φ), ỹ(−x, q1, q2,−φ))

+ f (x̃(−x, q1,−q2, φ), ỹ(−x, q1,−q2, φ))− f (−x̃(−x, q1,−q2,−φ), ỹ(−x, q1,−q2,−φ))

+ f (x̃(−x, q1, q2,−φ), ỹ(−x, q1, q2,−φ))− f (−x̃(−x, q1, q2, φ), ỹ(−x, q1, q2, φ))

+ f (x̃(−x, q1,−q2,−φ), ỹ(−x, q1,−q2,−φ)) − f (−x̃(−x, q1,−q2, φ), ỹ(−x, q1,−q2, φ))}

and therefore

8k̃EEE(x, q1, q2, φ) =8
{

h̃(x, q1, q2) fOEE(x̃(x, q1, q2, φ), ỹ(x, q1, q2, φ))

− h̃(−x, q1, q2) fOEE(x̃(−x, q1, q2, φ), ỹ(−x, q1, q2, φ))} .
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