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Abstract: We study a quantum-corrected Schwarzschild black hole proposed recently in Loop
Quantum Gravity. Prompted by the fact that corrections to the innermost stable circular orbit
of Schwarzschild diverge, we investigate time-like and null radial geodesics. Massive particles
moving radially outwards are confined, while photons make it to infinity with infinite redshift.
This unsettling physics, which deviates radically from both Schwarzschild (near the horizon) and
Minkowski (at infinity) is due to repulsion by the negative quantum energy density that makes the
quasilocal mass vanish as one approaches spatial infinity.
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1. Introduction

Einstein’s theory of gravity is plagued by singularities, which occur generically if the matter
fields satisfy reasonable energy conditions [1]. These singularities are not necessarily avoided even
if quantum matter evades these energy conditions. However, it is believed that quantizing the
geometry will cure the singularity problem. Loop Quantum Gravity and Loop Quantum Cosmology
propose possible solutions in which quantum geometry avoids the classical singularities by making
the curvature invariants finite and effectively discretizing spacetime. Referring specifically to black
hole singularities, the search for quantum-corrected black holes that are singularity-free has a long
history, beginning with phenomenological attempts that were not solidly rooted in established theories,
and later developing with full quantum gravity constructs. We refer the reader to the relevant literature,
which is too long to summarize here. In broad strokes, one approach has been to quantize matter in
curved space with the hope that this will be sufficient to avoid singularities, through the violation of
the classical energy conditions. However, whether this approach can be successful is now doubtful.
Even if the energy conditions cherished by classical relativity are violated, there is no guarantee that
singularities will be avoided.

The Loop Quantum Gravity approach is different, in that it attempts to quantize the geometry
itself, and this more radical approach can, and should (at least in principle) be connected to the
macroscopic world. For black holes, this statement means to connect to the physics in regions outside
and around the horizons, as well as to spatial infinity far away from the black hole horizon. In Loop
Quantum Gravity, the spacetime geometry is fundamentally discrete, which is expressed by the fact
that there is an area operator ∆̂ with a minimum eigenvalue that is strictly positive. All considerations
about quantum black holes revolve around this basic fact and incorporate it somehow in the effective
description of black holes. This discreteness of the geometry and the spectrum of the area operator
must, therefore, leave some traces also in the macroscopic description of a black hole at scales much
larger than the Planck scale. Indeed, this is the case. Naturally, quantum-correcting the geometry
of general relativity in the interior region (i.e., inside the black hole horizon) leads to changes at the
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horizon and outside of it, when the interior geometry is matched to the exterior one (see, e.g., [2–9]).
An unwanted effect is that, in some proposals, quantum-correcting the interior to cure the singularity
may lead to large quantum effects in low-curvature regions [10–15]. More in general, it is interesting to
understand quantum corrections in the exterior regions which are, in principle, accessible to observers.

A quantum-corrected black hole which deviates from the Schwarzschild solution of general
relativity was proposed recently in Refs. [16–18], with the explicit purpose of providing a
singularity-free black hole which is also free of problems induced by large quantum corrections
in the low-curvature regions. In this solution, which corrects the prototypical black hole, i.e.,
the Schwarzschild geometry, loop corrections to the Schwarzschild geometry are quantified by a
small dimensionless parameter ε, which is mass-dependent. The explicit mass dependence is given
by [18]

ε =
√

1 + γ2δ2
b − 1 , (1)

where γ ' 0.2375 is the Barbero–Immirzi parameter (see [16–18]),

δb =

( √
∆√

2π γ2m

)1/3

, (2)

∆ is the minimum positive eigenvalue of the area operator, given in terms of the Planck mass lPl by
∆ ' 5.17 l2

Pl , and m is the black hole mass. Hence, when the macroscopic black hole properties are
studied and one can take the limit δb → 0, it is

ε '
(

γ2∆
16π

)1/3 1
m2/3 . (3)

In the case of a solar mass black hole, this parameter is estimated to have values of order ε ∼ 10−26.
To first order in the small parameter ε, the quantum-corrected black hole geometry of [16–18] is

described by the static and spherically symmetric line element (We follow the notations of Refs. [1,19]
and we use units in which Newton’s constant G and the speed of light are unity (but we occasionally
restore G).) (see Equations (4.8)–(4.10) of Ref. [18])

ds2 = −
(

r
rS

)2ε [
1−

( rS
r

)1+ε
]

dt2 +
dr2

1−
( rS

r
)1+ε

+ r2dΩ2
(2) , (4)

where dΩ2
(2) = dϑ2 + sin2 ϑ dϕ2 is the line element on the unit 2-sphere, rS = 2m, and m > 0 is a mass

parameter analogous to the Schwarzschild mass. The line element (4) reduces to the Schwarzschild
one when ε→ 0. This happens even for small black holes [18], but even more so when macroscopic
black holes of, say, stellar mass are considered, due to the mass dependence ε ∼ m−2/3.

Since r is the areal radius, the possible horizons are located by the roots of grr = ∇cr∇cr = 0.
There is a unique event horizon in the geometry (4) and it coincides with the Schwarzschild horizon at
rS = 2m. Contrary to Schwarzschild, there is an effective energy density outside the horizon, given
by [18]

ρ = − ε

8πr2

( rS
r

)1+ε
, (5)

which is negative and purely quantum-mechanical in origin.
In principle, correcting gravity due to geometry quantization or other reasons has implications

for massive and massless particles and for fluids surrounding black holes and forming accretion disks
around them. There is, therefore, much current interest in using observations of black holes to test
deviations from general relativity or possibly detect scalar hair [20–31].

Since particle motion near black hole horizons is relativistic and, in general, complicated,
astrophysicists have introduced pseudo-Newtonian potentials to simplify the problem but still provide
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an effective description (at least for certain purposes) of time-like geodesics. Naturally, particles
orbiting black holes in circular orbits are of special interest, and pseudo-Newtonian potentials can
provide significant simplifications when studying their motions [32–47]. Despite cheating many of the
difficulties, pseudopotentials are still remarkably accurate in determining circular orbits. The phase
space of massive test particles in the Schwarzschild geometry is very similar to that derived from the
associated pseudo-potential [48]. Indeed, the pseudo-potential is precisely defined so that it preserves
the equilibrium points of the relevant dynamical system [32,34]. The Paczynski–Wiita potential [32,34]
was the first to be introduced in astrophysics and it locates exactly the innermost stable circular
orbit (ISCO) and the marginally bound orbit of Schwarzschild, and it reproduces the Keplerian
angular momentum L(r). It is not as accurate in reproducing the Keplerian angular velocity and the
radial epicyclic frequency, but it gives approximations that are nevertheless useful in some instances
[32,34]. In the following section, we derive the pseudo-Newtonian potential associated with the
quantum-corrected black hole (4) and we show that the quantum correction to the Schwarzschild ISCO
diverges. This fact prompts us to investigate radial time-like and null geodesics, to find that massive
particles are confined by the negative quantum energy density and photons making it to infinity are
infinitely redshifted. In Section 3 we show that the Misner-Sharp-Hernandez/Hawking-Hayward
quasilocal mass for this geometry vanishes as one approaches spatial infinity. We also report the
Kodama quantities defined in spherical symmetry. Section 4 contains the conclusions.

2. Pseudo-Newtonian Potential for the Quantum-Corrected Black Hole

An analogue of the Paczynski–Wiita pseudo-Newtonian potential for the Schwarzschild
black hole [32,34] can be introduced for any static and spherically symmetric black hole [49].
This pseudo-Newtonian potential is [49]

Φ(r) =
1
2

(
1 +

1
g00

)
, (6)

which in our case becomes

Φ(r) =
1
2

[
1−

( rS
r

)2ε 1

1−
( rS

r
)1+ε

]
, (7)

that approaches 1/2 as r → ∞ instead of vanishing.
Using the expansion

aαε+β = aβ
[
1 + αε ln a +O(ε2)

]
, (8)

with a > 0 and α, β ∈ R, one obtains, to first order,

Φ(r) = − rS
2 (r− rS)

[
1 + ε

r
rS

(2r− rS)

(r− rS)
ln
( rS

r

)
+O(ε2)

]
(9)

= − m
r− 2m

[
1 + ε

r
m

(r−m)

(r− 2m)
ln
(

2m
r

)]
+O(ε2) . (10)

As a check, one notes that for ε→ 0 this pseudo-potential reduces to

Φ0(r) = −
rS

2r (1− rS/r)
= − m

r− 2m
, (11)

which is the well-known Paczynski–Wiita pseudo-Newtonian potential for the Schwarzschild black
hole [32,34]. The ε-expanded pseudo-potential (10) diverges as r → ∞ instead of vanishing. Already
at this stage one notices some problems with the asymptotics. The pseudo-Newtonian potential is
defined also for non-asymptotically flat metrics (e.g., (anti-)de Sitter and Schwarzschild-(anti-)de
Sitter), and the fact that the ε-expanded pseudo-potential diverges signals problems with asymptotic
flatness, which are discussed below.
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The radii of the circular orbits in the metric (4) are the roots of the equation [34,49]

dΦ
dr

=
L2

r3 , (12)

where L is the angular momentum per unit mass of the particle on the circular orbit. This equation
is what justifies the introduction of the (ε-expanded) pseudo-Newtonian potential in the first
place [32,34]. Using

dΦ
dr

=
rS

2 (r− rS)2 +
ε

2 (r− rS)3

[
(2r− rS) (r− rS) + (3r− rS) rS ln

( rS
r

)]
, (13)

the equation locating the circular orbits of massive test particles becomes

rS

2 (r− rS)2 +
ε

2 (r− rS)3

[
(2r− rS) (r− rS) + (3r− rS) rS ln

( rS
r

)]
=

L2

r3 . (14)

To zero order, these circular orbits satisfy

rS
r0
− 2L2

r2
0

(
1− rS

r0

)2
= 0 , (15)

while the radius of a perturbed orbit is r = r0 + δr0 with |δr0/r0| = O(ε). Given the smallness
of the parameter ε quantifying the quantum gravity corrections to the Schwarzschild black hole,
a linear expansion is an excellent approximation. By inserting the perturbed circular orbit radius
r0 + δr0, expanding Equation (14) to first order, and taking advantage of the zero order Equation (15),
one obtains

δr0

r0
= ε r3

0
(2r0 − rS) (r0 − rS) + (3r0 − rS) rS ln(rS/r0)

2
[
3L2(rS − r0)3 + rS r4

0
] . (16)

Using again the zero order Equation (15) to substitute for L2 yields

δr0

r0
= ε

(2r0 − rS) (r0 − rS) + rS (3r0 − rS) ln(rS/r0)

rS(3rS − r0)
; (17)

the percent correction to the radii of the circular orbits is of first order in the parameter ε. The ISCO of
the Schwarzschild black hole lies at r0 = 6m, for which the correction diverges. This divergence shows
that the ε-correction has unwanted large effects no matter how small the parameter ε, and is consistent
with similar phenomenology found in Ref. [50] for a different quantum-corrected black hole. To gain
more insight, let us consider radial time-like and null geoesics.

Begin with a time-like radial geodesic followed by a particle of mass m, 4-velocity uc, and
4-momentum pc = muc: since ta ≡ (∂/∂t)a is a time-like Killing vector, the energy E of the particle is
conserved along the geodesic, gab patb = −E, yielding

dt
dτ

=
Ē
|g00|

, (18)

where Ē ≡ E/m is the particle energy per unit mass and τ is the proper time along the geodesic.
Substituting into the normalization ucuc = −1 gives(

dr
dτ

)2
=
( rS

r

)2ε
{

Ē2 −
(

r
rS

)2ε [
1−

( rS
r

)1+ε
]}

. (19)

When the particle is at large distances from the horizon as r → +∞, one obtains
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(
dr
dτ

)2
→ −1 , (20)

which is absurd. The coordinate velocity of the particle is

v ≡ dr
dt

=
dr
dτ

dτ

dt
=

dr
dτ

Ē
|g00|

, (21)

which yields

v2 ≡
(

dr
dt

)2
=

(
r
rS

)2ε [
1−

( rS
r

)1+ε
]2
{

1− 1
Ē2

(
r
rS

)2ε [
1−

( rS
r

)1+ε
]}

≈ − 1
Ē2

( rS
r

)4ε
; (22)

also, the coordinate velocity becomes imaginary at sufficiently large radii, while it tends to zero as
r → +∞. The physical meaning is that the particle cannot be located at r = ∞ or at large radii.
This surprising fact can be explained as follows: although decaying slightly faster than 1/r3, the
negative energy density (5) repels a massive particle located at finite r and prevents it from reaching
infinity. To make an analogy, consider the (uncorrected) Schwarzschild metric with negative mass
parameter: a massive test particle will be repelled from a finite radius and go to infinity, but in the
present quantum-corrected geometry the test particle is instead located at a finite radius and is repelled
by the effect of the negative quantum energy density far away. While the local effect of this negative
energy density is negligible, the accumulated effect of all the negative mass from this finite radius to
infinity “seen” by the particle repels if from infinity and keeps it confined.

It is now natural to ask what happens to an outgoing radial photon emitted at a finite radius. Let λ

be an affine parameter along radial null geodesics. Then, energy conservation for these photons reads

dt
dλ

=
E
|g00|

=
( rS

r

)2ε E

1− (rS/r)1+ε
, (23)

and substitution into the normalization ucuc = 0 gives(
dr
dλ

)2
= E2

( rS
r

)2ε
. (24)

As r → +∞, the photon slows down, dr/dλ → 0 and gets “tired” (i.e., infinitely redshifted),
dt/dλ → 0. This behavior of test particles shows that true asymptotic flatness is not achieved and
there are lingering effects of the quantum corrections in the geometry. Indeed, these effects become
more important as one goes further away from the horizon and “sees” more negative mass coming
from the density (5).

Another effect induced by the negative energy density is that it will be impossible to introduce
Painlevé-Gullstrand coordinates [51,52] for the line element (4). In fact, these coordinates are associated
with observers starting at spatial infinity with zero velocity [53] and they cannot be introduced in
regions of negative quasilocal energy [54].

3. Kodama Vector, Misner-Sharp-Hernandez Mass, and Kodama Temperature

The quantum black hole metric (4) is already written in the Abreu-Nielsen-Visser gauge [55–58],

ds2 = −e−2Ψ
(

1− 2MMSH

r

)
dt2 +

dr2

1− 2MMSH/r
+ r2dΩ2

(2) (25)
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employing the areal radius as the radial coordinate. Here we have

Ψ = ε ln
( rS

r

)
; (26)

this redshift function diverges as r → +∞ instead of going to zero as in Minkowski space. MMSH is
the Misner-Sharp-Hernandez mass of general relativity [59,60], which formally is always defined in a
spherically symmetric geometry by

1− 2GMMSH

R
= ∇cR∇cR = gRR , (27)

where R is the areal radius (which is a scalar and is well defined in spherical symmetry by using the
area A of the 2-spheres which are orbits of the rotational Killing vector field, R =

√
A/(4π)). (The last

equality in (27) holds in a coordinate system where R is the radial coordinate, which is our case.)
In spherical symmetry, the more general Hawking-Hayward quasilocal energy [61,62] reduces to the
Misner-Sharp-Hernandez mass [63].

In our case, the Misner-Sharp-Hernandez mass contained in a sphere of radius r is

MMSH(r) =
r
2
(1− grr) =

r
2

( rS
r

)1+ε
, (28)

that, to the first order in ε, reduces to

MMSH(r) =
rS
2

[
1 + ε ln

( rS
r

)]
+O(ε2)

= m
[

1 + ε ln
(

2m
r

)]
+O(ε2) , (29)

where m is the Misner-Sharp-Hernandez mass of the unperturbed general relativity (Schwarzschild)
black hole, which coincides with the Schwarzschild mass. In regions near the horizon, the mass MMSH

of the quantum-corrected black hole is smaller than that of the original Schwarzschild black hole, which
is attributed to the negative quantum energy density (5). Moreover, while the Misner-Sharp-Hernandez
mass of Schwarzschild is the same (m) at any radius r ≥ rS, the quantum correction introduces a
logarithmic dependence of MMSH on the radius at finite values of r ≥ rS. Moreover, from Equation (28)
one finds that MMSH(r)→ 0 as r → +∞. This prevents massive particles from reaching infinity and
even tires photons, which reach infinity with zero frequency.

The relation between pseudo-Newtonian potential and Misner-Sharp-Hernandez mass is of some
interest. The inversion of Equation (28) gives

m =
r
2

(
2MMSH

r

) 1
1+ε

(30)

that, to first order in ε, yields

m = MMSH

[
1− ε ln

(
2MMSH

r

)]
(31)

which, substituted into the expression (10) of the (ε-expanded) pseudo-potential, yields

Φ(r) = − MMSH

r− 2MMSH

[
1 + ε

r
MMSH

ln
(

2MMSH

r

)]
. (32)

For the Schwarzschild black hole, instead, one has [49]

ΦSchw(r) = −
MMSH

r− 2MMSH
; (33)
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the difference arises because, for the quantum-corrected black hole, g00 g11 6= −1 (cf. Ref. [49]).
Black holes that satisfy the condition g00 g11 = −1 (which has attracted some attention early
on [64]), including the Schwarzschild geometry, have special geometric properties explored in [65].
The condition g00 g11 = −1 characterizes spacetimes in which the (double) projection of the Ricci
tensor onto radial null vectors la vanishes, Rablalb = 0 [65]. An equivalent characterization is that
the restriction of the Ricci tensor to the (t, R) subspace is proportional to the restriction of the metric
gab to this subspace [65]. A third characterization is that the areal radius is an affine parameter along
radial null geodesics [65]. These characterizations are valid also in higher-dimensional spacetimes.
Solutions of the Einstein equations that satisfy this condition include [65] vacuum, electrovacuum with
both Maxwell and non-linear Born–Infeld electrodynamics, and a spherical global monopole called
“string hedgehog” [66,67]. Quantum-correcting the Schwarzschild black hole spoils all these geometric
properties. This is an indication that g00 g11 = −1 is a rather fragile property and will likely be spoiled
by all methods to quantum-correct classical metrics that satisfy it (notably, Schwarzschild), even if they
are static like the geometry (4) and have the same horizons of the uncorrected counterpart (which is
not guaranteed in general since one can expect horizons to be dynamical or to fluctuate).

Let us consider now the Kodama quantities associated with spherical symmetry [68]. The Kodama
vector, always defined in spherical symmetry, is given by

Ka = eΨ
(

∂

∂t

)a
(34)

in the Abreu-Nielsen-Visser gauge [55–57], therefore its components are

Kµ =
( ( rS

r

)ε
, 0, 0, 0

)
(35)

and it is parallel, but not equal, to the time-like Killing vector. The Kodama four-current in this gauge
is [55–57]

Jµ =
2 eΨ

r2

(
− dMMSH

dr
,

dMMSH

dt
, 0, 0

)
=
( ε

r2

( rS
r

)2ε+1
, 0, 0, 0

)
' ε

( rS
r3 , 0, 0, 0

)
. (36)

The Kodama temperature at the horizon r = rS = 2m is proportional to the Kodama surface
gravity κKodama:

TKodama =
κKodama

2π

∣∣∣
H
=

e−Ψ(rH)

2π

[
1− 2M′MSH(rH)

2rH

]

=
1

2π

(
1 + ε

2 rS

)

=
1

8πm
(1 + ε) . (37)

Since the metric is static, the Kodama temperature coincides with the Killing temperature found in [18]
using Euclidean methods associated with periodicity in Euclidean time.

4. Conclusions

We have examined the pseudo-Newtonian potential for the black hole of Refs. [16–18] derived
in Loop Quantum Gravity. The simple relation (33) between pseudo-Newtonian potential and this
quasilocal mass becomes complicated (albeit only to first order in the quantum corrections) and makes
the pseudo-potential stabilize to 1/2 as r → +∞. The deviation from the corresponding Schwarzschild
ISCO is dramatic: to first order in ε, the percent correction to the radius of this orbit diverges, which
signals severe deviations from Einstein’s theory. Prompted by this fact, we have examined radial
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time-like and null geodesics, finding that massive test particles in radial motion starting from finite
radii never make it to infinity, while outgoing photons arrive to infinity with infinite redshift. We trace
these effects to the repulsion of the negative quantum energy density (5). Unlike in Schwarzschild
spacetime, the Misner-Sharp-Hernandez/Hawking-Hayward quasilocal mass is position-dependent
and vanishes as r → +∞.

Quantum-correcting the Schwarzschild black holes changes its asymptotics and makes it lose
some of its peculiar features in the region outside the horizon. One should recover with an excellent
approximation general relativity in the strong gravity region and Minkowskian physics as r → +∞,
but this is not the case. In other words, even extremely small quantum corrections alter radically the
physics of Minkowski space far away from the horizon. The problems discussed in previous literature
with quantum-correcting black holes [10–13] seems to persist in this Loop Quantum Gravity black
hole, even though it was supposed to be free from such problems.

Another problem, although not as important, consists of understanding why the physics deviates
so strongly from the Schwarzschild physics near the horizon and from the Minkowski one at spatial
infinity. The answer possibly lies in the fact that a proper limit of spacetimes as a parameter (in our case,
ε) varies should not be based on coordinates, but should be done in an invariant way. Long ago, Geroch
warned that the limit of the Schwarzschild geometry as the mass diverges is either the Minkowski
space or a Kasner space [69]. A coordinate-independent approach based on the Cartan scalars has
been developed in general relativity [70] and then applied to the limit of Brans–Dicke gravity when
the Brans–Dicke parameter ω diverges [71]. This aspect will be explored in future work.
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