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Abstract: In this work we investigate the properties of elastic waves propagating in gyroid lattices.
First, we rigorously characterize the lattice from the point of view of crystallography. Second, we use
Bloch–Floquet analysis to compute the dispersion relations for elastic waves. The results for very long
wavelengths are then compared to those given by classic elasticity for a cubic material. A discrepancy
is found in terms of the polarization of waves and it is related to the noncentrosymmetry of the
gyroid. The gyroid lattice results to be acoustically active, meaning that transverse waves exhibit a
circular polarization when they propagate along an axis of rotational symmetry. This phenomenon is
present even for very long wavelengths and is not captured by classic elasticity.
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1. Introduction

Architectured materials are those that possess an inner geometry [1]. This multi-scale spatial
arrangement of the constitutive materials allows for achieving mechanical properties that are not
present in bulk material itself [2]. Although this appears to be an engineering-based approach to
materials design, it should be noted that this strategy is, in fact, central in nature where biomaterials
must perform many functions from a small and limited set of elementary chemical elements [3,4].
Therefore, to enhance some target properties, regular patterns often emerge. The best-known example
is the honeycomb, where bees need to maximize the volume of the cells while minimizing the quantity
of matter (wax) used [5]. Another example is the iridescent color of the wings of some butterflies.
This phenomenon is due to the non-centrosymmetric mesostructure of the material constituting the
wings, which acts a photonic crystal [6,7].

The study of elastic waves propagating in architectured materials is of particular interest since
unconventional effects due to the local organization of the matter can emerge on a macroscale. In order
to study these phenomena adequately, two points of view can be adopted. Either to describe all
the details of the architecture or to consider an effective continuum as replacement. The first option
is very general since no particular modeling assumptions are involved. However, since the inner
geometry of the material has to be explicitly described and meshed, the numerical cost is often
prohibitive for actual applications. Moreover, the computed solution often contains many unnecessary
details for practical use. The second option, which is based on elastodynamic homogenization [8–10]
amounts to substitute the initial heterogeneous material by an equivalent homogeneous continuum.
This equivalence is only valid under specific assumptions on the range of variation of some intrinsic
parameters, and hence more restrictive than the first approach. However, within the validity domain
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of the method, the physics, up to a certain order is correctly described. Indeed, an effective theory is a
reduced model obtained by filtering the actual physics so as to retain, in the continuum formulation,
only the most prominent effects. Depending on the targeted applications, the effective model can be of
different degrees of richness. This results in a fairly important reduction in the computational cost,
which is very interesting for optimizing an architectured material, since in that case the numerical
model has to be computed many times along the process.

For infinite Periodic Architectured Materials (PAM), which are the subject of this paper,
the condition under which the complete wave problem can be substituted by an effective one relies on
the ratio (η) between the size of the periodic unit cell (L) and the wavelength (λ) of the mechanical field.
When this ratio approaches zero, the classical Long-Wavelength (LW) approximation is obtained and,
provided that the frequency ω is also low (Low-Frequency (LF) approximation), the heterogeneous
material can be replaced by a classical effective continuum. This situation, which has been well
investigated, is completely contained in what is called LF-LW elastodynamics homogenization [8–10].
When the equivalent medium is a classical continuum (Cauchy continuum), the effective behavior
is non-sensitive to certain features of the inner geometry such as noncentrosymmetry, chirality, or a
n > 4-fold axis of rotational anisotropy [11–13].

Now, when the scale separation ratio η is small, but not vanishingly small, elastic
waves propagating through the matter interact with the inner architecture. In this situation,
several propagation quantities, such as the phase and group velocities, become frequency dependent
and the wave propagation is dispersive [14]. Non-standard dependencies on the architecture, that were
left over in LF-LW approximation, may thus appear. These situations, which are outside the frame
of standard elastodynamic homogenization, can nevertheless be modeled if the Cauchy equivalent
continuum is replaced by a generalized continuum [15–17]. In this work we focus on bulk propagation,
however it is important to notice that effects near boundaries, such as surface waves [18,19], are also of
particular interest.

Wave propagation in non-centrosymmetric or chiral materials, the two concepts being distinct
(see Appendix A for a dictionary of point groups and their associated properties), has been a subject of
interest among physicists for centuries, mainly in the field of optics and electromagnetism. The first
experiments showing the interaction of light with chiral molecules like sugar goes back to the beginning
of the 19th century [20]. The effect which is associated to electromagnetic waves propagating in
non-centrosymmetric crystals is the rotation of the plane of polarization when the wave propagates
along an optical axis, i.e., an axis of rotational symmetry. The rotation is due to the decomposition of
the linearly polarized transverse wave into two circularly polarized waves with opposite handedness
and different phase velocities [21]. This phenomenon is known under the name of “optical activity”.
The analogue of this effect can be observed for elastic waves and is known as “acoustical activity” [21].
It is interesting to remark that optically-active crystals are also found to be acoustically active and that,
as it will be shown in this paper, this effect can occur also in the LF-LW regime.

Recently, the interest in investigating the properties of materials based on chiral and
non-centrosymmetric architectures has grown. To this end it is important to point out that chirality
and noncentrosymmetry are not equivalent, and that their impact on the physics of the problem can be
different.

The set of transformations that let the unit cell of an architectured material invariant constitutes
its symmetry group. The material is said chiral if its symmetry group contains only rotations and it is
said to be centrosymmetric when it contains the inversion [22]. It is important to observe that in a 2D
space the inversion is a rotation (preserving the material orientation) while in 3D, it is a transformation
reversing the material orientation. Since the nature of the inversion depends on the dimension of the
space, the implication between chirality and centrosymmetry are not the same in 2D and 3D. In 2D,
the chirality and centrosymmetry are independent [15], while in 3D chiral materials are necessarily
non-centrosymmetric [23].
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Several works can be found in the literature that investigate 2D chiral elasticity and focus on their
unusual mechanical properties such as negative Poisson ratio [24,25]. Concerning wave propagation,
these architectures have been extensively studied [26–28] and the need for a generalized continuum
theory in order to capture the onset of dispersion and anisotropy at higher frequencies has been pointed
out [15,16]. In all these cases, the unit cells under investigation are chiral and centrosymmetric. Again,
it is worth noting that such a combination is possible pnly in 2D. When moving to 3D, the picture
becomes more complex and due to habits coming from the 2D situation, an ambiguity between the two
definitions can be usually found in the literature. For instance, the well-known and studied in-plane
hexachiral and tetrachiral patterns [29,30], are no more chiral once extruded in 3D.

Concerning wave propagation in non-centrosymmetric materials, if the phenomenon can be
studied in 2D [15], the effects become even more interesting in 3D as the polarization of waves are then
richer. As a consequence, interest in 3D non-centrosymmetric metamaterials have recently emerged for
their strech-twist coupling [31] or their acoustical activity [32]. The effects related to size-dependent
properties and characteristic lengths are also exploited and investigated in [33] and a micropolar
generalized model is used to investigate acoustical activity in [32].

The present work is focused on the features of elastic wave propagating in non-centrosymmetric
architectured materials. Among them, those based on gyroid architectures are probably the most
commonly used. In electromagnetics they are widely studied as metamaterials [6], in acoustics as
phononic crystals [34], and in biomechanics as bone substitutes [35,36]. In this paper, we will highlight
a particular situation for which the solution predicted by classic continuum mechanics is wrong even
for very long wavelengths. It is important to note that the sensitivity of the mechanical behavior to the
lack of centrosymmetry can also manifest in statics [37–39].

The paper is organized as follows: In Section 2 the gyroid lattice is described. In Section 3 the
Bloch–Floquet analysis is introduced along with some necessary definitions for polarization studies.
Dispersion analysis is performed and discussed in Section 4. Section 5 compares the results from
Section 4 to those obtained in the LW-LF approximation. Finally, some conclusions are drawn in
Section 6.

Notations

Throughout this paper, the Euclidean space E3 is equipped with a rectangular Cartesian coordinate
system with origin O and an orthonormal basis B = {e1, e2, e3}. Upon the choice of a reference point
O in E3, the Euclidean space and its underlying vector space E3 can be considered as coincident. As a
consequence, points will be designated by their vector positions with respect to O. For the sake of
simplicity, E3 will, from now on, simply be denoted E . In the following, r will designate the position
vector of a point P, and, with respect to B,

r = xe1 + ye2 + ze3.

When needed, Einstein summation convention is used, i.e., when an index appears twice in an
expression, it implies summation of that term over all the values of the index. The dot operator (·)
stands for the scalar product, the ∧ for the cross product, and δij is the Kronecker delta.
Moreover, the following convention is retained:

• Blackboard fonts will denote tensor spaces: T;
• Tensors of order > 1 will be denoted using uppercase Roman Bold fonts: T;
• Vectors will be denoted by lowercase Roman Bold fonts: t.

The orthogonal group in R3 is defined as O(3) = {Q ∈ GL(3)|QT = Q−1}, in which GL(3)
denotes the set of invertible transformations acting on R3.
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2. The Gyroid Lattice

The gyroid is a triply periodic minimal surface introduced for the first time in [40,41]. Since it is a
minimal surface, it has a zero mean curvature, meaning that every point on the surface is a saddle
point with equal and opposite principal curvatures [42]. It is periodic with respect to three orthogonal
space vectors and is chiral, meaning that the surface only possesses rotation symmetry elements or,
equivalently, that it does not possess any symmetry plane nor symmetry center [43].

2.1. Parametrization of the Gyroid Lattice

The gyroid’s morphology is usually described using a level surface given by the
following equation:

φ(x, y, z; a, b) = 0 (1)

with a and b real parameters and x, y, z coordinates of the position vector r.
In this paper, we will focus on a particular gyroid defined by :

φ(x, y, z; a, b) := sin 2πax cos 2πay + sin 2πay cos 2πaz + sin 2πaz cos 2πax− b, (2)

that exists only in the range |b| <
√

2 [43]. Indeed, beyond this peculiar value of b, it is possible to
show that the surface described by φ presents discontinuities located at the borders of the fundamental
(or asymmetrical) unit cell. A proof of this geometric constraint is provided in Appendix C. Due to
its chiral nature, the gyroid surface exists in two enantiomorphic forms: dextrogyre and levogyre.
The surface described by the implicit Equation (1) will be, arbitrarily, chosen to be the dextrogyre
form. The levogyre form of the implicit equation is easily obtained by applying, for instance, the
transformation x → −x in Equation (1) . From the definition of the surface, one can then obtain a
volume by defining the presence of matter for points satisfying the following inequality:

φ(x, y, z; a, b) > 0. (3)

The parameter a controls the spatial period while the parameter b controls the porosity p, defined as
the unity minus the ratio between the volume of the gyroid lattice and that of the unit cell. Examples
of unit cells of such solids obtained with different values of b are plotted in Figure 1.

(a) b=0 (b) b=1 (c) b=1.3

Figure 1. The unit cells of gyroid lattices obtained for a = 1 mm and: (a) b = 0, (b) b = 1, (c) b = 1.3.
Despite what the angle of view may suggest, all these structures are simply connected.
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The relationship between the porosity p and the parameter b is not analytical but can be estimated
numerically. As can be observed in Figure 2 this relationship is almost linear and for porosities between
0.2 and 0.8, the following linearized formula can be used to estimate the porosity:

p = −0.325b + 0.5.

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

b [1]

P
or
os
ity

[1
]

Figure 2. The relationship between the parameter b and the porosity, dashed line represents
a linear approximation of real porosity plotted in plain line. The evaluation of the porosity is
obtained numerically.

2.2. Symmetry Properties

Thanks to its triply periodic nature, the gyroid structure can be considered as a crystal [34] with
Body Centred Cubic (BCC) Bravais lattice and point group O, using group theoretic notation [44],
or 432 using the Hermann–Maugin notation. It should be noted that this cubic group only contains
rotations geometry of the gyroid is hence chiral. To be more specific there are 3 different cubic point
groups: O, O−, and O ⊕ Zc

2. The first one just contains rotations, the group is hence chiral and
non-centrosymetric. The second, O−, possesses symmetry planes but not the inversion, the group
is achiral and non-centrosymetric. The last group O ⊕ Zc

2 is centrosymmetric hence achiral. Some
details are provided in the Appendix A, and more information can be found in [23]. The symmetry
of the spatial structure is described by the space group, which details how transformations from the
Bravais lattice and the point group are combined in the actual crystal. The space group (SG) of the
gyroid crystal is, using Hermann–Maugin notation, I4132 (space group #214 in the International Tables
of Crystallography [45]), where the I stands for Body-Centered (BC), meaning that the conventional
unit cell defined in crystallography is not primitive, but body-centered (more details provided in
Section 2.3). This space group contains screw axes and, as such, is not symmorphic. A space group is
called symmorphic if, apart from the lattice translations, all generating symmetry operations leave
one common point fixed. Permitted as generators are thus only the point-group operations: Rotations,
reflections, inversions, and rotoinversions. The symmorphic space groups may be easily identified
because their Hermann–Mauguin symbol does not indicate a glide or screw operation.

If C stands for the “crystal” structure, and ? for the group action as defined in Appendix B:

∀r ∈ C, ∀g ∈ SG, r′ = g ? r ∈ C.

From the generating transformations defined in Appendix B and using the equation of the gyroid
surface (c.f. Equation (1)) it is straightforward to verify that:

∀g ∈ SG, φ(g ? r) = φ(r).
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2.3. Unit Cell

Due to the periodicity of the geometry, the study of the gyroid structure can be restricted to a
unit cell:

∀r ∈ E, ∃(r0, t) ∈ (T ,R) , r = r0 + t (4)

where T designates a unit cell and R a periodicity lattice. Note that for a given lattice R,
the choice of T is not unique. It can be convenient to chose a reference unit cell from which
other unit cells will be defined using lattice vectors ai and a triplet (n1, n2, n3) combined as follow:
t = n1a1 + n2a2 + n3a3, ni ∈ Z. The triplet (0, 0, 0) is then associated to the reference unit cell. Once a
lattice basis chosen, the considered unit cell is defined as follows,

TC = {r0 ∈ E|r0 = ra1 + sa2 + ta3, (r, s, t) ∈ [0, 1[3}

and the associated periodicity lattice is given by:

RC = {t ∈ E|t = n1a1 + n2a2 + n3a3, ni ∈ Z}.
These geometrical sets can be described using lattice vectors ai, gathered into a basis as B′ = {a1, a2, a3}.
Note that they can as well be described with respect to the basis B = {e1, e2, e3} of E.

Among all the possible unit cells, some are special and have been given a standard name in the
crystallography community: The Conventional Unit Cell (CUC) and Primitive Unit Cell (PUC).

The CUC of the a BCC lattice is depicted in Figure 3. It is defined as the smallest cell having its
edges along the symmetry directions of the Bravais lattice. Notice that, for BC lattice, this unit cell
is not minimal and a so-called PUC can be considered instead. For a continuous structure tilling of
the space, the primitive unit cell is defined as the smallest tile that generates the whole tiling using
only translations. As such the primitive unit cell is a fundamental domain with respect to translational
symmetries only.

2.3.1. BCC Conventional Unit Cell

For a BCC lattice, the conventional unit cell is defined as depicted in Figure 3. As its faces are
perpendicular to Bravais lattice directions, despite its non minimality, this unit cell is easy to use for
numerical computations.

Figure 3. The conventional unit cell. The lattice vectors are indicated in blue.

In this case, the conventional lattice vectors ai, are chosen such that ai ∧ ei = 0.

2.3.2. BCC Primitive Unit Cell

For a BCC lattice, two possible PUC are represented in Figure 4.
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(a) (b)

Figure 4. Two examples of Primitive Unit Cells (PUC). In (a,b) the Conventional Unit Cell are in blue
and the PUC are in red. The PUC in (a) is considered in the present paper, as their lattice vectors
(indicated in red) are more symmetrical than those of the one in (b).

The primitive lattice vectors ai are not unique and the ones for the PUC depicted in Figure 4a are
defined as:

b1 =
a
2
(e1 + e2 − e3), b2 =

a
2
(−e1 + e2 + e3), b3 =

a
2
(e1 + e2 + e3),

while the ones presented in Figure 4b are defined as:

b′1 = ae1, b′2 = ae2, b′3 =
a
2
(e1 + e2 + e3).

They form P = {bi}1≤i≤3 and P ′ = {b′i}1≤i≤3 two other bases of E3, which metric tensors are
given by:

g(P) = (bi · bj) =
a2

4

 3 −1 −1
−1 3 −1
−1 −1 3

 , g(P ′) = (b′i · b′j) =
a2

4

4 0 2
0 4 2
2 2 3

 .

Being defined by a more symmetrical set of vectors P , only the first primitive unit cell will be
considered here after.

2.4. Reciprocal Basis and Brillouin Zone

The vector space dual to E is symbolized by E?, and is formally defined as the space of linear
forms on E,

∀l ∈ E?, ∀u ∈ E, l(u) = α ∈ R.

Upon the choice of a scalar product the two spaces can be identified:

(∀l ∈ E?, ∃v ∈ E), ∀u ∈ E, l(u) = v · u = α ∈ R

and from a basis of E a basis of E? can be constructed. In the field of physics, E? corresponds to
the space of wavevectors, and a generic element of E? is denoted by k. For our applications, it is
fundamental to introduce the reciprocal latticeR?ofR:

R? = {ξ ∈ E?|ξ = ξ1a?1 + ξ2a?2 + ξ3a?3, ξi ∈ Z}.
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The vectors (a?1, a?2, a?3) constitute the lattice basis B? ofR? and verify:

a?i · aj = δij, where δij =

{
1 if i = j,

0 if i 6= j.
(5)

B? can be computed from any lattice basis (a1, a2, a3) ofR according to:

a?1 =
a2 ∧ a3

a1 · (a2 ∧ a3)
, a?2 =

a3 ∧ a1

a2 · (a3 ∧ a1)
, a?3 =

a1 ∧ a2

a3 · (a1 ∧ a2)
. (6)

Due to the following property,
∀(t, ξ) ∈ R×R?, e2πiξ·t = 1 (7)

vectors of the reciprocal lattice are the supports ofR-periodic functions on E since,

∀(r0, t) ∈ T ×R, f (r0 + t) = ∑
ξ∈R?

λξe2πiξ·(r0+t) = ∑
ξ∈R?

λξe2πiξ·r0e2πiξ·t = f (r0).

In addition, use will be made of the First Brillouin Zone (FBZ) T ? of the reciprocal lattice R?

defined as:
T ? := {k ∈ E?|∀ξ ∈ R? − 0, ‖k‖ < ‖k− ξ‖} (8)

Using the reciprocal latticeR? and the FBZ T ?, any wavevector k can be expressed as:

∀k ∈ E?, ∃(k0, ξ) ∈ (T ?,R?) , k = k0 + ξ.

We can geometrically interpret T ? as the set of wavevectors k which are closer to the null
wavevector than to any other wavevector ξ of the reciprocal latticeR?. It is the Wigner–Seitz cell of
the reciprocal lattice, this cell is uniquely defined and independent of the choice of T . Similarly to the
primitive unit cell in the direct space, the FBZ is a fundamental domain with respect to translations.
Physically, the wavelength λ is defined as the inverse of the wavenumber, which is the norm of the
wavevector : λ = 1/‖k‖. Then, wavevectors belonging to T ? have wavelengths that are greater
than the wavelength of the periodicity lattice. When ‖k‖ → 0 the wavelength becomes infinite,
solicitations varying with almost null wavenumber are said to be scale separated with respect to
the periodicity lattice. This is usually the regime in which the LW approximation of elastodynamics
homogenization holds.

The FBZ can be further reduced if we consider also the symmetry operations of the point group.
The result is an Irreducible Brillouin Zone (IBZ), that is delimited by points of high symmetry,
summarized for the considered gyroid lattice in Table 1. In this table, the high symmetry points
are given in the non-orthogonal reciprocal lattice basis P?, dual to the primitive lattice basis P as well
as in the orthonormal lattice basis B which coincides with its dual in the reciprocal space. The path
obtained connecting these high symmetry points along the edges of the IBZ is often used to characterize
the photonic and phononic properties of the lattice [6,26]. However, it has been pointed out that this
choice is not always reliable as some relevant information, e.g., about band gaps, could be missing [46].

In this paper we consider the basis P , that corresponds to the one depicted in Figure 4a.
The reciprocal lattice is itself a Bravais lattice, and in the case of BCC lattice, it is a Face Centered Cubic
(FCC) lattice. Using Equation (6), the reciprocal basis P? is equal to:

a?1 =
1
a
(e1 + e2), a?2 =

1
a
(e2 + e3), a?3 =

1
a
(e1 + e3).
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The metric tensor of P? is the inverse of the one of P :

g(P?) = g(P)−1 =
1
a2

2 1 1
1 2 1
1 1 2

 .

Table 1. The high symmetry points of the gyroid lattice. The group notations are detailed in
Appendix A.

Symmetry Coordinates Coordinates Point Group Point Group Illustration of the
Point w.r.t. P? w.r.t. B (Math.) (H-M) first Brillouin Zone

(k1, k2, k3) (x1, x2, x3)

Γ (0, 0, 0) (0, 0, 0) O 432
H (− 1

2 , 1
2 , 1

2 ) (0, 0, 1
a ) O 432

P ( 1
4 , 1

4 , 1
4 ) ( 1

2a , 1
2a , 1

2a ) D3 32
N (0, 1

2 , 0) (0, 1
2a , 1

2a ) D2 222

3. Analysis Tools

In the previous section we characterized the lattice from the point of view of crystallography.
In this next section we will use these results to compute the elastodynamic response of the lattice.
The objective of the present section is to provide the analysis tools to be used to perform the
computation and to interpret the results.

3.1. Bloch–Floquet Analysis

Since the material is periodic, the dispersion diagram will be computed using Bloch–Floquet
analysis [47]. The elastodynamics equation for the periodic continuum reads:

div [C(r) : (u(r)⊗∇)] = ρ(r)ü(r) (9)

where ρ(r) is the R-periodic mass density and C(r) is the R-periodic fourth-order elasticity tensor.
As we saw in Section 2.3, each cell of the assembly can be identified by the triplet (n1, n2, n3), where
the triplet (0, 0, 0) is conventionally assigned to the reference unit cell. The position of a point r of
the (n1, n2, n3)-cell is obtained from the position of a point in the reference unit cell r0 by Equation (4)
where t = npap. BeingR-periodic, ρ(r)and C(r) verify:

∀(r0, t) ∈ T ×R, ρ(r0 + t) = ρ(r0), C(r0 + t) = C(r0)

Thanks to the Bloch–Floquet theorem [47], elementary solutions to the Equation (9) over C can be
searched for in the form of Bloch-waves :

uk(r0) = Uk(r0)e2πi( f t−k·r0), Uk ∈ C3, (10)

where Uk is the complex polarisation vector which isR-periodic in space and constant in time, f is
the frequency of the Bloch-wave, and k its wavevector Uk describes the movement of matter as the
wave propagates. It is important to remark that wavevectors k follow the so-called “crystallographer’s
definition” which consists in dropping the often seen 2π coefficient. This implies, for instance, that the
norm ‖k‖, i.e., the wavenumber, is directly the inverse of the wavelength λ, which is more convenient
for physical interpretation of the results. In the case of an homogeneous material the polarization vector
becomes constant in space and the classical plane wave solution is retrieved. Since the displacement
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field in Equation (10) is complex valued, its real part should be computed in order to retrieve the
physical solution.

From its definition as a Bloch-wave, the displacement at a point r image of the r0 ∈ T by a
translation t ∈ R has the following expression:

uk(r) = uk(r0 + t) = Uk(r0 + t)e2πi( f t−k·(r0+t)) = uk(r0)e−2πik·t. (11)

The physical meaning is that the displacement vector at two homologous points (two points r1 and r2

are said homologous if r1 − r2 ∈ R) only differs by a phase factor.
Additionally, the Bloch-wave expression in Equation (10) has the interesting property to be also

R?-periodic. Indeed, due to itsR-periodicity, Uk(r0) can be decomposed as a Fourier series, leading to
the equivalent expression for uk(r0) :

uk(r0) = ∑
ξ∈R?

Ũk+ξe2πi( f t−(k+ξ)·r0)

where Ũk+ξ stands for the Fourier coefficients of the series expansion. Using this particular form,
theR?-periodicity of the Bloch-waves is easily proven using the change of variable ξ̃ = ξ + ξ? :

uk+ξ?(r0) = ∑
ξ∈R?

Ũk+ξ?+ξe2πi( f t−(k+ξ?+ξ)·r0) = ∑
ξ̃∈R?

Ũk+ξ̃e2πi( f t−(k+ξ̃)·r0) = uk(r0).

The main consequence of this property is that the characterization of the elastodynamics behavior of a
periodic material does not require to investigate the mechanical response to all the k ∈ E? but can be
restricted to the study of k ∈ T ? viaR?-periodicity of the wavevector, where T ? corresponds to the
First Brillouin Zone (FBZ), as introduced in Section 2.3.

3.2. Polarization of Waves in Homogeneous Materials

Before presenting the results, it is useful to recall some definitions concerning the polarization
of elastic waves in homogeneous materials. Let us go back to the Bloch-wave ansatz introduced
in Equation (10), since the material is now considered homogeneous, the polarization vector Uk is
constant both in space and time. In the most general case, the complex polarization vector Uk, that will
be denoted U from now on for the sake of simplicity, can be decomposed in its real and imaginary
parts as follows:

U = UR + iUC.

An interpretation of this decomposition, and of its consequences on wave propagation, can be obtained
by considering the real part of Equation (10) :

û = Re(u) = UR cos (2π( f t− k · r))−UC sin (2π( f t− k · r)) .

Since the vectors UR and UC are independent, the polarization of the displacement can be very
rich. Its precise nature is directly related to conditions on UR and UC, as summarized in Table 2.
It is important to remark that different conventions are used to define the handedness of circularly
polarized waves. In this paper, we will consider that a wave is right handed if it follows the curl of the
fingers of a right hand whose thumb is directed towards the wave propagation, away from the source.
In the table, the unit normal vector defining the direction of propagation is defined by n = k

‖k‖ .
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Table 2. The polarizations of plane waves and conditions on the complex amplitude.

Polarization Condition

Longitudinal polarization U = αn with α ∈ C
Transverse polarization UR and UC belong to the plane orthogonal to n

Linear polarization U∧U∗ = 0, with U∗ complex conjugate of U
Circular polarization U ·U = 0�

Right handedness n · (UR ∧UC) < 0�

Left handedness n · (UR ∧UC) > 0
Elliptic polarization U∧U∗ 6= 0 and U ·U 6= 0

A complex polarization vector can lead to a phase shift between the components of the
displacement vector û, and thus to a polarization that is other than linear, see Figure 5 for illustration
of a linear and two circular polarizations with opposite handedness.

(a) (b) (c)

Figure 5. Some examples of polarizations: (a) Linear, (b) circular right handed, and (c) circular
left handed.

4. Dispersion Analysis Using Finite Elements Analysis (FEA)

In order to investigate the ultrasonic properties of the gyroid lattice, and given the periodicity of
the architecture as described in the previous sections, an approach based on Bloch–Floquet analysis
will be followed. For the sake of simplicity, the conventional unit cell depicted in Figure 6 is used
to define the numerical model. For the investigation of the elastodynamic properties of the gyroid
crystal, the wavevector will be restricted to the boundaries of the Irreducible Brillouin Zone (IBZ),
as depicted in red in Figure 7a. The high symmetry points of this IBZ are defined in Table 1. The model
has been implemented using the commercial software Comsol Multiphysics and considering titanium
as constitutive material, the parameters of which are displayed in Table 3. The mesh of the unit cell is
presented in Figure 6 and consists of 66,232 tetrahedral elements. Lagrange quadratic elements are
used, for a total of 329,277 degrees of freedom. Periodic Bloch–Floquet conditions are implemented
by imposing them as displacement conditions at the boundaries, following Equation (11). Then,
the wavenumber in k is imposed and the corresponding frequencies are retrieved by solving the
eigenvalue problem. The computation of each wavenumber took an average of 109 seconds on a
workstation equipped with an Intel(R) Xeon(R) CPU E5-1650 v2 at 3.50 GHz using six cores.

Table 3. The parameters used in the numerical simulations, corresponding to bulk titanium.

Mass Density [kg/m2] Young Modulus [GPa] Poisson Ratio [1] Porosity [1] Unit Cell Size [mm]
ρb Eb νb p a

4506 115.7 0.321 0.7 1
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Figure 6. The meshed unit cell used in simulations.

The results of the dispersion analysis are depicted in Figure 7a. It can be observed, qualitatively,
that these results are similar to those obtained for electromagnetic waves in [6] (see Figure 8).
In particular, the behavior of the acoustic branches, i.e., those branches starting from the origin
Γ, corresponding to transverse waves (gray lines in Figure 7a) is remarkably similar.

N P � N H �
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Wavenumber along the boundaries of the IBZ
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[111] [001][011]

Longitudinal

Transverse
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(b)

Face

(a)

Edge

Vertex

FaceEdgeVertex

Figure 7. The dispersion diagram of the Gyroid lattice computed along the boundaries of the Irreducible
Brillouin Zone (IBZ) and directions of propagation with respect to the unit cell. (a) The dispersion
relation of the Gyroid lattice computed along the boundaries of the IBZ. (b) The direction of propagation
with respect to the unit cell.

Figure 8. The photonic band diagram of a single gyroid photonic crystal. Reproduced with permission
from [6].
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Since the objective of the paper is to investigate the behavior of the lattice within the LW-LF
approximation given by classic continuum mechanics, the phase velocities and polarization of waves
have been computed for large values of the wavelength with respect to the size of the unit cell. In this
case, ‖k‖ = 16.7 m−1, which corresponds to a wavelength close to 60 times the size of the unit cell.
For each mode, the polarization vector has been estimated by computing the average of the complex
displacement of the eigen-mode over the unit cell, and the results are listed in Table 4. We will now
analyze the results along the following directions of propagation, also depicted in Figure 7b:

• [001]: This direction is going from the center of the fundamental cell to the middle of a face.
It corresponds to an axis of rotation of order 4 (rotations of π/2 rad);

• [011]: This direction is going from the center of the fundamental cell to the middle of an edge.
It corresponds to an axis of rotation of order 2 (rotations of π rad);

• [111]: This direction is going from the center of the fundamental cell to a vertex. It corresponds to
an axis of rotation of order 3 (rotations of 2π/3 rad).

Using the conditions listed in Table 2, we have characterized the polarization for each of the above
propagation directions. The results are summarized in Table 4.

Along the direction [001] a longitudinal wave propagating at 3018.5 m/s can be observed. The two
transverse waves have eigenmodes with complex amplitude and propagate with close phase velocity
that tends to a common value of of 1932.2 m/s for infinite wavelengths, as it can be also observed in
Figure 9. These complex amplitudes correspond to two circularly polarized transverse waves with
opposite handedness. In the direction [011], a longitudinal wave propagating at 3249.8 m/s can be
observed. One transverse wave is linearly polarized in direction [100], and propagates with a phase
velocity of 1931.7 m/s. The last solution corresponds again to a transverse wave, linearly polarized
along (0, 1, −1), with velocity 1510.9 m/s. Finally, direction [111] has a linearly polarized longitudinal
wave at 3322.8 m/s, and two circularly polarized waves with opposite handedness and propagating
with close velocity, converging to 1663.4 m/s.

In summary, circularly polarized waves exist only if the direction of propagation is along a
rotation axis of symmetry of order greater than 2. Moreover, as can be seen in Figure 9, for both [001]
and [111] directions, the circularly polarized waves with opposite handedness propagate with the
same phase velocity only in the infinite wavelength limit, and they start to diverge as the wavenumber
increases. In particular, for direction [001] the right handed wave becomes slower than the left handed
one, while the opposite phenomenon can be observed for direction [111]. This is due to the chirality
of the unit cell. As one can notice, phase velocities are different even for a very large wavelength
compared to the size of the unit cell, i.e., λ/a ∼ 10. Since only the phase velocity is affected, and not
the amplitude, this effect can be interpreted as the elastic equivalent of circular birefringence in optics.
This means that if a linearly polarized wave passes through a gyroid lattice, the polarization plane of
the incident wave will be rotated. This is due to the phase difference (retardance) between the two
circular components, which produces a rotation of the polarization plane. The concept is illustrated
in Figure 10. Moreover, since phase velocity is involved in reflection of waves at boundaries via the
Snell–Descartes law, and in particular in the definition of the Brewster angle of total reflection, gyroid
lattices show the potential for being used as elastic circular polarizing filters.

Furthermore, the overall dispersion is normal for direction [001], i.e., phase velocity decreases
when increasing the frequency, and anomalous for direction [001] (see [48] for the definition).
The anisotropy of the material and the dispersive properties could also have consequences on surface
and guided waves propagating in presence of boundaries [49,50], as well as in reflection/transmission
problems [51]. These effects will be investigated in further works.
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Figure 9. The phase velocity of the circularly polarized waves in function of the wavenumber or of the
ratio between the wavelength λ and the size of the unit cell a for propagation direction [001] (a) and
[111] (b). Right handed waves are in black, left handed waves are in gray. The dashed horizontal lines
correspond to the phase velocity to which they converge to for infinite wavelength.

Incident wave

Transmitted wave

Gyroid lattice

20 𝜆

𝜃!

Figure 10. An illustration of circular birefringence observed along direction [100] at fc = 200 kHz,
corresponding to a wavelength around 10 times the size of the unit cell. A linearly polarized wave
entering the material is subjected to a rotation of 1.3 degrees/wavelength, then after 20 wavelengths
the rotation is θt = 26.0 deg. This illustration does not account for the changes in amplitude due to the
reflections at boundaries.

Table 4. The phase velocity and polarization in the very long wavelength approximation.

Direction Phase Velocity Polarization Type of Wave
[m/s] (x1, x2, x3)

3018.5 (0, 0, 1) Longitudinal
[001] 1933.4 (1, i, 0) Circular L �

1931.0 (1,−i, 0) Circular R 	

3249.8 (0, 1, 1) Longitudinal
[011] 1931.7 (1, 0, 0) Transverse

1510.9 (0, 1,−1) Transverse

3322.8 (1, 1, 1) Longitudinal
[111] 1664.6 (1,−0.54− i0.88,−0.46 + i0.88) Circular R 	

1662.3 (1,−0.45 + i0.85,−0.55− i0.85) Circular L �
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5. Long-Wavelength and Low-Frequency Approximation and Classic Elasticity

In this last section we will introduce and identify the equivalent homogenized model in the
framework of classic linear elasticity. This equivalent homogenized model is characterized by a
couple of effective tensors ρ and CH in such a way that the displacement field v is solution of the
following problem:

div
[
CH : (v(r)⊗∇)

]
= ρv̈(r) (12)

where v verifies < u >= v, < . > denotes the spatial average operator over T and u is the displacement
field solution to the heterogeneous problem Equation (9), as done for instance in [10].

Since the effective continuum is homogeneous, we consider a plane wave solution with k = f /c n
where c is the phase velocity of the wave and n a unitary vector. The substitution of this wave solution
and of a linear elastic constitutive law into Equation (12) leads to following equation:

Γ ·U = ρc2U (13)

where Γ = n ·CH · n is the Christoffel, or acoustic, tensor. The solution of the eigenvalue problem
stated in Equation (13) for a given direction n gives the phase velocities and polarizations of waves in
the effective continuum.

In classical elasticity, a material with cubic symmetry is defined by three independent material
constants. Using Mandel notation [52], the corresponding elastic tensor for a material having its
symmetry axis parallel to B reads:

[C̃H ] =



c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44


B

.

It is worth noting that classical elasticity is insensitive to the lack of centrosymmetry [53]. The symmetry
class of the elasticity tensor in the cubic system is O ⊕ Zc

2 meaning that even if the material symmetry
group of the unit cell does not contain the inversion, the symmetry group of elasticity tensor will
inherit it.

In the case of cubic materials, the solutions of Equation (13) listed in Table 5 are directly obtained.

Table 5. The phase velocity and polarization in classic elasticity.

Direction Phase Velocities [m/s] Polarization Type of Wave√
c11
ρ ≈ 3018.5 (0, 0, 1) Longitudinal

[001]
√

c44
2ρ ≈ 1932.2 (0, 1, 0) Transverse√
c44
2ρ ≈ 1932.2 (1, 0, 0) Transverse√

c11+c12+c44
2ρ ≈ 3249.8 (0, 1, 1) Longitudinal

[011]
√

c44
2ρ ≈ 1932.2 (1, 0, 0) Transverse√

c11−c12
2ρ ≈ 1510.9 (0,−1, 1) Transverse√

c11+2c12+2c44
3ρ ≈ 3322.8 (1, 1, 1) Longitudinal

[111]
√

2c11−2c12+c44
6ρ ≈ 1663.4 (−1, 1, 0) Transverse√

2c11−2c12+c44
6ρ ≈ 1663.4 (−1,−1, 2) Transverse
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Using the phase velocities computed from the Bloch–Floquet analysis, parameters c11, c12, c44, and
ρ can be identified and the homogeneous equivalent properties listed in Table 6 are then deduced. It can
be noticed that, as presented in Table 5, since we considered the propagation along the rotational axes of
symmetry, for each direction we observe a purely longitudinal wave and two purely transverse waves.

Table 6. The material properties in the very long wavelength approximation.

Elastic Coefficients Mass Density
c11 [GPa] c12 [GPa] c44 = 2c2323 [GPa] ρ [kg/m3]

12.32 6.145 10.092 1351.8

We now move on to comparing phase velocities and polarizations obtained from the Bloch–Floquet
analysis with the ones forecast by the Long-Wavelength and Low-Frequency approximation using
classical elasticity. We start with direction [001]. As already mentioned, this direction corresponds
to a rotational axis of symmetry of order 4. In this case, as the elasticity tensor is non sensitive to
chirality, the symmetry group of the physical phenomenon (the symmetry group of the physical
phenomenon is the intersection of the symmetry group of the constitutive equations and the symmetry
group of the mechanical solicitation) is conjugate to D4 ⊕ Zc

2. Indeed, as the acoustic tensor defined
in Equation (13) is a second-order tensor, the Hermann theorem of Crystal physics [11] predicts its
behavior as transversely isotropic, i.e., O(2)⊕ Zc

2. As a consequence Γ must have an eigenspace of
dimension 2. All the directions of wave propagation for which this is verified are called acoustic axis
of the material. Moving to the results presented in Table 5, we can see that the classic theory indeed
predicts one faster longitudinal wave and two slower transverse waves propagating with the same
phase velocity.

In the previous section we saw that Bloch–Floquet analysis identifies these waves as circularly
polarized with opposite handedness, which is of course equivalent. Indeed, even for very large
wavelengths, the numeric evaluation of the polarization provided by Table 4 corresponds to the
eigensystem (eigenvalues plus eigenvectors) of a Hermitian acoustic tensor. In such case, the space
corresponding to the double eigenvalue (which is real due to Hermitian nature of the matrix) is
two dimensional over the complex field C. However, in the case of a classic Cauchy continuum the
acoustic tensor is symmetric real, and the eigen-space corresponding to the double eigenvalue is
two dimensional over the real field R. Since the 2D vector space over C can be considered as a four
dimensional vector space over R the span is not equivalent. Moreover, as presented in Secton 4, when
the ratio between the wavelength and the size of the unit cell becomes finite, this 2D eigenspace splits
into two 1D eigenspaces with different phase velocities. It is important to notice again that this effect
occurs in the LF-LW regime, where the classical elastodynamic homogenization is supposed to hold,
or give at least approximated results while preserving the physics of the problem. Similar results are
obtained for propagation along [111], which corresponds to the rotational axis of symmetry of order
3. In this case the symmetry group of the physical phenomenon is conjugate to D3 ⊕ Zc

2, and thus
again transverse isotropy is imposed to the acoustic tensor. Finally, the direction of propagation [011]
is along to a rotation axis of symmetry of order 2, the physical point group is thus conjugate to D2 ⊕Zc

2.
Here, the symmetry class of the acoustic tensor is D2 ⊕ Zc

2, and all the eigenspaces are unidimensional.
In this last case, as this kind of symmetry can be seen by second order tensors, the results from FEA on
the heterogeneous material and classic elasticity are in agreement in the LF-LW regime.

In this section we have shown that some discrepancies can be observed when using an overall
homogeneous continuum of Cauchy type. Classical elasticity (as opposed to generalized elasticity)
is not rich enough to capture certain specific physical phenomena related to the symmetries of the
material. In particular, if phase velocities are correctly estimated the polarizations are incorrectly
predicted. Moreover, as it is well known, the onset of dispersion when frequency or wavenumber
increase cannot be described in the classic Cauchy model.
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6. Conclusions

In this work it was shown that a classical continuum model could not capture the correct behavior
of elastic waves propagating in gyroid lattices. This is due to the fact that the classic continuum
mechanics was insensitive to the lack of centrosymmetry of the architectured material. However, it is
a well-established belief that the effects of non-centrosymmetry are only related to waves having a
wavelength which compares to the size of the microstructure. Here we demonstrate that the solution
given by the classical theory failed to predict the correct response, even in the Long Wavelength-Low
Frequency domain.

In order to capture the onset of this unconventional behavior, called acoustical activity, the elastic
continuum model needs to be enriched. Different strategies of enrichment are possible. In particular,
the use of strain-gradient elasticity will be investigate in a forthcoming study.

The main practical consequence of the results presented in this work was in the evidence that
circularly polarized waves could be observed in gyroid lattices, and that classic models failed to
describe such effect. This could have a practical interest, since devices based on manipulation of
circular polarization are frequently used in optics and electromagnetism. However, if one wants to
exploit the same effects in mechanics, it appears important not to rely on classical theories of elasticity.
Finally, it should be noted that, in this work, we addressed bulk wave propagation in an infinite
medium. The interaction of these waves with boundaries, in the case of reflection/transmission
problems or in the case of guided propagation, also deserves to be investigated.
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FCC Face Centered Cubic
LF Low Frequency
LW Long Wavelength

Appendix A. Dictionary

To obtain the normal forms for the different classes the generators provided in the following table
have been used :
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Table A1. The set of group generators used to construct matrix representation for each symmetry class.

Group Generators

Z−2 Pe3

Zn R
(

e3; 2π
n

)
Dn R

(
e3; 2π

n

)
, R(e1; π)

Z−2n, n ≥ 2 −R
(

e3;
π

n

)
Dh

2n n ≥ 2 −R
(

e3;
π

n

)
, R(e1, π)

Dv
n R

(
e3;

2π

n

)
, Pe1

T R(e3; π), R(e1; π), R(e1 + e2 + e3;
2π

3
)

O R(e3;
π

2
), R(e1; π), R(e1 + e2 + e3;

2π

3
)

O− −R(e3;
π

2
), Pe2−e3

Where the following elements of O(3) will be used in this study:

• R(v; θ) ∈ SO(3) the rotation about v ∈ R3 through an angle θ ∈ [0; 2π[;
• Pn ∈ O(3)\SO(3) the reflection through the plane normal to n (Pn = 1− 2n⊗ n).

Type I Subgroups

Table A2. Dictionary between different group notations for Type I subgroups. The last column indicates
the nature of the group: C = Chiral, P = Polar, I = Centrosymetric, and overline indicates that the
property is missing.

System Hermann–Maugin Schonflies Group Nature

Triclinic 1 Z1 1 ICP
Monoclinic 2 C2 Z2 ICP
Orthotropic 222 D2 D2 ICP

Trigonal 3 C3 Z3 ICP
Trigonal 32 D3 D3 ICP

Tetragonal 4 C4 Z4 ICP
Tetragonal 422 D4 D4 ICP
Hexagonal 6 C6 Z6 ICP
Hexagonal 622 D6 D6 ICP

∞ C∞ SO(2) ICP
∞2 D∞ O(2) ICP

Cubic 23 T T ICP
Cubic 432 O O ICP

532 I I ICP
∞∞ SO(3) ICP

Type II Subgroups
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Table A3. Dictionary between different group notations for Type II subgroups. The last column
indicates the nature of the group: C = Chiral, P = Polar, I = Centrosymetric, and overline indicates that
the property is missing.

System Hermann-Maugin Schonflies Group Nature

Triclinic 1̄ Ci Zc
2 ICP

Monoclinic 2/m C2h Z2 ⊕ Zc
2 ICP

Orthotropic mmm D2h D2 ⊕ Zc
2 ICP

Trigona 3̄ S6, Z3i Z3 ⊕ Zc
2 ICP

Trigonal 3̄m D3d D3 ⊕ Zc
2 ICP

Tetragonal 4/m C4h Z4 ⊕ Zc
2 ICP

Tetragonal 4/mmm D4h D4 ⊕ Zc
2 ICP

Hexagonal 6/m C6h Z6 ⊕ Zc
2 ICP

Hexagonal 6/mmm D6h D6 ⊕ Zc
2 ICP

∞/m C∞h SO(2)⊕ Zc
2 ICP

∞/mm D∞h O(2)⊕ Zc
2 ICP

Cubic m3̄ Th T ⊕ Zc
2 ICP

Cubic m3̄m Oh O ⊕ Zc
2 ICP

5̄3̄m Ih I ⊕ Zc
2 ICP

∞/m∞/m O(3)

Type III Subgroups

Table A4. Dictionary between different group notations for Type III subgroups. The last column
indicates the nature of the group: C = Chiral, P = Polar, I = Centrosymetric, and overline indicates that
the property is missing.

System Hermann–Maugin Schonflies Group Nature

Monocinic m Cs Z−2 ICP
Orthotropic 2mm C2v Dv

2 ICP
Trigonal 3m C3v Dv

3 ICP
Tetragonal 4̄ S4 Z−4 ICP
Tetragonal 4mm C4v Dv

4 ICP
Tetragonal 4̄2m D2d Dh

4 ICP
Hexagonal 6̄ C3h Z−6 ICP
Hexagonal 6mm C6v Dv

6 ICP
Hexagonal 6̄2m D3h Dh

6 ICP
Cubic 4̄3m Td O− ICP

∞m C∞v O(2)− ICP

Appendix B. Generators of Space Group #214

Consider the affine space E3, the vector space R3 acts on E3 by translations. The affine group
Aff(E3) of E3, which is the set of all affine invertible transformations is constructed as the semidirect
product of R3 by GL(3), the general linear group of R3:

Aff(E3) = GL(R3)oR3

as such, an affine transformation is given by a pair (Q, v) ∈ GL(R3) × R3. Composition of
transformations follows from the construction of Aff(E3) as a semi-direct product, to be explicit:

(Q2, v2)� (Q1, v1) = (Q2Q1, Q2v1 + v2).
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Elements of Aff(E3) can be nicely represented by(4x4) block matrices:(
Q v
0 1

)

the internal law in Aff(E3) following the matrix product in M4,4.
For our needs, we are interested not in the full affine group but in the group of isometries of E3,

this group Euc(E3) is a subgroup of Aff(E3) and defined as the semi direct product of the orthogonal
group and the spatial translation of R3:

Euc(E3) = O(R3)oR3.

Space groups can be considered as discrete subgroups of Euc(E3).
The generators of the space group I4132 (No. 214) are given in the following table in various

notations [54]:

Table A5. Generators of Group I4132 (No. 214).

Seitz Math Matrices in Conventional Basis B

{2001|1/2 0 1/2}
(

R(π, e3); 1
2 (e1 + e3)

) 
−1 0 0 1/2

0 −1 0 0
0 0 1 1/2

0 0 0 1


B

{2010|0 1/2 1/2}
(

R(π, e2); 1
2 (e2 + e3)

) 
−1 0 0 0
0 1 0 1/2

0 0 −1 1/2

0 0 0 1


B

{3+111|0}
(
R( 2π

3 ; e1 + e2 + e3), 0
) 

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


B

{2110|3/4 1/4 1/4}
(

R(π, e1 + e2); 1
4 (3e1 + e2 + e3)

) 
0 1 0 3/4

1 0 0 1/4

0 0 −1 1/4

0 0 0 1


B

{1|1/2 1/2 1/2}
(

Id; 1
2 (e1 + e2 + e3)

) 
1 0 0 1/2

0 1 0 1/2

0 0 1 1/2

0 0 0 1


B

Appendix C. Proof

The gyroid lattice is defined from an implicit equation (Equation (1)) that creates a periodic
surface. For a given value of parameter b (=

√
2), this surface is found to become singular, thus creating

an unrealistic discontinuous solid. This section presents an explanation for the admissible variation
range of gyroid parameter :|b| <

√
2.

Let us first restrict the variation range of variables x, y, z in Equation (2) to [0, 1/2] in order to work
in the fundamental domain of function φ. The gyroid lattice restricted to this domain is presented in
Figure A1a).
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Figure A1. (a) The gyroid restricted to its fundamental domain along with symmetry axes C3 (plain)
and C2 (dashed) and (b) evolution of parameter b as a function of x position along e1 axis, dashed line
corresponds to b =

√
2.

The fundamental domain of the gyroid is invariant with respect to the following symmetry
operations:

- Rotation of angle 2π/3 along the axis defined by equations y = z = x, plotted in plain line in
Figure A1 and corresponding to the transformation (x, y, z) → (y, z, x). The directing vector of
this axis is (1, 1, 1) in orthonormal basis B and passes through point (0, 0, 0);

- Three rotations of angle π about the three axes defined by equations {y = 1/4− x, z = 1/8},
{z = 1/4− x, y = 1/8}, and {z = 1/4− y, x = 1/8} and plotted in dashed lines in
Figure A1. These axes correspond to transformations (x, y, z)→ (1/4− y, 1/4− x, 1/4− z),
(x, y, z)→ (1/4− z, 1/4− y, 1/4− x), (x, y, z)→ (1/4− x, 1/4− z, 1/4− y), respectively. The
directing vector of these axes are, in orthonormal basis B, (1,−1, 0), (1, 0,−1) and (0, 1,−1) and
they pass through points (0, 1/4, 1/8), (0, 1/8, 1/4) and (1/8, 0, 1/4), respectively.

It is trivial to see that these transformations leave Equation (2) unchanged thus defining symmetry
operations. As a consequence, the point symmetry group of the fundamental domain of the gyroid is
conjugated to D3. For the sake of simplicity, we will only consider generating operations of 2π/3 rotation
about (x, x, x) axis and π rotation about (x, 1/4− x, 1/8) axis, denoted C3 and C2 in the following,
respectively; the two other π rotations being generated by combination of these two generators.

If the gyroid surface intersects one of the rotation axes non-orthogonally, then the surface
automatically becomes degenerate. The expression of the normal director to the gyroid surface
at its intersection point with generating symmetry axes and the equation defining this intersection
point are summarized in the following Table A6:

Table A6. The expression of the normal director to the gyroid surface at the intersection point with its
symmetry axes and expression of this intersection point.

Sym. axis & Directing Vector Normal to the Gyroid Surface Intersection Point

C3 (1, 1, 1)B
(
cos2 2πx− sin2 2πx

)
(1, 1, 1)B (x, x, x) with 3 cos 2πx sin 2πx = b

C2 (1,−1, 0)B sin 2πx
(√

2/2− cos 2πx
)
(1,−1, 0)B (x,−x, 0) with

√
2 cos 2πx + sin2 2πx = b

Note that the normal director to the gyroid surface depends on variable x which, itself,
is determined by parameter b through the non-linear equation defining the intersection point at
which the normal director is computed.
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One can easily check that the normal directors are generically colinear with directing vectors
of C3 and C2 operations. However, for given values of variable x (or equivalently of parameter b),
the normal to the gyroid surface is null, thus leading to singularity of the gyroid surface. These values
are x = 0–and thus b =

√
2–leading to singularity of the gyroid surface at its intersection with axis

C2 and x = 1/8–and thus b = 3/2–leading to singularity of the gyroid surface at its intersection with
both axes.

Finally, the equation defining the intersection point between the gyroid surface and the C2 axis
(see Figure A1b) depends on x and parameter b :

√
2 cos x + sin x2 − b = 0. By plotting this equation

considering b as a function of x, we can see that there are two intersection points between the gyroid
surface and the C2 axis for values of b over

√
2 thus showing that the gyroid surface forms a closed

domain in these directions leading to an unrealistic discontinuous solid.
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