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Abstract: This paper is concerned with the nonexistence of global solutions to fractional in time nonlinear
Schrödinger equations of the form iα∂α

t ω(t, z) + a1(t)∆ω(t, z) + iαa2(t)ω(t, z) = ξ|ω(t, z)|p, (t, z) ∈
(0, ∞) × RN, where N ≥ 1, ξ ∈ C\{0} and p > 1, under suitable initial data. To establish our
nonexistence theorem, we adopt the Pohozaev nonlinear capacity method, and consider the combined
effects of absorption and dispersion terms. Further, we discuss in details some special cases of
coefficient functions a1, a2 ∈ L1

loc([0, ∞),R), and provide two illustrative examples.
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1. Introduction and Preliminaries

In this paper, we study the following initial value problem for the fractional in time nonlinear
Schrödinger equation

iα∂α
t ω(t, z) + a1(t)∆ω(t, z) + iαa2(t)ω(t, z) = ξ|ω(t, z)|p, (t, z) ∈ (0, ∞)×RN , (1)

where N ≥ 1, ξ ∈ C\{0} and p > 1, under the assumption that

ω(0, z) = v(z), z ∈ RN , N ≥ 1. (2)

In the left-hand side of (1), iα = ei απ
2 , and ∂α

t means the Caputo fractional derivative in time of order
α ∈ (0, 1). Later on, we need some regularities of the coefficient functions: a1, a2 ∈ L1

loc([0, ∞),R),
a1 6≡ 0 (that is, not identically zero), and v ∈ L1

loc(R
N ,C).

Schrödinger type equations arise naturally in the analysis of dispersive equations on large
domains (for example, we refer to oceanic water waves). In addition, they are useful in the
study of wave turbolence (as an application of statistical physics), see the comprehensive paper
of Buckmaster–Germain–Hani–Shatah [1]. A significant topic for nonlinear partial Schrödinger
equations is to establish sufficient conditions for the existence of solutions providing a localized
behavior. Following, this feature, Rego–Monteiro [2] proved the existence of a traveling-wave solution,
with solitary-wave behavior. Furthermore, also relevant to this study is the focus of qualitative research
in symmetric domains to provide the symmetries of solutions (mainly, working with kinematical and
dynamical algebras of Schrödinger type equations). A combination of suitable iteration methods,
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maximum principle and method of moving planes, is useful to detect symmetries of positive solutions
and nonexistence results (see, for example, [3]). We also mention the recent works of Peng–Zhao [4]
(global existence and blow-up of solutions) and Hoshino [5] (asymptotic behavior of solutions).

In [6], the authors considered the nonlinear Schrödinger equation in the form

i∂tω(t, z) + a1(t)∆ω(t, z) + ia2(t)ω(t, z) = ξ|ω(t, z)|p, (t, z) ∈ (0, ∞)×RN ,

(that is, set α = 1 in (1)), in the context of optical soliton systems, where a1(t) plays the role of
dispersion parameter, and a2(t) means the absorption coefficient.

In absence of absorption (that is, a2 ≡ 0), and setting the dispersion term equal to one (that is,
a1 ≡ 1), Ikeda-Wakasugi [7] studied the mathematical model

i∂tω(t, z) + ∆ω(t, z) = ξ|ω(t, z)|p, (t, z) ∈ (0, ∞)×RN . (3)

In detail, the authors considered the global behavior of solutions to problem (3), then they established
a finite-time blow-up result of an L2-solution whenever p ∈ (1, 1 + 2

N ). The same problem (3) was
discussed by Ikeda–Inui [8]. This time, they established a small data blow-up result of H1-solution,
whenever p ∈ (1, 1 + 4

N ).
Furthermore, a revival of interest to the study of Schrödinger equation is linked to the

theory of fractional calculus (see, for example, the books of Kilbas–Srivastava–Trujillo [9] and
Samko–Kilbas–Marichev [10]).

Let h ∈ C([0, T]) be a real-valued function and, as usual, denote by Γ(·) the Gamma function.
Here, we recall that the Riemann–Liouville fractional integrals of order σ > 0, are given as

(Iσ
0 h)(t) =

1
Γ(σ)

∫ t

0
(t− u)σ−1h(u) du, 0 < t ≤ T

and

(Iσ
Th)(t) =

1
Γ(σ)

∫ T

t
(u− t)σ−1h(u) du, 0 ≤ t < T.

We note that the limit of (Iσ
0 h)(t), as t approaches zero from the right, is zero. So, we can put

(Iσ
0 h)(0) = 0 to extend by continuity Iσ

0 h to [0, T]. The similar extended continuity holds for Iσ
Th,

by taking (Iσ
Th)(T) = 0.

In addition, the Caputo derivative of order σ ∈ (0, 1) of h ∈ C1([0, T]) is obtained as

(∂σ
t h)(t) = (I1−σ

0 h′)(t), 0 < t < T.

In such a framework setting, we mention that the fractional version of (3), that is,

iα∂α
t ω + ∆ω = ξ|ω|p, t > 0, z ∈ RN ,

received the attention of Zhang–Sun–Li [11], whose studies lead to nonexistence (blow-up) results of
global solutions with suitable initial values and p ∈ (1, 1 + 2

N ).
For further interesting contributions to the analysis of the blow-up behavior of solutions to

fractional nonlinear Schrödinger problems, we mention the papers of Fino–Dannawi–Kirane [12]
(semilinear equation with fractional Laplacian), Ionescu–Pusateri [13] (equation in dimension one
with cubic nonlinearities) and Kirane–Nabti [14] (nonlocal in time equation). Finally, we recall the
paper of Li–Ding–Xu [15] where a cubic non-polynomial spline method is implemented to solve the
time-fractional nonlinear Schrödinger equation. Furthermore, the stability of the method is analyzed
by Fourier analysis. Moreover, Shi–Ma–Ding [16] studied a fourth-order quasi-compact conservative
difference scheme and provided precise informations on its stability. Resuming, now-a-day nonlinear
Schödinger equations play a crucial role in modelling and controlling the behavior of optical soliton
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systems. The physical significance of considering the fractional in time version of such an equation,
is mainly related to the description of the evolution of the above system in terms of Lévy motion,
instead of the Brownian motion (see, for example, [17]).

Mathematically, we are concerned with the solvability of problem (1) and (2), depending on
the behaviors of a1 and a2 at infinity. The approach is based on the nonlinear capacity method
of Pohozaev [18], whose main skill is the ability to use specific test and cut-off functions related
to the particular form of the nonlinear operator in the differential equation driving the problem.
Following [18], and particularizing the method for Equation (1), we construct a nonexistence theorem
and discuss some consequences, over the following definition.

Definition 1. Let QT = (0, T)×RN . Then, ω ∈ Lp
loc((0, ∞)×RN ,C) satisfying the integral equation

− iα
∫
RN

v(z)I1−α
T ϕ(0, z) dz− iα

∫
QT

ω(I1−α
T ϕ)t dz dt

+
∫

QT

a1(t)ω∆ϕ dz dt + iα
∫

QT

a2(t)ωϕ dz dt

= ξ
∫

QT

|ω|p ϕ dz dt,

(4)

for all T > 0 and ϕ ∈ C2(QT ,R) with suppz ϕ ⊂⊂ RN , is a global weak solution to problems (1)–(2).

In Definition 1, we made use of the following integration by parts rule:

∫ T

0
(Iσ

0 h1)(t)h2(t) dt =
∫ T

0
h1(t)(Iσ

Th2)(t) dt, h1, h2 ∈ C([0, T]) and σ > 0.

Remark 1. Given two complex numbers v, ξ, we denote by v1, ξ1 (respectively, v2, ξ2) the real part
(respectively, the imaginary part) of v, ξ. If ω ∈ Lp

loc((0, ∞)×RN ,C) is a global weak solution to (1)–(2),
then we have the following facts:
(i) (4) implies that∫

RN
(−rαv1 + sαv2) I1−α

T ϕ(0, z) dz +
∫

QT
(−rαω1 + sαω2) (I1−α

T ϕ)t dz dt

+
∫

QT

a1(t)ω1∆ϕ dz dt +
∫

QT
(rαω1 − sαω2) a2(t)ϕ dz dt

= ξ1

∫
QT

|ω|p ϕ dz dt,

(5)

for all T > 0 and ϕ ∈ C2(QT ,R) with suppz ϕ ⊂⊂ RN , where

rα = cos
(απ

2

)
and sα = sin

(απ

2

)
.

(ii) ν = −iω ∈ Lp
loc((0, ∞)×RN ,C) is a global weak solution to

iα∂α
t ν + a1(t)∆ν + iαa2(t)ν = ξ̃|ν|p, t > 0, z ∈ RN , (6)

under the assumption that
ν(0, z) = ṽ(z), z ∈ RN , (7)

where ξ̃ = −iξ and ṽ(z) = −iv(z).
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2. Non-Existence Theorem and Implications

Let p ∈ (1, 1 + 2
N ), ξ ∈ C\{0} and v ∈ L1(RN ,C). For the reader’s convenience, we collect the

hypotheses on the data of problem (1):

(P1) lim inf
T→∞

Tα( N+2
2 )

(
T
−αp
p−1

∫ 1

0
|a1(Tu)|

p
p−1 du +

∫ 1

0
|a2(Tu)|

p
p−1 du

)
= 0;

(P2)a ξ1

∫
RN

(rαv1 − sαv2) dz > 0;

(P2)b ξ2

∫
RN

(rαv2 + sαv1) dz > 0.

Using the above hypotheses we establish the following nonexistence result for problems (1)–(2).

Theorem 1. If (P1) and (P2)a (or (P2)b) hold, then problems (1) and (2) admits no global weak solution.

This theorem is convenient in many cases of practical interest. Consequently, we discuss in details
some special classes of coefficient functions in (1), and provide two illustrative examples.

We assume a1 ∈ L∞([0, ∞),R), to deduce that

Tα( N+2
2 )T

−αp
p−1

∫ 1

0
|a1(Tu)|

p
p−1 du ≤ ‖a1‖

p
p−1
∞ Tα

(
N+2

2 −
p

p−1

)
,

⇒ lim
T→∞

Tα( N+2
2 )T

−αp
p−1

∫ 1

0
|a1(Tu)|

p
p−1 du = 0 (recall p ∈ (1, 1 + 2

N )).

Consequently, we may modify hypothesis (P1) to the form

(P1)
′ lim inf

T→∞
Tα( N+2

2 )
∫ 1

0
|a2(Tu)|

p
p−1 du = 0,

and so we have the result:

Corollary 1. If (P1)
′ and (P2)a (or (P2)b) hold, then problems (1) and (2), with a1 ∈ L∞([0, ∞),R), admits

no global weak solution.

Remark 2. We point out that the constant choices a1 ≡ 1 and a2 ≡ 0, lead to interpret Corollary 1 as the
nonexistence result of Zhang–Sun–Li ([11], Theorem 2.2).

Fixing a1 ∈ L∞([0, ∞),R), we set

a2(t) = (1 + t)−q, t > 0, q > 0, 0 < α <
2

N + 2
. (8)

So, we focus particular attention on the following cases:
Case 1: q satisfies the inequality

q ≥ p− 1
p

.

The choices in (8) lead us to obtain that∫ 1

0
|a2(Tu)|

p
p−1 du =

∫ 1

0
(1 + Tu)

−qp
p−1 du

=

T−1 ln(1 + T) if q = p−1
p ,

Cq,pT−1
[
1− (1 + T)1− qp

p−1
]

if q > p−1
p ,
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for some Cq,p > 0 (that is, a constant depending on q and p). This means that

Tα( N+2
2 )

∫ 1

0
|a2(Tu)|

p
p−1 du =

O
(

Tα( N+2
2 )−1 ln(1 + T)

)
if q = p−1

p ,

O
(

Tα( N+2
2 )−1

)
if q > p−1

p ,

as T goes to infinity, which gives us hypothesis (P1)
′ (by the choice of α in (8)).

Case 2: q is restricted to positive values satisfying the inequalities

α(N + 2)(p− 1)
2p

< q <
p− 1

p
. (9)

Since by (8) we work with α ∈ (0, 2
N+2 ), then we have

{q : (9) holds true} 6= ∅,

⇒
∫ 1

0
|a2(Tu)|

p
p−1 du = Cq,pT

−qp
p−1
[
(1 + T−1)

1− qp
p−1 − T

qp
p−1−1

]
,

⇒ Tα( N+2
2 )

∫ 1

0
|a2(Tu)|

p
p−1 du = O

(
T
−qp
p−1+α( N+2

2 )
)

, as T goes to infinity,

which gives us again hypothesis (P1)
′.

In both the cases, by Corollary 1 we can conclude that there is no global weak solution to problems
(1) and (2).

Summarizing the above facts, we have the following result.

Corollary 2. If (P2)a (or (P2)b), (8), and q > α(N+2)(p−1)
2p hold, then problems (1) and (2), with a1 ∈

L∞([0, ∞),R), admits no global weak solution.

Relaxing the hypothesis on a1 (that is, considering again a1 ∈ L1
loc([0, ∞),R), a1 6≡ 0), we set

a2 ≡ 0 in (1). This means that we reduce hypothesis (P1) to the following

(P1)
′′ lim inf

T→∞
Tα
(

N+2
2 −

p
p−1

) ∫ 1

0
|a1(Tu)|

p
p−1 du = 0.

So, Theorem 1 is restated in the following form.

Corollary 3. If (P1)
′′ and (P2)a (or (P2)b) hold, then problems (1) and (2), with a2 ≡ 0, admits no global

weak solution.

To illustrate the above corollary, we choice the coefficient function

a1(t) = (1 + t)r, t > 0, for some r > 0. (10)

We note that a1 6∈ L∞([0, ∞),R) and

∫ 1

0
|a1(Tu)|

p
p−1 du = Cr,pT

rp
p−1
[
(1 + T−1)

rp
p−1+1 − T−

rp
p−1−1

]
(for some Cr,p > 0),

⇒ Tα
(

N+2
2 −

p
p−1

) ∫ 1

0
|a1(Tu)|

p
p−1 du = O

(
Tα
(

N+2
2 −

p
p−1

)
+

rp
p−1

)
,

as T goes to infinity,
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which gives us easily hypothesis (P1)
′′ by the choice

0 < r < α and 1 < p < 1 +
2(α− r)
αN + 2r

. (11)

In such a situation, Corollary 3 is restated in the following way:

Corollary 4. If (P1)
′′, (P2)a (or (P2)b), (10) and (11) hold, then problems (1) and (2), with a2 ≡ 0, admits no

global weak solution.

The last situation to consider is that of

a1(t) = (1 + t)r and a2(t) = (1 + t)−q, t > 0, for some r, q > 0. (12)

From the above calculations, we know that{
r < α and 1 < p < 1 + 2(α−r)

αN+2r ⇒ (P1)
′′ holds true,

0 < α < 2
N+2 and q > α(N+2)(p−1)

2p ⇒ (P1)
′ holds true.

This set of parameters leads us to introduce the hypothesis:

(P1)
′′′ 0 < r < α < 2

N+2 , q > α(N+2)(p−1)
2p , 1 < p < 1 + 2(α−r)

αN+2r .

Indeed, by Theorem 1 we deduce the next result.

Corollary 5. If (12), (P1)
′′′, and (P2)a (or (P2)b) hold, then problems (1) and (2) admits no global

weak solution.

Let us provide two examples to illustrate the above mentioned results.

Example 1. Consider the fractional in time nonlinear Schrödinger equation

i
1
3 ∂

1
3
t ω(t, z) + (1 + t2)−1ωzz(t, z) + i

1
3 (1 + t)

−1
2 ω(t, z) = |ω(t, z)|2, (13)

(t, z) ∈ (0, ∞)×R, under the initial condition

ω(0, z) = e−z2
, z ∈ R, (14)

where ωzz =
∂2ω
∂z2 . Problems (13) and (14) is a special case of problems (1) and (2) with N = 1, p = 2, α = 1

3 ,

a1(t) = (1 + t2)−1, a2(t) = (1 + t)
−1
2 , ξ = 1, and v(z) = e−z2

. Notice that

ξ1

∫
R
(rαv1 − sαv2) dz =

√
3

2

∫
R

e−z2
dz =

√
3π

2
> 0,

which shows that condition (P2)a is satisfied. Moreover, since

0 < α =
1
3
<

2
N + 2

=
2
3

,

then (8) is satisfied with q = 1
2 . On the other hand, we have a1 ∈ L∞([0, ∞),R) and

α(N + 2)(p− 1)
2p

=
1
4
<

1
2
= q.

Therefore, by Corollary 2, we deduce that problems (13) and (14) admits no global weak solution.
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Example 2. Consider the fractional in time nonlinear Schrödinger equation

i
1
4 ∂

1
4
t ω(t, z) + (1 + t)

1
8 ωzz(t, z) + i

1
4 (1 + t)

−1
19 ω(t, z) = i|ω(t, z)|

19
18 , (15)

(t, z) ∈ (0, ∞)×R2, under the initial condition

ω(0, z) = ie−|z|
2
, z ∈ R2. (16)

Problems (15) and (16) is a special case of problems (1) and (2) with N = 2, p = 19
18 , α = 1

4 , a1(t) = (1 + t)
1
8 ,

a2(t) = (1 + t)
−1
19 , ξ = i, and v(z) = ie−|z|

2
. Notice that

ξ2

∫
R2

(rαv2 + sαv1) dz = cos
(π

8

) ∫
R2

e−|z|
2

dz = π cos
(π

8

)
> 0,

which shows that condition (P2)b is satisfied. On the other hand, (12) is satisfied with r = 1
8 and q = 1

19 .
Moreover, we have

0 < r =
1
8
< α =

1
4
<

2
N + 2

=
1
2

,

α(N + 2)(p− 1)
2p

=
1

38
< q =

1
19

and

1 < p =
19
18

< 1 +
2(α− r)
αN + 2r

=
4
3

,

which show that (P1)
′′′ is satisfied. Hence, by Corollary 5, we deduce that problems (15) and (16) admits no

global weak solution.

3. Proof of Theorem 1

In this section we give the complete proof of Theorem 1. To construct the nonexistence result
by contradiction, we assume that ω ∈ Lp

loc((0, ∞)×RN ,C) is a global weak solution to (1) and (2).
Then, we focus on some characteristic truncation and comparison functions required by the Pohozaev
nonlinear capacity method in [18], and distinguish two cases.

Proof. (P1) and (P2)a hold.
Hypothesis (P2)a, gives us ξ1 6= 0. So, involving (5) for all T > 0 and ϕ ∈ C2(QT ,R), ϕ ≥ 0,

suppz ϕ ⊂⊂ RN , we get the equation

∫
QT

|ω|p ϕ dz dt +
1
ξ1

∫
RN

(rαv1 − sαv2) I1−α
T ϕ(0, z) dz

=
1
ξ1

∫
QT

(−rαω1 + sαω2) (I1−α
T ϕ)t dz dt +

1
ξ1

∫
QT

a1(t)ω1∆ϕ dz dt

+
1
ξ1

∫
QT

(rαω1 − sαω2) a2(t)ϕ dz dt,

which yields the following inequality∫
QT

|ω|p ϕ dz dt +
1
ξ1

∫
RN

(rαv1 − sαv2) I1−α
T ϕ(0, z) dz

≤ 2
|ξ1|

∫
QT

|ω||(I1−α
T ϕ)t| dz dt +

1
|ξ1|

∫
QT

|a1(t)||ω||∆ϕ| dz dt

+
2
|ξ1|

∫
QT

|ω||a2(t)|ϕ dz dt.

(17)
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Looking at the right-hand side of (17), together with the ε-Young inequality, choosing ε ∈ (0, 1
3 ) and a

suitable C > 0 changing value from line to line (but not depending on T), we have

2
|ξ1|

∫
QT

|ω||(I1−α
T ϕ)t| dz dt ≤ ε

∫
QT

|ω|p ϕ dz dt + C
∫

QT

ϕ
−1
p−1 |(I1−α

T ϕ)t|
p

p−1 dz dt, (18)

1
|ξ1|

∫
QT

|a1(t)||ω||∆ϕ| dz dt ≤ ε
∫

QT

|ω|p ϕ dz dt + C
∫

QT

|a1(t)|
P

p−1 ϕ
−1
p−1 |∆ϕ|

p
p−1 dz dt, (19)

2
|ξ1|

∫
QT

|ω||a2(t)|ϕ dz dt ≤ ε
∫

QT

|ω|p ϕ dz dt + C
∫

QT

|a2(t)|
p

p−1 ϕ dz dt. (20)

Combining (18), (19) and (20) in the inequality (17), we get

(1− 3ε)
∫

QT

|ω|p ϕ dz dt +
1
ξ1

∫
RN

(rαv1 − sαv2) I1−α
T ϕ(0, z) dz

≤ C
(∫

QT

ϕ
−1
p−1 |(I1−α

T ϕ)t|
p

p−1 dz dt +
∫

QT

|a1(t)|
P

p−1 ϕ
−1
p−1 |∆ϕ|

p
p−1 dz dt

+
∫

QT

|a2(t)|
p

p−1 ϕ dz dt
)

,

which means

1
ξ1

∫
RN

(rαv1 − sαv2) I1−α
T ϕ(0, z) dz ≤ C

(
Aϕ(T) + Bϕ(T) + Cϕ(T)

)
, (21)

where we use the following notation, to compact the formula:

Aϕ(T) :=
∫

QT

ϕ
−1
p−1 |(I1−α

T ϕ)t|
p

p−1 dz dt,

Bϕ(T) :=
∫

QT

|a1(t)|
P

p−1 ϕ
−1
p−1 |∆ϕ|

p
p−1 dz dt,

Cϕ(T) :=
∫

QT

|a2(t)|
p

p−1 ϕ dz dt.

To continue the proof we use a suitable cut-off function f ∈ C∞([0, ∞)) assuming values in the interval
[0, 1] with

f (σ) =

{
1 if σ ∈ [0, 1],
0 if 2 ≤ σ.

Now, we work with the C2(QT ,R)-function x(t, z) given as

x(t, z) = ϑ(t)w(z), (t, z) ∈ QT , for T � 1, (22)

where

ϑ(t) = T−`(T − t)`, t ∈ [0, T],

w(z) = f
(
|z|2
T2ρ

)`

, z ∈ RN .

Here, we need `� 1 with ρ > 0 to be chosen opportunely.
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Since x ≥ 0 and suppzx ⊂⊂ RN , then we can set ϕ = x in (21) to obtain

1
ξ1

∫
RN

(rαv1 − sαv2) I1−α
T x(0, z) dz ≤ C (Ax(T) + Bx(T) + Cx(T)) , T � 1. (23)

The definition of x in (22) (recall t ∈ [0, T] and z ∈ RN) leads us to

I1−α
T x(t, z) = w(z)(I1−α

T ϑ)(t)

= w(z)
1

Γ(1− α)

∫ T

t
(u− t)−αϑ(u) du

= w(z)
1

Γ(1− α)

∫ T

t
(u− t)−αT−`(T − u)` du

= w(z)
T−`

Γ(1− α)

∫ T

t
((T − t)− (T − u))−α (T − u)` du

= w(z)
T−`(T − t)−α

Γ(1− α)

∫ T

t

(
1− T − u

T − t

)−α

(T − u)` du.

Setting s =
T − u
T − t

and introducing the Beta function

B(u, v) =
Γ(u)Γ(v)
Γ(u + v)

, u, v > 0,

we deduce that

I1−α
T x(t, z) = w(z)

T−`(T − t)−α+`+1

Γ(1− α)

∫ 1

0
(1− s)−αs` ds

= w(z)T−`(T − t)−α+`+1 B(1− α, `+ 1)
Γ(1− α)

=
Γ(`+ 1)

Γ(2 + `− α)
T−`(T − t)−α+`+1w(z). (24)

If we assume t = 0 in (24), then we have

1
ξ1

∫
RN

(rαv1 − sαv2) I1−α
T x(0, z) dz =

Γ(`+ 1)
Γ(2 + `− α)

T1−α 1
ξ1

∫
RN

(rαv1 − sαv2)w(z) dz,

and hence

1
ξ1

∫
RN

(rαv1 − sαv2) I1−α
T x(0, z) dz = C`,αT1−α

[
1
ξ1

∫
RN

(rαv1 − sαv2) f
(
|z|2
T2ρ

)`

dz

]
, (25)

where C`,α = Γ(`+1)
Γ(2+`−α)

. Taking the absolute value, by (24) we have

|(I1−α
T x)t| = C̃`,αT−`(T − t)`−αw(z), (t, z) ∈ QT ,
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where C̃`,α = (1 + `− α)C`,α. Using appropriate changes of variables and some manipulations, we get

Ax(T) =
∫

QT

x
−1
p−1 |(I1−α

T x)t|
p

p−1 dz dt

= C
(

T−`
∫ T

0
(T − t)`−

αp
p−1 dt

)(∫
RN

w(z) dz
)

= C
(

T−`
∫ T

0
(T − t)`−

αp
p−1 dt

)(∫
RN

f
(
|z|2
T2ρ

)`

dz

)

= CTNρ− αp
p−1+1

(∫ 1

0
(1− s)`−

αp
p−1 ds

)(∫
RN

f (|y|2)` dz
)

,

⇒ Ax(T) ≤ CTNρ− αp
p−1+1. (26)

The definition of x (see (22)) leads us to

|∆x(t, z)| = ϑ(t)|∆w(z)|

= ϑ(t)

∣∣∣∣∣∆ f
(
|z|2
T2ρ

)`
∣∣∣∣∣

≤ Cϑ(t)T−2ρ f
(
|z|2
T2ρ

)`−2

.

Therefore, one obtains

Bx(T) =
∫

QT

|a1(t)|
P

p−1 x
−1
p−1 |∆x|

p
p−1 dz dt

≤ CT
−2ρp
p−1

∫
QT

|a1(t)|
P

p−1 ϑ(t) f
(
|z|2
T2ρ

)`− 2p
p−1

dz dt

= CT
−2ρp
p−1

(∫ T

0
T−`(T − t)`| f (t)|

p
p−1 dt

)∫
RN

f
(
|z|2
T2ρ

)`− 2p
p−1

dz


= CT

−2ρp
p−1 +1+Nρ

(∫ 1

0
(1− s)`|a1(Ts)|

p
p−1 ds

)(∫
RN

f (|y|2)`−
2p

p−1 dy
)

,

⇒ Bx(T) ≤ CT
−2ρp
p−1 +1+Nρ

∫ 1

0
|a1(Ts)|

p
p−1 ds. (27)

Now, we are going to estimate Cx(T). Again, using (22), we get

Cx(T) =
∫

QT

|a(t)|
p

p−1 x dz dt

=

(∫ T

0
|a2(t)|

p
p−1 T−`(T − t)` dt

)(∫
RN

f
(
|z|2
T2ρ

)`

dz

)

= TNρ+1
(∫ 1

0
(1− s)`|a2(Ts)|

p
p−1 ds

)(∫
RN

f (|y|2)` dy
)

,

⇒ Cx(T) ≤ CTNρ+1
∫ 1

0
|a2(Ts)|

p
p−1 ds. (28)
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The combined effects of (23), (25), (26), (27) and (28) give us

1
ξ1

∫
RN

(rαv1 − sαv2) f
(
|z|2
T2ρ

)`

dz

≤ C
(

TNρ− αp
p−1+α

+ T
−2ρp
p−1 +α+Nρ

∫ 1

0
|a1(Ts)|

p
p−1 ds + TNρ+α

∫ 1

0
|a2(Ts)|

p
p−1 ds

)
.

If we choose ρ = α
2 , then the above inequality reduces to

1
ξ1

∫
RN

(rαv1 − sαv2) f
(
|z|2
T2ρ

)`

dz

≤ C
(

Tα
(

N+2
2 −

p
p−1

)
+ Tα

(
N+2

2 −
p

p−1

) ∫ 1

0
|a1(Ts)|

p
p−1 ds + Tα( N+2

2 )
∫ 1

0
|a2(Ts)|

p
p−1 ds

)
= CTα

(
N+2

2 −
p

p−1

)
+ Tα( N+2

2 )
(

T
−αp
p−1

∫ 1

0
|a1(Ts)|

p
p−1 ds +

∫ 1

0
|a2(Ts)|

p
p−1 ds

)
.

(29)

Finally, we pass to the infimum limit as T goes to infinity in (29), use hypothesis (P1), (recall 1 <

p < 1 + 2
N , v ∈ L1(RN ,C)), and the dominated convergence theorem, then we have

1
ξ1

∫
RN

(rαv1 − sαv2) dz < 0,

which contradicts hypothesis (P2)a.

Proof. (P1) and (P2)b hold.
We note that

ω ∈ Lp
loc((0, ∞)×RN ,C) is a global weak solution to (1) and (2),

⇒ ν = −iω is a global weak solution to (6) and (7) (by Remark 1-(ii)).

Now, the existence of no global weak solution to auxiliary problem (6) and (7) can be established
by contradiction, on the same lines of the proof of previous Case 1, with hypothesis (P2)a in the form

(P̃2)a ξ̃1

∫
RN

(rαṽ1 − sαṽ2) dz > 0.

Finally, we point out that {
ξ̃ = −iξ ⇒ ξ̃1 = ξ2,

ṽ = −iv ⇒ ṽ2 = −v1.

We conclude that (P̃2)a and (P2)b are equivalent.
In both the cases, we can exclude the existence of a global weak solution to problems (1)

and (2).

4. Conclusions

The interest for nonlinear Schrödinger equations is dictated by various applications in physics.
Two important directions of research are aimed to prove:

- Existence and nonexistence (blow-up) results of global weak solutions.
- Improve the analysis of the regularity and asymptotic behavior of solutions.
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The existing literature provides some basic approaches and other useful tools to develop a
full analysis of the dynamical properties of specific classes of nonlinear Schrödinger equations.
The fractional in time nonlinear Schrödinger equation provides us with a general point of view on the
relationship between the effects of absorption and dispersion terms, in optical soliton systems evolving
over Lévy trajectories. This subject may be relevant for the approximate and exact controllability of
certain nonlinear equations and their solutions. Here, we obtained the nonexistence of global weak
solutions to problems (1) and (2), adopting the Pohozaev nonlinear capacitary method. Consequently,
we discussed in details some particular choices of absorption and dispersion terms, also with the help
of examples.
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