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Abstract: Markov random field (MRF) theory has achieved great success in image segmentation.
Researchers have developed various methods based on MRF theory to solve skin lesions segmentation
problems such as pixel-based MRF model, stochastic region-merging approach, symmetric MRF
model, etc. In this paper, the proposed method seeks to provide a complement to the advantages of
the pixel-based MRF model and stochastic region-merging approach. This is in order to overcome
shortcomings of the pixel-based MRF model, because of various challenges that affect the skin
lesion segmentation results such as irregular and fuzzy border, noisy and artifacts presence, and low
contrast between lesions. The strength of the proposed method lies in the aspect of combining
the benefits of the pixel-based MRF model and the stochastic region-merging by decomposing the
likelihood function into the multiplication of stochastic region-merging likelihood function and the
pixel likelihood function. The proposed method was evaluated on bench marked available datasets,
PH2 and ISIC. The proposed method achieves Dice coefficients of 89.65% on PH2 and 88.34% on ISIC
datasets respectively.
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1. Introduction

Melanoma skin lesion has been reported as the deadliest skin cancer with high mortality [1].
Early detection and treatment of this deadly disease could reduce the mortality rate [2]. The essential
task in melanoma diagonsis is through segmentation of that affected areas which aids in the
identification and recognition of disease patterns. In recent decades, due to advancements in technology,
several computer-aided techniques have evolved for analysis and segmentation of the medical images.
Automatic medical image analysis methods are considered quite successful in medical image analysis
over the past two decades [3]. Automated analysis of skin lesions has assisted clinicians in making
quick and accurate decisions in melanoma detection. This paper deals with skin lesion segmentation
issues for the needs of automated analysis of skin lesions.

Skin lesion segmentation is a crucial stage as it shows various clinical identification features,
locally and globally. The purpose of lesion segmentation using dermoscopy images is to segment
the targeted region (unhealthy lesion) from the background image (healthy skin). The segmented
lesion boundary provides vital information to assist in the automated analysis of skin lesions.
The accurate diagnosis needs the correct lesion classification from the targeted feature extraction
through efficient lesion segmentation methods. Consequently, the final diagnostic results of skin
lesion disease depends largely on the performance of the lesion segmentation stage. Various image
segmentation algorithms have been proposed to segment lesion types using features descriptors
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and pattern analysis. Valuable work has been presented by Celebi et al. [4], which classifies the
algorithms of image segmentation techniques. In [5–7], the feature-based model such as threshold
methods which use threshold values to differentiate the skin lesions from the surrounding healthy
tissues. In [8–10], the clustering methods that utilize color space features to determine cluster regions.
In [11], the model-based models such as a unified Markov random field (UMRF) that focus on random
field analysis models. In [12–14], the edge-based model such as watershed which has an excellent
performance in some particular local result. In [15–17], the active contour methods which adopt
evolution algorithms to segment skin lesions. In [18–21], the supervised segmentation methods for
skin lesions segmentation such as support vector machine (SVM) and artificial neural networks (ANN)
that can train and learn image patterns from large image dataset.

However, the segmentation of skin lesions remains challenging and most of the existing techniques
have not been able to give accurate and reliable results [22–24]. These challenges are due to unique
features and the peculiarity in the fine-grained appearances of the skin lesion images. The skin lesion
images are sometimes characterized by noise such as: hairs, oils, marks, skin lines, blood vessels,
variegated coloring, weak edges, fuzzy and irregular borders. There is also a low contrast between the
appearance of the health lesion and the affected lesion [25]. To address these limitations, this research
proposes an efficient hybrid model based on the Markov random field (MRF) theory with a reduced
cost for the robust segmentation of the skin lesions.

In recent years, the deep learning methods have achieved the best enhanced performances in
medical imaging tasks [26]. Their performance is leveraged in their capacity to learn and extract
deep and hierarchical features from the complex image dataset [26]. Recently, the deep learning
methods such as deep convolutional models have achieved great success for the medical image
segmentation [27]. Deep convolutional neural networks (CNNs) possess the capacity to process general
and highly variable tasks in fine-grained objects [28]. They can also learn hierarchical features that
correspond to the appearance and semantics of images in the large labeled dataset. The performance
of deep learning methods is however restricted to the scarcity of annotated medical training data.
The segmentation output of these techniques is coarse with poor boundary [29] which results due
to insufficient training data set. CNNs apply heavy tuning of a large number of parameters and
pre-processing techniques to minimize the effect of the limitations. This increases the computational
resources consumption [29].

The MRF model is a probabilistic graphical technique which extracts the image segmentation
features as the prior information. The MRF model has been used for decreasing the effect of intra-class
variation and removing the noise [19]. Initially, the first version of this model used to predict the
segmented-image based on its pixels. The pixel-based MRF model representation depicted in Figure 1.
Where a circle and a square indicates the class label of one pixel Xs and the observed feature Ys

of its pixel, respectively, the pixel-based MRF model could easily use the structural contextual
information on the grid because the neighboring structural connection between the pixels is regular.
However, the pixel-based MRF model process requires more time, and its small neighborhood also
affects the accuracy of the image segmentation. Thus, many types of research have worked to modify
the MRF model by using the region-based MRF model instead of the pixel-based MRF model to model
more macro information and complex spatial patterns in a large neighborhood.

Chen et al. [11] stated that all the shortcomings of the pixel-based MRF model cannot be overcome
by using the region-based MRF model alone. This is because of the image segmentation challenges
that still impact its output, for instance, the irregular structural contextual neighborhood of initial
regions and the region inaccuracy. However, the region-based MRF model can use the region-based
information to cover the macro texture pattern, but the irregular structural context are its limitations.
Therefore, if we can build one model which possesses the regular structural context and the account
of the macro texture pattern in its account at one time, this model can take the benefits of the two
MRF models and solve each model pitfalls. Some of the pitfalls include: the pixel-based MRF model
which can use the macro texture pattern description to have interactions in a large neighborhood,
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the stochastic region-merging approach [30] use the regular structural context in order to capture the
structural relationship between regions more efficiently. For the aforementioned reasons this work
combines the benefits of the pixel-based MRF model and the stochastic region-merging approach in
one model.

Figure 1. The pixel-pased MRF model part, with observations (squares) and labels (circles) [11].

2. Materials and Methods

The proposed method is a probabilistic technique that automatically predicts the skin lesion from
a given image based on the MRF theory. The proposed method combines the advantages of two models
into its version: the pixel-based MRF model and the stochastic region-merging approach. Both of
these models have their advantages and disadvantages. The proposed method aims to overcome the
shortcomings by complement each other in one model. It seeks to decompose the likelihood function
in Equation (2) into the multiplication of the stochastic region-merging likelihood function and the
pixel likelihood function.

2.1. Problem Formulation + MRF Model

Let us assume S = {si|i = 1, 2, · · · , n× m} denotes the original images where si indicates the
image pixel and n×m represents the dimensions of the image. The label random field is represented
on S as X = {Xs|s ∈ S}. Every random variables Xs in X defines the pixel class s, the set of class
is Λ = {1, 2, · · · , N} where N represents the classes number. The observed image Y on S is defined
by Y = {ys|s ∈ S}. Let x = {xs|s ∈ S} be the region label field instantiation. The aim of the MRF
theory is to obtain the optimal solution of x given the observed image Y; formulated by the following
maximum a posteriori (MAP) estimation problem:

x̂ = arg max
x

P(x|Y), (1)

According to the Bayesian rule, the posterior probability P(x|Y) is equivalent to
[P(Y|X)P(X))/P(Y)]. Since the probability P(Y) is a constant, the estimation of the best realization
x̂ can be obtained by maximizing P(Y|X)P(X), which requires to calculate the forms of P(X) and
P(Y|X). Equation (1) become equivalent to

x̂ = arg max
x

P(Y|X)P(X), (2)
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where P(Y|X = x) is the conditional probability function and P(X) is the Gibbs distribution function.
In case of skin lesion segmentation, the estimation to the problem defined on Equation (2) is not an easy
task due to complex challenges to the segmentation of skin lesion in a given image, such as noise and
artifacts, various regions of the lesion, spatial variations, color variations and illumination, and weak
boundary isolation linking surrounding skin regions and unhealthy skin regions. The proposed model
attempts to estimate the problem defined in (2) by decomposing the conditional probability function
into the multiplication of pixel likelihood function and the stochastic region merging likelihood
function. The estimations of P(X) and P(Y|X = x) are discussed below.

2.2. Initialization–Probability of the Label Random Field

The joint probability P(X) is used to model the label random field X. Since X is assumed to
possess the Markov property in the MRF model, P(X) is of Gibbs distribution according to the theorem
of the Hammersley–Clifford theory [31]. That is

P(X = x) =
1
Z

exp (−U(x)) , (3)

where Z represents the normalization factor which is given by

Z = ∑
x

U(x). (4)

Here U(x) is the energy function defined as follows

U(x) = ∑
s∈S

U(xs, xNs), (5)

where
U(xs, xNs) = ∑

t∈Ns

V(xs, xt). (6)

Here Ns reflects the neighbours set of pixel s and each V(xs, xt) denotes the potential function
linking pixel s with its neighbours t, t ∈ Ns. According to the multilevel logistic (MLL) model [31],
the V(xs, xt) has the following form

V(xs, xt) =

{
β if xs = xt

−β if xs 6= xt
. (7)

Here β > 0 being the parameter of the potential energy and t ∈ Ns. Based on the MLL
model, P(X) would have a large value if the local neighbor labels are the same, otherwise small.
This characteristic encourages the adjacent pixels to be classified into the same label, which would
make the MRF model resist noise and reduce the impact of intra-class variations.

The proposed method aims to incorporate the advantages of the pixel-based MRF model and
stochastic region merging approach in order then put the regular spatial context and the macro texture
pattern description in its account. Chen et al. [11] proved that the observed image Y can be divided
into the pixel feature YP = {YP

s |s ∈ S} and the regional feature YR = {YR
s |s ∈ S}, to incorporate more

priority for the segmentation results. Therefore, the conditional probability function divided into two
parts as mentioned in [11]: the pixel likelihood function and the regional likelihood function, which can
be expressed into (YP, YR). The pixel-MRF model and the stochastic region-merging approaches are
used to extract the pixel features and the region features respectively. This gives a formulation as
per Equation (2) to find a solution to the MAP estimation problem which leads to the desire skin
lesion segmentation.

x̂ = arg max
x

P(X) · P(YP, YR|X), (8)
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x̂ = arg max
x

P(X) · P(YP|X) · P(YR|X). (9)

On solving (9) will lead to the skin lesion segmentation by using the proposed model.
The distribution of P(YP|X) and P(YR|X) will be describe in Sections 2.3 and 2.4 below.

2.3. Pixel Feature Extraction

The micro texture pattern and the more pixel feature as spectral value are modeled by using the
conditional probability function P(YP|X = x). For measuring the probability of how the observed
image Y matches a given realization X = x. The site of the conditional probability function is defined
to be independent when the label field is obtained, i.e.,

P(YP|X) = ∏
s∈S

P(YP
s |Xs = h). (10)

The Gaussian distribution is used to determine the conditional probability function P(YP
s |Xs = h).

In Equation (10) each site s = (i, j) ∈ S represents a pixel and its feature Ys is the spectral values vector
of each band at site s, i.e., Ys = (Y1

s , Y2
s , · · · , YD

s ). Here, Yi
s defines spectral value band i, where D is the

spectral bands number for the observed image. P(ys|xs = h) uses the Gaussian distribution in order to
model (10), i.e.,

P(YP
s |Xs = h) =

√
γ

(2π)D/2
√

det(ΣP
h )

exp

(
−
(YP

s − µP
h )

T · (YP
s − µP

h )

2(ΣP
h )

)
, (11)

where YP
s is the pixel feature for each pixel s, the Gaussian distribution parameters are µP

h , ΣP
h . The D

is the dimension of YP
s .

2.4. Regional Feature Extraction

On the region-based MRF model, a stochastic region merging (SRM) method [30] is employed
to solve the problem in (2). The SRM uses a region adjacent graph [31] to represent each vertex as a
region R, and each vertex is connected to its adjacent graph vertices using the edges E. The SRM aims
to merge the region Ra with an adjacent region Rb by using merging probability formula. The merging
probability α(Ra, Rb) is introduced in SRM likelihood function which accounts P(YR|X) in (9), i.e.,

α(Ra, Rb) = exp
[
− (E[Ra]− E[Rb])

2

Λ(Ra, Rb)

]
. (12)

Here E[·] denote the expected element value in the region where the penalty function of statistical
region merging formulated as follows

Λ(Ra, Rb) =
D2

f

2Q

[
ln
(
Φ( f )2)

)
Φ(Ra)

+
ln
(
Φ( f )2)

)
Φ(Rb)

]
. (13)

Here Φ(·) denotes the elements number contained in the set defined as the argument (e.g., Φ( f )
is pixels number in a given image f ), D f indicates the dynamic range of f (e.g., 512 for an 16-bit
image), and the regularization part denoted by Q. In the color images case, Equation (12) should
be computed for every color channel and the output merging likelihood is the multiplication of the
individual likelihoods of every channel. According to the merging probability α(Ra, Rb) computation,
we decide whether Ra is merged with Rb in probabilistic manner. By generating a random value u
from a uniform distribution range 0 and 1. If the random value u is greater than α(Ra, Rb), then Ra is
not merged with Rb otherwise the regions are merged.
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Figure 2 shows the flowchart of the stochastic region-merging and the pixel-based MRF method
for the skin lesion segmentation. It is started by extracting pixel features from a given skin lesion image
Y. Then the regional features, using the stochastic region merging approach are extracted. After that,
the pixel features and the regional features image are used to estimate the probability of likelihood
functions. Finally, the MAP using the pixel features and the regional features are estimated.

Input image

Represnt an
input image
using RAG

Extract
the pixel

Feature YP

α(Ra, Rb)P(YP|X)

x̂ = arg maxx P(X) · P(YP|X) · α(Ra, Rb)

Output the
segmentation

result

Figure 2. The flowchart of stochastic region-merging and pixel-based MRF method.

2.5. Parameters Setting

The proposed method has four variables, µP
h , ΣP

h , β, and γ which are used in Equations (7) and (11).
The variables µP

h , ΣP
h are the Gaussian distribution parameters called the mean value and the variance

value, respectively, which can be computed as follows

µP
h =

1
|Xh| ∑

s∈Xh

YP
s , ΣP

h =
1
|Xh| ∑

s∈Xh

(
YP

s − µP
h

)′ (
YP

s − µP
h

)
. (14)

Here β denotes the potential parameter in (7) which is used for estimating P(X), and γ is applied to
consider the interaction between P(YP

s |Xs = h) and α(Ra, Rb).

3. Results

In this section, the experimental results of the proposed method is discussed. The performance
evaluation of the proposed skin lesion segmentation method is carried out by using the various
experiments. Two publicly available datasets have been used for the empirical experiments. Different
types of evaluation metrics are used to evaluate the proposed method performance. The outputs
achieved are compared with the existing algorithms.
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3.1. Datasets

The evaluation of the proposed method has been obtained by using the two publicly available
datasets. The first is the dermatology image dataset, also known as the PH2 dataset, which was
released by the dermatology service of the Hospital Pedro Hispano, Portugal [32]. It contains 200
dermoscopic images, including 40 melanoma, 80 common nevi and 80 atypical nevi. The dermoscopic
images are RGB color with a resolution of 768× 560 pixels. The PH2 dataset also has the ground truth
of each image, which is representing as binary images. The skin lesion region with an intensity value of
‘0’ corresponds to the background (healthy skin), whereas the skin lesion region with an intensity value
of ‘1’ corresponds to the region of interest (unhealthy skin). Secondly, the international skin imaging
collaboration (ISIC) has collected the dermoscopic images from leading hospitals internationally and
acquired with different devices [1,33]. The ISIC 2018 contains 2594 dermoscopic images with the
ground truth which is given by the dermatologists. The image size posses the highest resolution of
1022× 767 pixels. It was also categorized into training and testing images set with the ground truth
labels, respectively. The training and testing images are in JPG format, while the ground truths are
binary images in PNG format.

3.2. Evaluation Metric Calculation

We have used various skin lesion segmentation metrics to evaluate the performance of the
proposed method; these include the Jaccard index, the Dice similarity coefficient, the sensitivity,
the specificity, and the accuracy. Many studies have used these metrics and they considered as the
most common metrics for the segmented-images evaluation. More details about these metrics are
discussed as follows.

The Jaccard similarity coefficient compares the similarity for the pixels in the ground truth and
automatic segmented-image to check which pixels are matched and which are unmatched. It takes two
sets of data as an input and produces the similarity result in a range from 0% to 100%. The formula to
find the index is:

Jaccard Index =
|X ∩Y|
|X ∪Y| , (15)

where X and Y denote the pixel’s number in the ground truth and the automatic segmented-image,
respectively.

On the other hand, the Dice similarity coefficient measures the overlap or similarity between the
automatic segmented-image and the ground truth. It is given as

Dice =
2TP

FP ∪ 2TP ∪ FN
. (16)

Sensitivity measures the proportion of those with the true positive values among those who
actually tested positive.

Sensitivity =
TP

TP ∪ FN
. (17)

Specificity measures the proportion of those that are the true negative values among those who
tested negative.

Specificity =
TN

TN ∪ FP
. (18)

Accuracy measures the proportion of both the true positives values and the true negatives values
among the sum of the true and the false results. The formula is

Accuracy =
TP ∪ TN

TP ∪ TN ∪ FP ∪ FN
. (19)

Here FP, FN, TP, and TN denotes the false positive pixels number, the false negative pixels
number, the true positive pixels number, and the true negative pixels number, respectively.
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3.3. Performance Evaluation

The evaluation metrics defined in Section 3.2 are used to assess the proposed method performance.
The applied performance metrics applied are a pixel-level estimation. The pixel-level segmentation
accuracy is the measure of how many target pixels (lesion pixels) are predicted when compared
with the ground truth. Sensitivity measures the number of true lesion pixels that are identified
as the lesion pixels. In contrast, specificity measures the number of true background pixels that
are predicted as the background pixels. Dice coefficient similarity and Jaccard index measure the
degree of overlapping of the automatically segmented lesion and the ground truth. Concerning lesion
segmentation performance on the two datasets, first, the proposed method result on the PH2 skin
lesion image dataset is depicted in Table 1. We see the result achieved for the Jaccard index and the
Dice coefficient is of 78.35% and 89.65%, respectively. This result indicates that the proposed method
can predict and differentiates a higher amount of unhealthy skin lesions from the healthy skin lesions
on the PH2 dataset.

The proposed method has evaluated on the ISIC dataset using 100 and 1000 for validation and
test skin lesion images, respectively. The images were resized to 256× 256 pixels. The result achieved
both the Jaccard index and the Dice coefficient of 79.78% and 88.34% for validation set, 72.45% and
80.67% for test dataset, respectively. Furthermore, the proposed method performance in Table 1 gives a
good accuracy percentage and sensitivity of 92.77% and 87.17% on the ISIC validation set, respectively.
It also shows excellent specificity of 97.99% on the same dataset. This result again indicates that the
proposed method can predict and differentiates a higher amount of unhealthy skin lesions from the
healthy tissues on the ISIC skin lesion dataset. The results output in Figures 3 and 4 for both the PH2
and the ISIC dataset also shows that the proposed method performance in various skin lesions is
challenging, such as fuzzy border, noisy and artifacts presence and low contrast between lesion.

Table 1. Segmentation performance of the proposed method on the two datasets.

Metric PH2 Dataset ISIC Validation ISIC Test

Jaccard Index (%) 78.35 79.78 72.45
Dice Coefficient (%) 89.65 88.34 80.67

Accuracy (%) 91.51 92.77 89.47
Sensitivity (%) 84.07 87.17 79.45
Specificity (%) 95.55 97.99 95.09

Figure 3. PH2 sample of skin cancer segmentation using the proposed method. (I) Original image (II)
Segmented image (III) Segmented lesion region overlapped with the original image
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Figure 4. ISIC sample of skin cancer segmentation using the proposed method.

3.4. Comparison

The proposed method performance is compared with four well-known segmentation algorithms
for the dermoscopic images: C-LS [34], AT [35], DT [23], and CA [19]. Their results published for the
evaluation of the PH2 dataset used in [36]. All these algorithms have been used the same pre-processing
step, except that the proposed method has no pre-processing step. The Dice coefficient is chosen
for the comparison evaluation where it has been commonly used among the compared algorithms.
The result shows that the proposed method does not only perform well but also outperforms some
existing methods. It attributed mostly to the complementary of the pixel-based MRF and the stochastic
region-based methods. When we compare the results with the methods mentioned earlier, the proposed
method generated notably higher results in comparison to the opposite methods, and it has the highest
Dice coefficient overall average of 89.65%, as well as the best maximum of 98.09% and minimum of
66.18%. The outcomes imply that the proposed method performance is more efficient in predicting
and isolating lesions, especially complex cases. For complex cases, the proposed method had the
highest minimum Dice coefficient of 66.18%, which is higher than the next best method (DT) and has
the lowest standard deviation, as can be shown in Table 2. The DT performed second best in minimum
Dice coefficient, but its ability to accurately predicts the edges of the lesion across all the dataset (see
Figure 5). The closest method to the proposed method in overall Dice coefficient measures is the CA
method. Further, the C-LS has some challenges in some cases, such as the heterogeneous background
which makes it hard to predicts lesions. However, additional post-processing such as the dilation or
simple border smoothing can be processed to the C-LS to bias the segmentation outputs.

Figure 5 shows one sample of the lesion segmentation results for several methods: C-LS, CA, AT,
DT, and the proposed method. All these methods give the segmentation results which are not similar
to the segmentation of the ground truth except the proposed method. This example shows the power
of our lesion segmentation results compared to other methods. However, the proposed method is
sensitive to such image condition and fully automated method.
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Table 2. Comparison of the proposed method using PH2 dataset.

Method Dice(Min) Dice(Max) Dice(Avg) Dice(Dtv)

C-LS [34–36] 7.44% 97.47% 84.82% 11.44%
AT [35,36] 25.21% 96.68% 81.91% 13.81%

DT [23,36] 30.40% 95.35% 86.04% 7.09%
CA [19] 17.73% 96.11% 88.89% 12.34%

Proposed method 66.18% 98.09% 89.65% 4.07%

Figure 5. Segmentation results from one sample (PH2 dataset).

4. Conclusions

This paper proposes a method for the automated skin lesion region. The proposed method
based on stochastic region and pixel feature has also been presented for the robust segmentation
of the skin lesions towards the melanoma detection. This method adopts an enhanced in the
lesion segmentation with a combination of the stochastic region-merging and the pixel feature.
The segmentation effectiveness of the proposed method has been measured by using five types
of evaluation metrics, i.e., the Jaccard Index, the Dice coefficient, the accuracy, the sensitivity, and the
specificity. The results on segmentation performance have been shown in Table 1, which indicates many
essential insights on the performance and the particularities of the proposed method. The proposed
system achieved an overall Dice coefficient and accuracy of 89.65% and 91.51% on the PH2 skin lesion
image dataset. The proposed method has also achieved the Dice coefficient and the accuracy of 88.34%
and 92.77% on the ISIC validation set, respectively. The outputs can be inferred from the proposed
system evaluation that the method is promising and could outperform some state-of-the-art.

The largest Dice coefficient achieved by the proposed method indicates that the proposed method
the best overall performance when compares to the other methods. The proposed method can be part
of a computer-aid diagnosis system to assist the clinicians and the doctors to automatically identify the
skin lesions diagnosis. The experimental results of the proposed method for the skin lesions indicate
that this method potentially can give additional accurate segmentation of the skin lesions images in
comparison to the other existing methods. This method will assist the dermatologists to automatically
locate a region of the skin lesion for more diagnosis.
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