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Abstract: Based on quintic trigonometric Bézier like basis functions, the biquintic Bézier surfaces are
modeled with four shape parameters that not only possess the key properties of the traditional Bézier
surface but also have exceptional shape adjustment. In order to construct Bézier like curves with
shape parameters, we present a class of quintic trigonometric Bézier like basis functions, which is
an extension of a traditional Bernstein basis. Then, according to these basis functions, we construct
three different types of shape adjustable surfaces such as general surface, swept surface and swung
surface. In addition to the application of the proposed method, we also discuss the shape adjustment
of surfaces showing with curvature nephogram (with and without fixing the boundaries). However,
the modeling examples shows that the suggested approach is efficient and easy to implement.

Keywords: parametric surfaces; Bézier-like function; shape parameters; Coons patch; surface design

1. Introduction

In Computer Aided Geometric Design (CAGD) and Computer Graphics (CG), Bézier curves and
surfaces are not only important for modeling free form curves and surfaces, but also useful in design
and geometrically presenting different products. However, it has several limitations that restrict its
applications in engineering, animation, automobile industries and other disciplines. For example, once
control points are given, the position of the Bézier curves are fixed relative to their control polygon.
Their shapes can only be modified by adjusting the control points. If users do not prefer to change the
control points, the shape parameter curves or surfaces is a good choice.

To enhance the flexibility and gaining satisfying graphics, researchers have comes up with various
kind of spline curves and surfaces with shape parameter. In recent years, many scholars have paid
attention to the trigonometric Bézier curves. In [1,2], Bashir et al. presented quadratic and rational
quadratic trigonometric Bézier curves with single and double shape parameters, respectively. Xiao-qin
and Han [3] presented cubic trigonometric polynomial curves with two shape parameters that can deal
preciously with circular arc, cones, cylinders and many more. Yan [4] discussed the cubic trigonometric
nonuniform spline basis functions by proving their total positivity property. Han et al. [5] presented a
cubic trigonometric Bézier curve with two shape parameters and managed to show the representation
of ellipses using T-Bézier curves. The cubic trigonometric Bézier curves by [5] are being extended to
construct spiral [6] and transition curves [7]. Dube and Sharma [8] presented a quartic trigonometric
Bézier-like curve with one shape parameter and defined the corresponding trigonometric Bézier
surfaces. Meanwhile, Han [9] presented piecewise quartic polynomial curves with a local shape
parameter. The proposed curves can approximate an ellipse from both sides. Misro et al. [10] developed
quintic trigonometric Bézier curve with two shape parameters. The proposed curve is later applied in
constructing five templates of transition curves [11].
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For the design of interpolation curves, Yan [12] constructed the trigonometric curves that can
interpolate the specified data points automatically without solving equation schemes, which offer
a simple and effective way of constructing interpolation curves, but these curves have only one
degree of freedom. In extension to this, Li. [13] presents a new method of curve interpolation
using cubic trigonometric interpolation curves with two shape parameters. This method also
automatically interpolates the given data but have two degrees of freedom. Cao and Weng [14] introduce
shape-adjustable non-uniform B-spline curves under the fixed control polygons as well as discussing
some geometric properties of the curves. Misro et al. [15] used cubic trigonometric Bézier curves
with two shape parameter and develop S-shaped and C-shaped transition curve by satisfying G2

Hermite condition. Yang and Zeng [16] presented the Triangular Bézier curves and surface with n
and 3n(n + 1)/2 shape change parameters, respectively, which simplified the work of Chenglin [17],
giving one united expression of shape change parameter and by making the geometric significance
clearer. Su and Tan [18], established quasi-cubic B-spline base curves and surface by trigonometric
polynomials and shows the representation of straight lines, circular arcs, sine curves and sphere.

Moreover, Chand and Tyada [19] studied on the shape preserving while introducing the concept
of using partially blended rational cubic trigonometric fractional interpolation surfaces. Xumin and
Weixiang [20] developed method of free-form surface modeling and gave examples for its application
to analyzed the effect of shape parameters over the surfaces. Hu et al. [21] studied the continuity
conditions between generalized Bézier-like surfaces with multiple shape parameters and also discuss
some properties and applications of the smooth continuity by providing the modeling examples.
Lasser [22] proposed an algorithm for converting a rectangular patch of a triangular Bézier surface into
a tensor product Bézier representation and also discuss the corner problem of a surface. The curves and
surfaces in [1–10,18–21] have several specific advantages such as they inherit the positive properties
of the classical Bézier curves and surfaces. Furthermore, several local shape parameters are included
and make it possible to change the local shapes of the curves and surfaces without altering the control
points. All these curves and surfaces are highly flexible and suitable in shape design where the shapes
could be modified directly by the boundary curves, but they are non-interpolating on boundaries.
In response to the existing approach, the paper aims to create local shape adjustable surfaces using a
quintic trigonometric Bézier-like basis function with four shape parameters that not only possess the
key properties of the classical Bézier surfaces but also have exceptional shape adjustment with and
without fixing the boundary curves. Moreover, we examine the geometric continuity conditions of the
two adjacent quintic trigonometric surfaces to make a smooth joint between surface patches and effect
of shape parameters on surface using mean curvature nephogram are also provided. In conclusion,
the applications to the surface modeling in engineering are explored together with Coons surfaces at
fixed boundary curves.

The rest of the paper is organized as follows. The quintic trigonometeric Bézier basis function is
defined in Section 2. The construction of Bézier surface with shape parameter is presented in Section 3.
In Section 4, we propose the G2 continuity conditions for biquintic trigonometric Bézier surfaces. Some
examples of G2 smooth continuity between two adjacent surfaces are given in Section 5. In Sections 6
and 7, the discussion about swept and swung surfaces are given. In Section 8, the effect of shape
parameter on shape adjustable surfaces showing with mean curvature nephogram is presented. Finally,
conclusion and suggestions are provided in Section 9.

2. Quintic Trigonometric Bézier Basis Function

Quintic trigonometric Bézier curve with two shape parameters α and β is defined in [10] as:

r(t) =
5

∑
i=0

Pi fi(t), (1)

where Pi ∈ Rm (m = 2, 3) is the control point located in plane or space and fi is the basis function for
quintic trigonometric Bézier with i = 0, 1, 2, 3, 4, 5 whereas,
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f0(t) = (1− sin
πt
2
)4(1− α sin

πt
2
),

f1(t) = sin
πt
2
(1− sin

πt
2
)3(4 + α− α sin

πt
2
),

f2(t) = (1− sin
πt
2
)2(1− cos

πt
2
)(8 sin

πt
2

+ 3 cos
πt
2

+ 9),

f3(t) = (1− cos
πt
2
)2(1− sin

πt
2
)(8 cos

πt
2

+ 3 sin
πt
2

+ 9),

f4(t) = cos
πt
2
(1− cos

πt
2
)3(4 + β− β cos

πt
2
),

f5(t) = (1− cos
πt
2
)4(1− β cos

πt
2
)

(2)

where α, β ∈ [−4, 1] are shape parameters for the following six functions of t, where t ∈ [0, 1].

Theorem 1. Quintic trigonometric Bézier basis functions (2) have the following properties:

(a) Non-negativity: fi(t) ≥ 0, i = 0, 1, 2, 3, 4, 5
(b) Partition of unity: ∑5

i=0 fi(t) = 1
(c) Symmetry: fi(t, α, β) = f5−i(1− t, α, β) for i = [0, 5]

Proof.

(a) For t ∈ [0, 1] and α, β ∈ [−4, 1], then 1− sin πt
2 ≥ 0, 1− cos πt

2 ≥ 0,
sin πt

2 ≥ 0, cos πt
2 ≥ 0, 1− α sin πt

2 ≥ 0, 1− β cos πt
2 ≥ 0,

4 + α− α sin πt
2 ≥ 0, 4 + β− β sin πt

2 ≥ 0.

(b) ∑5
i=0 fi(t) = f0(t) + f1(t) + f2(t) + f3(t) + f4(t) + f5(t) = 1.

(c) f0(t, α, β) = (1− sin
πt
2
)4(1− α sin

πt
2
)

= (1− cos
π(1− t)

2
)4(1− β cos

π(1− t)
2

)

= f5(1− t, β, α)

The quintic trigonometric Bézier basis function for two arbitrarily selected real values of shape
parameters α and β is shown in Figure 1.

Figure 1. Quintic trigonometric Bézier basis function.
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3. Construction of Biquintic Trigonometric Bézier Surface with Shape Parameter

If the control points Pi,j ∈ R3(i = 0, 1, ...m; j = 0, 1, ..., n; m, n = 5) are given, the parameteric surface

S(u, v; α1, β1, α2, β2) = ∑m
i=0 ∑n

j=0 fi,m(u) f j,n(v)Pi,j, f or(u, v) ∈ [0, 1]× [0, 1] (3)

is called the tensor product biquintic trigonometric Bézier surface of degree m and n with α1, β1 and
α2, β2 are the shape parameters of the basis functions fi,m(u)(i = 0, 1, ..., m) and f j,n(v)(j = 0, 1, ..., n),
respectively as defined in Equation (2).

Remark 1. Biquintic trigonometric Bézier surface with shape parameter in Equation (3) inherited most of the
properties of classical Bézier surface including, boundary property, convex hull, symmetric and invariance.

Remark 2. The shape of the surface in Equation (3) can be adjusted flexibly by changing the shape parameters
subject to the condition that its control points remain unchanged.

Figure 2 shows biquintic trigonometric Bézier surface with different shape parameters values.
In Figure 2, the biquintic trigonometric Bézier surfaces have 36 control points and 4 shape parameters
α1, β1 and α2, β2. In Figure 2a–d, the values of shape parameter α1, β1 and α2, β2 are decreasing in the
range of [−4, 1] which is changing in both the u-direction and v-direction. The biquintic trigonometric
Bézier surface moves away from its control nets as shape parameter decreasing. Figure 2e,f displays
the surfaces when changes are made only in the v-direction. The surface moves away from one side
without affecting the other side when one shape parameter changes. However, shape parameters in
the biquintic trigonometric Bézier surface provide the flexibility in surface modeling either in one or
both directions.

(a) Shape parameters are (1,1,1,1) (b) Shape parameters are (-2,-2,-1,-1)

(c) Shape parameters are (-3,-3,-2,-2) (d) Shape parameters are (-4,-4,-4,-4)

Figure 2. Cont.
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(e) Shape parameters are (1,1,1,-4) (f) Shape parameters are (1,1,-4,1)

Figure 2. Biquintic trigonometric Bézier surface with different shape parameter values.

4. G2 Continuity Conditions for Biquintic Trigonometric Bézier Surfaces

In practical applications, various kinds of complex surfaces are encountered. In designing the
complex surfaces, designers usually have to achieve G1 continuity on adjacent surfaces. However,
in situations with high demand for smoothness, G2 continuity is also required, that is, surfaces need to
have a common tangent plane at any point on their common boundary. Suppose that there are two
biquintic trigonometric Bézier surfaces needed to satisfy G2 smooth continuity:

S1(u, v; α1, β1, α2, β2) =
m1

∑
i=0

n1

∑
j=0

fi,m1(u; α1, β1) f j,n1(v; α2, β2)P1
i,j

S2(u, v; α∗1 , β∗1, α∗2 , β∗2) =
m2

∑
i=0

n2

∑
j=0

fi,m2(u; α∗1 , β∗1) f j,n2(v; α∗2 , β∗2)P2
i,j.

(4)

where −4 ≤ α1, β1, α2, β2, α∗1 , β∗1, α∗2 , β∗2 ≤ 1, P1
i,j (i = 0, 1, ..., m1 = 5; j = 0, 1, ..., n1 = 5) and P2

i,j
(i = 0, 1, ..., m2 = 5; j = 0, 1, ..., n2 = 5) are control points of the surfaces S1(u, v; α1, β1, α2, β2) and
S2(u, v; α∗1 , β∗1, α∗2 , β∗2), respectively. Surfaces are different from curves due to the directivity, so there
exists continuity in three types of directions namely the u-direction, u- and v-directions and v-direction.

4.1. Continuity in the u Direction

In order to achieve G2 continuity between two surfaces of S1(u, v; α1, β1, α2, β2) and
S2(u, v; α∗1 , β∗1, α∗2 , β∗2) in the u-direction, the surfaces are required to achieve G0 and G1 continuity
at a joint point [23,24]. Let S1(u, v; α1, β1, α2, β2) and S2(u, v; α∗1 , β∗1, α∗2 , β∗2) be two surfaces in the
u-direction. The surfaces will achieve G0 when

S1(u, 1; α1, β1, α2, β2) = S2(u, 0; α∗1 , β∗1, α∗2 , β∗2) (5)

which results in
m1

∑
i=0

fi,m1(u; α1, β1)P1
i,n1

=
m2

∑
i=0

fi,m2(u; α∗1 , β∗1)P2
i,0. (6)

The Equation (6) can be simplified by comparing the coefficients, m1 = m2, α1 = α∗1 , β1 = β∗1,
as follows:

P1
i,n1

= P2
i,0. (7)

By definition of the G1 smooth continuity, the two surfaces are required to have a continuous
tangential derivative across the boundary. Therefore, they need to satisfy the following conditions:

∂

∂v
S1(u, 1; α1, β1, α2, β2)×

∂

∂u
S1(u, 1; α1, β1, α2, β2)

= φ(u)
∂

∂v
S2(u, 0; α∗1 , β∗1, α∗2 , β∗2)×

∂

∂u
S2(u, 0; α∗1 , β∗1, α∗2 , β∗2) (8)



Symmetry 2020, 12, 1205 6 of 21

where φ(u) is a scaling vector between the normal vector such that φ(u) > 0. The simplified form of
Equation (8) can be written as:

∂

∂v
S1(u, 1; α1, β1, α2, β2) = φ

∂

∂v
S2(u, 0; α∗1 , β∗1, α∗2 , β∗2) (9)

using end point terminal property derived by [10] of Equation (7)

∂

∂v
S1(u, 1; α1, β1, α2, β2) =

π

2

m1

∑
i=0

fi,m1(u; α1, β1)
(
(n1 − 1) + β2

)
(P1

i,n1
− P1

i,n1−1) (10)

∂

∂v
S2(u, 0; α∗1 , β∗1, α∗2 , β∗2) =

π

2

m2

∑
i=0

fi,m2(u; α∗1 , β∗1)
(
(n2 − 1) + α∗2

)
(P2

i,1 − P2
i,0). (11)

Substituting Equations (10) and (11) into (9), we get

π

2

m1

∑
i=0

fi,m1(u; α1, β1)
(
(n1 − 1) + β2

)
(P1

i,n1
− P1

i,n1−1)

= φ.
π

2

m2

∑
i=0

fi,m2(u; α∗1 , β∗1)
(
(n2 − 1) + α∗2

)
(P2

i,1 − P2
i,0).

(12)

If m1 = m2, α1 = α∗1 , β1 = β∗1, then(
(n1 − 1) + β2

)
(P1

i,n1
− P1

i,n1−1) = φ
(
(n2 − 1) + α∗2

)
(P2

i,1 − P2
i,0) (13)

or
(P1

i,n1
− P1

i,n1−1)(
(n2 − 1) + α∗2

) = φ.
(P2

i,1 − P2
i,0)(

(n1 − 1) + β2
) . (14)

In addition, the two surfaces must have the same normal curvature at all points on their common
boundary under the conditions of smooth G1 continuity. Both surfaces can satisfy G2 when

∂2

∂v2 S1(u, 1; α1, β1, α2, β2) = φ2 ∂2

∂v2 S2(u, 0; α∗1 , β∗1, α∗2 , β∗2) + 2φg1(u)
∂2

∂u∂v
S2(u, 0; α∗1 , β∗1, α∗2 , β∗2)

+ g2
1(u)

∂2

∂u∂v
S2(u, 0; α∗1 , β∗1, α∗2 , β∗2) + c

∂

∂v
S2(u, 0; α∗1 , β∗1, α∗2 , β∗2)

+ g2(u)
∂

∂u
S2(u, 0; α∗1 , β∗1, α∗2 , β∗2)

(15)

where g1(u) and g2(u) are linear function of u and c is an arbitrary constant. To make calculation
simpler in operation applications, usually set g1(u) = g2(u) = c = 0. Equation (15) can be simplified as

∂2

∂v2 S1(u, 1; α1, β1, α2, β2) = φ2 ∂2

∂v2 S2(u, 0; α∗1 , β∗1, α∗2 , β∗2) (16)

by using the end point terminal property derived by [10] of Equation (8).

∂2

∂v2 S1(u, 1; α1, β1, α2, β2) = π2
m1

∑
i=0

fi,m1 (u; α1, β1)

(
(n1 − 2)P1

i,n1−2 − (n1 − 3)P1
i,n1−1

(
(n1 − 2) + β2

)
+P1

i,n1

(
(n1 − 2) + (n1 − 3)β2)

) (17)

∂2

∂v2 S2(u, 0; α∗1 , β∗1, α∗2 , β∗2) = π2
m2

∑
i=0

fi,m2 (u; α∗1 , β∗1)

(
(n2 − 2)P2

i,2 − (n2 − 3)P2
i,1
(
(n2 − 2) + α∗2

)
+(P2

i,0
(
(n2 − 2) + (n2 − 3)α∗2

)) (18)
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Substituting Equations (17) and (18) into (16), we get

π2
m1

∑
i=0

fi,m1(u; α1, β1)

(
(n1 − 2)P1

i,n1−2 − (n1 − 3)P1
i,n1−1

(
(n1 − 2) + β2

)
+P1

i,n1

(
(n1 − 2) + (n1 − 3)β2)

)
= φ2π2

m2

∑
i=0

fi,m2(u; α∗1 , β∗1)

(
(n2 − 2)P2

i,2 − (n2 − 3)P2
i,1
(
(n2 − 2) + α∗2

)
+P2

i,0
(
(n2 − 2) + (n2 − 3)α∗2

))
.

(19)

If m1 = m2, α1 = α∗1 , β1 = β∗1, then

(n1 − 2)P1
i,n1−2 − (n1 − 3)P1

i,n1−1
(
(n1 − 2) + β2

)
+ P1

i,n1

(
(n1 − 2) + (n1 − 3)β2

)
= φ2

(
(n2 − 2)P2

i,2 − (n2 − 3)P2
i,1
(
(n2 − 2) + α∗2

)
+ P2

i,0
(
(n2 − 2) + (n2 − 3)α∗2

))
.

(20)

To sum up Equations (7), (14) and (20), the two surfaces S1(u, v; α1, β1, α2, β2) and
S2(u, v; α∗1 , β∗1, α∗2 , β∗2) achieved G2 continuity in the u-direction.

4.2. Continuity in u and v Direction

Suppose that the surfaces S1(u, v; α1, β1, α2, β2) and S2(u, v; α∗1 , β∗1, α∗2 , β∗2) are needed to satisfy
G2 continuity in the u-direction of S1(u, v; α1, β1, α2, β2) and v-direction of S2(u, v; α∗1 , β∗1, α∗2 , β∗2).
The conditions can achieve a common boundary when a surface S1(u, v; α1, β1, α2, β2) has continuity
in the u-direction and the surface S2(u, v; α∗1 , β∗1, α∗2 , β∗2) has continuity in the v-direction when

S1(u, 1; α1, β1, α2, β2) = S2(0, v; α∗1 , β∗1, α∗2 , β∗2) (21)

or
m1

∑
i=0

fi,m1(u; α1, β1)P1
i,n1

=
m2

∑
i=0

fi,m2(v; α∗2 , β∗2)P2
0,i (22)

implies
m

∑
i=0

fi,m(u; α1, β1)P1
i,n1

=
m

∑
i=0

fi,m(v; α∗2 , β∗2)P2
0,i. (23)

If α1 = α∗2 , β1 = β∗2, the Equation (23) is further simplifies as

P1
i,n1

= P2
0,i. (24)

Furthermore, for having a common tangent plane, we have the following conditions:

∂

∂v
S1(u, 1; α1, β1, α2, β2) = φ

∂

∂v
S2(0, v; α∗1 , β∗1, α∗2 , β∗2). (25)

Since

∂

∂v
S1(u, 1; α1, β1, α2, β2) =

π

2

m1

∑
i=0

fi,m1(u; α1, β1)
(
(n1 − 1) + β2

)
(P1

i,n1
− P1

i,n1−1) (26)

∂

∂u
S2(0, v; α∗1 , β∗1, α∗2 , β∗2) =

π

2

m2

∑
i=0

fi,m2(v; α∗2 , β∗2)
(
(n2 − 1) + α∗1

)
(P2

1,i − P2
0,i). (27)
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Substituting the Equations (26), (27) into (25), we get

π

2

m1

∑
i=0

fi,m1(u; α1, β1)
(
(n1 − 1) + β2

)
(P1

i,n1
− P1

i,n1−1)

= φ
π

2

m2

∑
i=0

fi,m2(v; α∗2 , β∗2)
(
(n2 − 1) + α∗1

)
(P2

1,i − P2
0,i). (28)

If m1 = m2, α1 = α∗2 , β1 = β∗2, then(
(n1 − 1) + β2

)
(P1

i,n1
− P1

i,n1−1) = φ
(
(n2 − 1) + α∗1

)
(P2

1,i − P2
0,i) (29)

Hence, the G1 continuity conditions for both the surfaces in u and v are defined in Equations (24)
and (29). In addition, under G1 smooth continuity conditions both surfaces also have to possess the
same normal curvature at any point on the common boundary. Therefore, the surfaces are also required
to satisfy

∂2

∂v2 S1(u, 1; α1, β1, α2, β2) = φ2 ∂2

∂u2 S2(0, v; α∗1 , β∗1, α∗2 , β∗2). (30)

Implying the boundary conditions, gives

π2
m1

∑
i=0

fi,m1(u; α1, β1)

(
(n1 − 2)P1

i,n1−2 − (n1 − 3)P1
i,n1−1

(
(n1 − 2) + β2

)
+P1

i,n1

(
(n1 − 2) + (n1 − 3)β2)

)
= φ2π2

m2

∑
i=0

fi,m2(v; α∗2 , β∗2)

(
(n2 − 2)P2

2,i − (n2 − 3)P2
1,i
(
(n2 − 2) + α∗1

)
+P2

0,i
(
(n2 − 2) + (n2 − 3)α∗1

))
.

(31)

If m1 = m2, α1 = α∗2 , β1 = β∗2, then

(n1 − 2)P1
i,n1−2 − (n1 − 3)P1

i,n1−1
(
(n1 − 2) + β2

)
+P1

i,n1

(
(n1 − 2) + (n1 − 3)β2) = φ2(n2 − 2)P2

2,i − (n2 − 3)P2
1,i
(
(n2 − 2) + α∗1

)
+P2

0,i
(
(n2 − 2) + (n2 − 3)α∗1

) (32)

In conclusion, if the both surfaces S1(u, v; α1, β1, α2, β2) and S2(u, v; α∗1 , β∗1, α∗2 , β∗2) satisfy (24), (29)
and (32), then both surfaces are connected by G2 continuity in the u- and v-directions.

4.3. Continuity in the v Direction

The G2 continuity in the v-direction of two biquintic trigonometric Bézier surfaces is proved in a
similar fashion as the continuity in the u-direction, which is discussed in Section 4.1.

5. Examples of G2 Smooth Continuity between Two Biquintic Trigonometric Bézier Surfaces

In order to achieve the G2 smooth continuity between two biquintic trigonometric Bézier surfaces,
let control points P1

i,j with order m1, n1 = 5, and shape parameter values α1, β1, α2, β2 for the first
S1(u, v; α1, β1, α2, β2) surface. Then by using the conditions m1 = m2, α1 = α∗1 , β1 = β∗1, we will
yield P1

i,n1
= P1

i,n1
according to (7). The two surfaces achieved the G0 continuity by possessing the

common boundary.
Next, give the value to the normal vector φ(u) > 0, the shape parameter α∗2 , β2 and the order n2 to

the surface S2(u, v; α∗1 , β∗1, α∗2 , β∗2), the control points P2
i,1, (i, 0, 1, ..., m1) can be found using Equation (14)
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to achieve G1 continuity. Lastly, the control points P2
i,2 can be obtained by Equation (20). The remaining

control points of the second surface S2(u, v; α∗1 , β∗1, α∗2 , β∗2) can be chosen freely and the G2 continuity
between the two biquintic trigonometric Bézier surfaces can be achieved in u-direction.

Figure 3 shows the G2 smooth continuity between two biquintic trigonometric Bézier surfaces
S1(u, v; α1, β1, α2, β2) and S2(u, v; α∗1 , β∗1, α∗2 , β∗2) in green and red color, respectively. Figure 3a,b displays
surface graphs with the scaling factor φ equal to 1 and 2. Conveniently, the influence of φ on the
shape of the surfaces is analyzed. All the shape parameters of the both surfaces are the same and are
equal to one. If the shape parameters are fixed and the value of scaling factor φ increases or decreases,
the control points P2

1,i (or P2
2,i) move away (or closer to) the control points P2

0,i (or P2
1,i). On the other

hand, when scaling vector φ is fixed and the values of shape parameters are increased or decreased,
the surfaces move closer or away from the control net as shown in Figure 3c–f.

(a) φ = 1, α1, α2 = 1, β1, β2 = 1 (b) φ = 2, α1, α2 = 1, β1, β2 = 1

(c) φ = 1, α1, α2 = −1, β1, β2 = 0 (d) φ = 1, α1, α2 = −3, β1, β2 = −2

(e) φ = 1, α1, α2 = −4, β1, β2 = 0 (f) φ = 1, α1, α2 = −4, β1, β2 = −4

Figure 3. G2 continuity condition in the u-direction between two adjacent biquintic trigonometric
Bézier surfaces at different scale factor and shape parameter values.
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6. Constructing Swept Surfaces with Shape Parameters

This section will discuss creating a surface by sweeping a section curve along the trajectory curve.
Suppose that F1(u) is a section curve with shape parameters α1, β1 and F2(v) is a trajectory curve with
shape parameters α2, β2 in the three dimensional space. Then, the equations of these two curves are
given by 

F1(u; α1, β1) =
m

∑
i=0

pi,m fi,m(u), u ∈ [0, 1],

F2(v; α2, β2) =
n

∑
j=0

qj,n f j,n(v), v ∈ [0, 1].
(33)

In general, the swept surface can be obtained by sweeping a section curve F1(u) along the
trajectory curve F2(v), shown in Figure 4. The general form of swept surface is given by [25]

Sswept(u, v; α1, β1, α2, β2) = F2(v) + M(v)F1(u) (34)

where M(v) is a 3× 3 matrix as a function of v. In this paper, we are using the type of swept surface
with M(v) is an identity matrix for each v and F1(u) is just translated by F2(v). Therefore, the general
form will then be written as

Sswept(u, v; α1, β1, α2, β2) = F2(v) + F1(u). (35)

The swept surface constructed with control points pi,j = pi,m + qj,n(i = 0, 1, ..., m = 5; j =

0, 1, ..., n = 5) from Equation (35) with shape parameter is

Sswept(u, v; α1, β1, α2, β2) = ∑m
i=0 ∑n

j=0 fi,m(u) f j,n(v)pi,j f or(u, v) ∈ [0, 1]× [0, 1]. (36)

Figure 4. Defining a swept surface using a section curve and trajectory curve.

Figure 5 shows the translation of swept surfaces at different values of shape parameters.
In Figure 5, the section curve F1(u) and the trajectory curve F2(v) are obtained by
constructing quintic trigonometric Bézier curves. The shape parameters of these two
curves are α1, β1 and α2, β2, respectively. The control points of the section curve are
(1, 0, 0), (1, 1, 0), (−1, 1, 0), (−1,−1, 0), (1,−1, 0), (1, 0, 0) and the control points of trajectory curve
are (2, 0, 0), (4, 0, 1), (2, 0, 1.5), (2, 0, 2), (0, 0, 2.5), (2, 0, 3.5).
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(a) Shape parameters are (1,1,1,1) (b) Shape parameters are (1,1,-1,-1)

(c) Shape parameters are (1,1,-4,-4) (d) Shape parameters are (0,0,1,1)

(e) Shape parameters are (-2,-2,1,1) (f) Shape parameters are (-4,-4,1,1)

(g) Shape parameters are (1,-2,0,-1) (h) Shape parameters are (-2,1,-1,0)

Figure 5. Cont.
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(i) Shape parameters are (-4,1,1,0) (j) Shape parameters are (1,-4,1,-4)

(k) Shape parameters are (-4,1,-4,1) (l) Shape parameters are (-4,-4,-4,-4)

Figure 5. Translational swept surface with different shape parameter values.

Figure 5a–c shows the translation of swept surfaces when the section curve is fixed but the shape
of trajectory curve is modified by selecting different shape parameter values. Figure 5d–f shows the
translation of swept surfaces when the trajectory curve is fixed and the section curve is modified by
selecting different shape parameter values. Figure 5g–l shows the translation of swept surfaces by
modifying both the section curves and the trajectory curve with random choice of shape parameter.
One can adjust the swept surface locally and globally by fixing one curve and altering the shape
parameter values of other curves or by altering both curves.

7. Constructing Swung Surfaces with Shape Parameters

This section mainly focuses on the representation of swung surfaces by a tensor product of
trigonometric Bézier curve by introducing shape parameter into swung surfaces. A swung surface is
an extension to the surface of revolution in which profile curve performs a complete rotation about the
axis governed by a trajectory curve. Let

F1(u; α1, β1) =
m

∑
i=0

pi,m fi,m(u), u ∈ [0, 1]

F2(v; α2, β2) =
n

∑
j=0

qj,n f j,n(v), v ∈ [0, 1]
(37)

be a profile curve and trajectory curve in the x, z and x, y planes, respectively where pi,m = (px
i,m, 0, pz

i,m)

(i = 0, 1, ..., m = 5) and qj,n = (qx
j,n, qy

j,n, 0) (j = 0, 1, ..., n = 5) are their control points. By denoting the

nonzero coordinate functions f x
m(u), f z

m(u) and f x
n (v), f y

n (v) of the curves F1(u) and F2(v), respectively,
we define the swung surface by [25]

Sswung(u, v; α1, β1, α2, β2) = (λ f x
m(u) f x

n (v), λ f x
m(u) f y

n (v), f z
m(u)), (38)

where λ(λ > 0) is an arbitrary scaling factor.
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Remark 3. Geometrically, the swung surface Sswung(u, v; α1, β1, α2, β2) in Equation (38) is obtained by swinging
the profile curve F1(u) about the z-axis and at the same time scaling it in the x- and y-direction according to F2(v),
shown in Figure 6. Furthermore, the Equation (38) can be transformed into a Bézier surface as

Sswung(u, v; α1, β1, α2, β2) = ∑m
i=0 ∑n

j=0 fi,m(u) f j,n(v)pi,j, f or(u, v) ∈ [0, 1]× [0, 1] (39)

where pi,j = (λ f x
m(u) f x

n (v), λ f x
m(u) f y

n (v), f z
m(u)) for i = (0, 1, ..., m = 5) and j = (0, 1, ..., n = 5) are the

control points.

Figure 7 shows the effect of scaling factor λ on the surface in the x- and y-directions, while Figure 8
shows the effect of shape parameters on profile curve and trajectory curve in a swung surface with a
fixed scale factor λ = 2. In Figure 8, the profile curve F1(u) and the trajectory curve F2(v) are obtained
by using two quintic trigonometric Bézier curves. The shape parameters of these two curves are α1, β1

and α2, β2, respectively. The control points of the section curve are (0,−0.5, 0), (0.6,−0.5, 0), (0.6, 0.5, 0),
(0.2, 0.5, 0), (−0.2, 0.5, 0), (−0.6, 0.5, 0), and the control points of trajectory curve are (1, 0, 0.5), (3, 0, 1),
(3, 0, 2.5), (1.5, 0, 3), (1.5, 0, 4.5), (4, 0, 5.5).

Figure 6. Defining a swung surface using profile and trajectory curves.

(a) The scaling factor λ=0.5 (b) The scaling factor λ=1

Figure 7. Cont.
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(c) The scaling factor λ=1.5 (d) The scaling factor λ=2

Figure 7. Swung surface with different scaling factors.

(a) Shape parameters are (1,1,1,1) (b) Shape parameters are (-4,-4,1,1)

(c) Shape parameters are (1,1,0,0) (d) Shape parameters are (1,1,-4,-4)

(e) Shape parameters are (1,-2,0,-1) (f) Shape parameters are (-3,1,-2,0)

Figure 8. Cont.
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(g) Shape parameters are (1,-4,1,-4) (h) Shape parameters are (-4,1,-4,1)

(i) Shape parameters are (-4,1,1,-4) (j) Shape parameters are (1,-4,-4,1)

(k) Shape parameters are (-2,-2,-2,-2) (l) Shape parameters are (-4,-4,-4,-4)

Figure 8. Swung surface with different shape parameter values.

8. Effect of Shape Parameters on Surface Using Mean Curvature Nephogram

In this section we will discuss the effects of shape parameters on the surface. The changes of the
surface will be evaluating using mean curvature nephogram. In many design processes, the surface
detail could be modified carefully in depth via altering the shape parameters. The change in surface
shape can be described by the changes of mean curvature. Therefore, in this research the mean
curvature source is used to show the shape differences of a surface.

In order to apply this idea to display the effect of shape parameters, two types of surfaces will
be applied. Non-fixed boundary curves such as tensor product surfaces and fixed boundary curves
such as Coons surfaces patches will be use to investigate the shape difference of the surfaces. The first
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type of surfaces are discussed in the example below. In advanced process of modelling design such as
automobile body parts, where the boundary curves should be fixed, the shape adjustment of surfaces
using shape parameters plays a great significance. Therefore, the modelling process of surfaces with
fixed boundary curves can be done using Coons patch. The detailed discussion of the second type of
surfaces are given in Section 8.1.

Figure 9 shows the effect of shape parameter on biquintic trigonometric Bézier surfaces. When the
four boundary curves are not fixed (interpolated with the quintic trigonometric Bézier curves),
the tensor product is taken between quintic trigonometric Bézier curves with four shape parameter,
then, the resulting surfaces are shown in Figure 9. In Figure 9a,b, the shape parameters αu and βu

are valued 1, αv and βv modifying in the range [−4, 1], any change in αv and βv will only effect one
direction of the surface shown with mean curvature as illustrated in Figure 9. While in Figure 9c,d
the shape parameters αu, βu and αv, βv arbitrarily alter their values in the range [−4, 1], and the shape
is modified in both direction. We can see that the effect of shape parameter is only visible in the
boundaries of the surface while the effect is about negligible at the inside part of the surface, which is
shown with mean curvature nephogram.

(a) The shape parameter are (1,1,1,1) (b) The shape parameter are (1,1,-4,-4)

(c) The shape parameter are (-2,1,1,-4) (d) The shape parameter are (-2,1,-4,1)

Figure 9. Effect of shape parameters αu, βu and αv, βv in surface designing shown with mean curvature
without fixing boundary curves.
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8.1. Coons Patch

Coons patch are biparameteric surfaces defined by 4 parametric boundary curves that allow to fill
inside of the patch using boundary curves as follows:

Pk(u) = ∑m
i=0 Bi,5(u)pk,i k = 0, 1 u ∈ [0, 1]

Pl(v) = ∑n
j=0 Bi,5(v)pl,i l = 0, 1 v ∈ [0, 1]

(40)

where Bi,5(t) (i = 0, 1, 2, 3, 4, 5) is the traditional quintic Bézier basis functions:

B0,5(t) = (1− t)5,

B1,5(t) = 5t(1− t)4,

B2,5(t) = 10t2(1− t)3,

B3,5(t) = 10t3(1− t)2,

B4,5(t) = 5t4(1− t),

B5,5(t) = t5.

(41)

The curves in Equation (40) have to satisfy certain compatibility, particularly at the their vertex:
P0(u = 0) = P0(v = 0), P0(u = 1) = P1(v = 0), P1(u = 0) = P0(v = 1) and P1(u = 1) = P1(v = 1).
The vertex position within the patch could be calculated with Equation (42):

Q(u, v) = P0(u)g0(v) + P1(u)g1(v) + P0(v)h0(u) + P1(v)h1(u)−Q(0, 0)h0(u)g0(v)

−Q(0, 1)h0(u)g1(v)−Q(1, 0)h1(u)g0(v)−Q(1, 1)h1(u)g1(v).
(42)

g0, g1 and h0, h1 are the blending function with g0(t) = h0(t) = t and g1(t) = h1(t) = 1− t. In matrix
form the Equation (42) can be written as

Q(u, v) = −
[
−1 h0(u) h1(u)

]  0 P0(u) P1(u)
P0(v) Q(0, 0) Q(0, 1)
P1(v) Q(1, 0) Q(1, 1)


 −1

g0(v)
g1(v)

 . (43)

The basis function of quintic trigonometric Bézier curves are given in Equation (2), where α, β ∈
[−4, 1]. By using control points pi,j and the basis functions of quintic trigonometric Bézier, a special
surface is established. R1(u, v) is a surface with quintic trigonometric basis functions in the v-direction
and traditional Bézier basis functions in the u-direction. When αv and βv are valued as 1, the boundary
curves u = 0 and u = 1 of R1(u, v) interpolate the traditional Bézier curve (the blue curves) as shown
in Figure 10a. The surface R1(u, v) is defined as:

R1(u, v) =
5

∑
i=0

5

∑
j=0

Bi,5(u) f j,5(v)pi,j. (44)

Similarly, another special surface R2(u, v) in Figure 10b is a surface of quintic trignometeric basis
functions in its u-direction and traditional Bézier basis functions in its v-direction is defined as:

R2(u, v) =
5

∑
i=0

5

∑
j=0

fi,5(u)Bj,5(v)pi,j. (45)
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Moreover, four new quintic trigonometric Bézier curves P
′
k(u) and P

′
l (v) are generated at basis

function fi(t) given in Equation (2). However, a new bilinearly blended Coons patch T in Figure 10c is
constructed by the four new quintic trigonometric Bézier curves P

′
k(u) and P

′
l (v) as:

T(u, v) = −
[
−1 h0(u) h1(u)

]  0 P
′
0(u) P

′
1(u)

P
′
0(v) p00 p05

P
′
1(v) p50 p55


 −1

g0(v)
g1(v)

 (46)

The final surface S(u, v) in Figure 10d has the characteristics of both bilinearly blended Coons
surface and quintic surface is defined as a biquintic-Coons surface based on quintic trigonometric
Bézier basis function and is constructed as:

S(u, v) = R1(u, v) + R2(u, v)− T(u, v) (47)

Figure 11 shows the effect of shape parameter on shape adjusting surfaces with mean curvature
when the four boundary curves are fixed (interpolated with traditional Bézier curves), while the inside
of surface shape is changed according to the changes in shape parameter values. Figure 11a–d, the
value of shape parameters αv and βv are equal to one, but value of αu is changing in the range of [−4, 1]
and βu has a value of −1. Similarly, we can get more results by altering the values of βu and also by
changing parameter values αv and βv by fixing the parameter values in the u-direction.

(a) (b)

(c) (d)

Figure 10. (a) The surface R1(u, v) defined in Equation (44) with traditional Bézier basis function in the
u-direction (blue color) and quintic trigonometric Bézier basis function in the v-direction (red color).
(b) The surface R2(u, v) defined in Equation (45) with traditional Bézier basis function in the v-direction
and quintic trigonometric Bézier basis function in the u-direction. (c) The Coon surface T(u, v) defined
in Equation (46), constructed by four quintic trigonometric Bézier curves. (d) The final biquintic-Coons
surface S(u, v).
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(a) The shape parameter are (1,-1,1,1) (b) The shape parameter are (0,-1,1,1)

(c) The shape parameter are (-3,-1,1,1) (d) The shape parameter are (-4,-1,1,1)

Figure 11. Effect of shape parameters αu, βu in surface design shown with mean curvature with fixed
boundary curves.

9. Conclusions

In this paper, we present the shape adjustable surfaces using quintic trigonometric Bézier basis
function and study the effect of adjustable shape parameters on the shape of surfaces. The work
contains the following two aspects. Firstly, we discuss the theory of constructing the generalized
Bézier surface, swept surface and swung surface using a quintic trigonometric Bézier curve with four
shape parameters. Then G2 continuity conditions for the biquintic trigonometric Bézier surfaces are
derived and the impact rules of the shape parameters on the splicing surface are assessed. Furthermore,
examples are given to visually analyze the effect of shape parameters on different types of surfaces.
Secondly, we adopted the mean curvature nephogram to show the effect of the shape parameter at the
inside of the surface. In addition to this, we construct the Coons surfaces that have the characteristic of
both the traditional Bézier curve and quintic trigonometric Bézier curve and show the effect of altering
the shape parameter values with fixed boundary curves. This type of surface has a great significance
in advance modeling such as in the automobile industry.

Cubic trigonometric polynomial and NURBS usually can construct surfaces with some restrictions
and limitations due to the control point need to be alter to get desired shape. In this paper, quintic
trigonometric Bézier curve with shape parameters demonstrated smooth surface by possessing the
similar properties as cubic trigonometric polynomial and NURBS. The position of control points can
be fixed by using this method and at the same time the shape of the surface can be varied.

However, future work is suggested to be done involving the construction of more complex
surfaces by inheriting all the geometric properties of the traditional Bézier curve with smooth joining
of the quintic trigonometric Bézier curves.
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