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Abstract: Symmetric nonnegative matrix factorization (SNMF) approximates a symmetric nonnegative
matrix by the product of a nonnegative low-rank matrix and its transpose. SNMF has been successfully
used in many real-world applications such as clustering. In this paper, we propose an accelerated
variant of the multiplicative update (MU) algorithm of He et al. designed to solve the SNMF problem.
The accelerated algorithm is derived by using the extrapolation scheme of Nesterov and a restart strategy.
The extrapolation scheme plays a leading role in accelerating the MU algorithm of He et al. and the
restart strategy ensures that the objective function of SNMF is monotonically decreasing. We apply the
accelerated algorithm to clustering problems and symmetric nonnegative tensor factorization (SNTF).
The experiment results on both synthetic and real-world data show that it is more than four times faster
than the MU algorithm of He et al. and performs favorably compared to recent state-of-the-art algorithms.

Keywords: symmetric nonnegative matrix factorization; extrapolation scheme; symmetric nonnegative
tensor factorization; clustering

1. Introduction

Given a symmetric nonnegative matrix A ∈ Rn×n
+ , symmetric nonnegative matrix factorization

(SNMF) aims to find a nonnegative matrix G ∈ Rn×r
+ (generally r � n) such that A ≈ GGT . Based on

the widely used Frobenius norm metric, the nonnegative factor G is obtained by solving the following
objective function: min

G
F(G) = ‖ A−GGT ‖2

F,

subject to G � 0.
(1)

SNMF is a special but important class of symmetric nonnegative tensor factorization (SNTF).
It can serve as a basic building block of SNTF algorithms for a higher order tensor [1]. Besides, SNMF
has been widely applied to the clustering problems where the cluster structure is captured by pairwise
affinity relationships among points [2–9]. Recent works have demonstrated that SNMF can provide
superior clustering quality compared to many classic clustering algorithms, such as spectral clustering,
see [9–12] and the references therein.

So far, many efficient algorithms have been proposed for SNMF. In [6], He et al. proposed three
multiplicative update algorithms, including a basic algorithm and two fast algorithms: α-SNMF
and β-SNMF algorithms. It was numerically shown that the three algorithms outperform other

Symmetry 2020, 12, 1187; doi:10.3390/sym12071187 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym12071187
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/7/1187?type=check_update&version=2


Symmetry 2020, 12, 1187 2 of 12

previous multiplicative update algorithms [9,13,14]. In [10], Kuang et al. proposed a Newton-like
SNMF algorithm, which uses partial second-order information to guide the scaling of the gradient
direction. Compared to the projected Newton algorithm, the Newton-like algorithm can greatly
reduce the computational complexity. It is guaranteed to converge to a stationary solution. In [7],
Vandaele et al. suggested to solve the SNMF problem by the block coordinate descent (BCD) algorithm,
in which only one entry of G is optimized each time and the corresponding subproblem is to find
the best root of a cubic equation. The BCD algorithm has a low computational burden and storage
requirement, which makes it suitable for solving large-scale problems. In [8], Shi et al. proposed
two inexact BCD methods based on block successive upper-bounding minimization (BSUM), named
scalar BSUM (sBSUM) and vector-wise BSUM (vBSUM). Both of them are guaranteed to converge to
stationary solutions.

In this paper, we propose an accelerated variant of the basic multiplicative update (MU) algorithm
of He et al. [6]. For convenience, we refer to the basic MU algorithm as MU-SNMF, and the accelerated
variant as accelerated MU-SNMF (AMU-SNMF). We draw inspiration from Nesterov’s accelerated
gradient (NAG) method and derive AMU-SNMF by applying the extrapolation scheme in NAG to
MU-SNMF. To overcome the non-monotonic objective value caused by the extrapolation scheme,
we restart the algorithm and take the current iteration as the new starting point when an increase in
the objective value is observed. We apply AMU-SNMF to some real-world clustering problems and
use it for SNTF following the framework of the averaging approach [1]. The experiment results show
that AMU-SNMF can rapidly decrease the objective value and has good clustering performance in the
applications of clustering. Furthermore, in SNTF, AMU-SNMF can achieve a low objective value of
SNTF by the framework of the averaging approach.

The rest of this paper is organized as follows. In Section 2, we first review the MU-SNMF algorithm
and the NAG method, and then present the AMU-SNMF algorithm. The averaging approach with
AMU-SNMF for SNTF is discussed in the last part of Section 2. In Section 3, we conduct experiments
on synthetic and real-world data. Finally, we conclude this paper in Section 4.

2. Accelerated SNMF Algorithm

2.1. Multiplicative Update Algorithm for SNMF

In this subsection, we briefly review the MU-SNMF algorithm proposed by He et al. [6]. It is
derived from an auxiliary function (see Definition 1) of (1). At the (t + 1)th iteration, the auxiliary
function is represented as

f (G, Gt) = Tr(AAT)− 4Tr(AGtGT) + 2Tr(AGtGtT
) +

∑
ij

(GtGtTGt)ij

(Gt
ij)

3
G4

ij, (2)

where Gt denotes the status of G after t-th iteration, and Tr(·) denotes the trace operator. By setting
the gradient ∇G f (G, Gt) to zero, the multiplicative update rule of MU-SNMF is derived as follows:

Gt+1
ij = Gt

ij
3

√√√√ (AGt)ij

(GtGtTGt)ij

, i = 1, 2, . . . , n, j = 1, 2, . . . , r. (3)

Given a positive initialization, MU-SNMF will always preserve the nonnegativity constraints
on G. It has been proved that MU-SNMF decreases the objective value at each iteration. Moreover,
MU-SNMF converges to a stationary point of (1) if A is complete positive. For the detail proof, please
refer to Proposition 1 and 2 in [6]. We summarize MU-SNMF in Algorithm 1.

Definition 1 (Auxiliary function). A function f (x, y) is an auxiliary function of F(x) if it satisfies two
properties: (1) F(x) ≤ f (x, y) and (2) F(y) = f (y, y) for all vectors x, y ∈ dom F.
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Algorithm 1: G = MU-SNMF(A, r).
Step 1: Initialization
Initialize G0. Set t = 0.
Step 2: Update stage
repeat

Gt+1 = Gt ⊗ 3

√
AGt

GtGtTGt

t = t + 1
until the stopping criterion is satisfied
Step 3: Output G ← Gt.
⊗ and [ · ]

[ · ] denote elementwise product and division, respectively.

2.2. Nesterov’s Accelerated Gradient

Accelerated gradient method [15] is an accelerated variant of gradient descent. It was proposed
by Nesterov in 1983, and is commonly referred to as Nesterov’s accelerated gradient (NAG). Given a
smooth convex function J(θ) to be minimized, NAG takes an initial point θ0 and runs the following
iterative scheme: 

v0 = 0,

yt+1 = θt + γtvt,

θt+1 = yt+1 − ηt+1∇θ J(yt+1),

vt+1 = θt+1 − θt,

(4)

where the superscript of the variables denotes the iteration number, γt = 1− 3/(5 + t), and ηt+1

denotes the learning rate. At each iteration, NAG first updates the variable θ along the previous
update direction. The intuition behind it is that the descent direction tends to persist across successive
iterations. The result is denoted by a new variable y. After that, NAG takes a gradient descent step
from the point y. The gradient descent step plays an important role in making a timely correction
to y if y is indeed a poor update [16,17]. For Lipshitz convex functions, NAG can achieve a global
convergence rate of O(1/t2), which is the optimal convergence rate as described in [18].

2.3. Accelerated MU-SNMF Algorithm

Inspired from the extrapolation scheme in NAG, we modify MU-SNMF as follows:
Y t+1 = Gt + γt(Gt −Gt−1),

Gt+1 = Y t+1 ⊗ 3

√
AY t+1

Y t+1Y t+1T
Y t+1

,
(5)

where ⊗ denotes elementwise product, and [ · ]
[ · ] denotes elementwise division. Note that there might

be some negative entries in Y t+1 since the entries of G are not guaranteed to be nondecreasing during
the iterative process. To keep Y t+1 elementwise positive, the entries of Y t+1 are truncated to a small
positive number ε once they are less than ε, resulting in the following iterative scheme:

Y t+1 = max{Gt + γt(Gt −Gt−1), ε},

Gt+1 = Y t+1 ⊗ 3

√
AY t+1

Y t+1Y t+1T
Y t+1

.
(6)

For ease of description, we temporarily refer to the algorithm with update rule (6) as accelerated
MU-SNMF (AMU-SNMF). The performance of AMU-SNMF is very dependent on the choice of γt.
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If it is chosen too small, the extrapolation scheme would do little to accelerate MU-SNMF. If it is
too large, AMU-SNMF would probably diverge. We find that AMU-SNMF can work well by setting
γt = 1− 3/(5 + t).

Unlike MU-SNMF, AMU-SNMF is not guaranteed to be monotone in the objective value.
To overcome this problem, we start AMU-SNMF again and take the current iteration as the new
starting point when an increase in the objective value is observed. We summarize the whole procedure
in Algorithm 2. In the following, when we refer to AMU-SNMF we mean the Algorithm 2.

Algorithm 2: G = AMU-SNMF(A, r).
Step 1: Initialization

Initialize G0. Set t = 0, trestart = 0, ε = 10−16, F0 = ‖ A−G0G0T ‖
2
F.

Step 2: Update stage
repeat

γt = 1− 3
5 + t− trestart

if t = trestart then
Y t+1 = Gt

else
Y t+1 = max{(1 + γt)Gt − γtGt−1, ε}

end if

Gnew = Y t+1 ⊗ 3

√
AY t+1

Y t+1Y t+1T
Y t+1

Fnew = ‖ A−Gnew(Gnew)T ‖
2
F

if Fnew > Ft then
trestart = t + 1
Gnew = Gt

Fnew = Ft

end if
Gt+1 = Gnew

Ft+1 = Fnew

t = t + 1
until the stopping criterion is satisfied
Step 3: Output G ← Gt.
⊗ and [ · ]

[ · ] denote elementwise product and division, respectively.

2.4. Symmetric Nonnegative Tensor Factorization (SNTF)

In this subsection, we apply AMU-SNMF to SNTF of third order symmetric nonnegative tensors.
The SNTF problem is described as follows. Given a three order symmetric nonnegative tensor
A ∈ Rn×n×n

+ and a positive integer r, SNTF seeks to find a nonnegative matrix G = [g1, . . . , gr] ∈ Rn×r
+

such that

A ≈
r∑

i=1

gi ◦ gi ◦ gi, (7)

where the symbol ◦ represents the vector outer product. Based on the widely used Euclidean distance,
the matrix G is obtained by solving the following objective function:

min
G

J(G) = ||A−
r∑

i=1

gi ◦ gi ◦ gi||
2,

subject to G � 0,

(8)



Symmetry 2020, 12, 1187 5 of 12

where the tensor norm || · || is the square root of the sum of the squares of all its elements, e.g., for a
three order tensor X ∈ Rn×n×n,

||X|| =

√√√√ n∑
i=1

n∑
j=1

n∑
k=1

X2
ijk. (9)

For (8), Cichocki et al. [1] proposed a simple approach, referred to as averaging approach. The idea
behind it is to convert the SNTF problem to a standard SNMF problem:

Ã ≈ G̃G̃T , (10)

where Ã =
∑n

i=1 A:,:,i ∈ Rn×n
+ , A:,:,i is the i-th frontal slice of the given tensor A, G̃ = GD

1
2 , D ∈ Rr×r

+

is a diagonal matrix with the diagonal elements Djj =
∑n

i=1 Gij. The matrix G̃ can be obtained by any
SNMF algorithm.

Following the framework of the averaging approach, we convert the SNTF problem (8) to the
SNMF problem (10) and solve it by AMU-SNMF. Once G̃ is obtained, we compute G from G̃ in the
following way. Denote the j-th column of G̃ by g̃ j. The vector ĝ j is a normalization of g̃ j such that
the sum of ĝ j is equal to 1. Then, g j is derived by g j = αj ĝ j, where αj satisfies α3/2

j =
∑n

i=1 G̃ij. It is
worth noting that the objective value J(G) is not guaranteed to be monotonically decreasing by the
averaging approach. This can be visually understood in Figure 1, which shows the trajectories of J(G)

generated by the averaging approach, where four different SNMF algorithms including MU-SNMF [6],
Newton-like SNMF [10], vBSUM [8] and AMU-SNMF were separately used for (10), on a three order
symmetric nonnegative tensor A ∈ R10×10×10

+ . We can see from Figure 1 that the matrix G obtained at
the last iteration may not have the lowest objective value J(G) compared to the previous iterations,
and, therefore, may not be the best choice to be the output of the averaging approach. An alternative
way, which we adopt in the experiments, is to store the estimation of G that has the best J(G) and
output it when the averaging approach terminates.

Iteration
0 100 200 300 400 500 600 700 800 900 1000

 J
( 

G
)

3.65

3.7

3.75

3.8

3.85

3.9
MU-SNMF
Newton-like SNMF
vBSUM
AMU-SNMF

Figure 1. The trajectories of J(G) generated by the averaging approach on a three order symmetric
nonnegative tensor A ∈ R10×10×10

+ , where 4 different SNMF algorithms were used separately in the
averaging approach.

3. Experiments and Results

In this section, we first test AMU-SNMF (Algorithm 2) on synthetic data, and then apply it to
some real-world clustering problems. Finally, we test AMU-SNMF in SNTF using the framework
of the averaging approach [1]. In the clustering experiments, the clustering quality is measured by
clustering accuracy (CA) and normalized mutual information (NMI) [19]. CA is used for measuring
the percentage of correctly clustered data points. Mutual information (MI) measures the mutual
dependence between the predicted and ground truth clustering labels. Furthermore, NMI is a
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normalization of the MI score to scale the results between 0 (no mutual information) and 1 (perfect
correlation). To demonstrate the effectiveness of AMU-SNMF, we compare it with seven SNMF
algorithms including MU-SNMF [6], α-SNMF [6], β-SNMF [6], Newton-like SNMF [10] (the code
of Newton-like SNMF is available from http://math.ucla.edu/dakuang/), BCD [7], sBSUM [8] and
vBSUM [8]. For α-SNMF and β-SNMF algorithms, we use the default setting for the parameters α

and β recommended by the authors of [6], i.e., α = 0.99, β = 0.99. In all the experiments, the SNMF
algorithms are randomly initialized from points in the form of

√
ωP (i.e., G0 =

√
ωP), where P is

a randomly generated nonnegative matrix and ω = argminω≥0||A − ωPPT ||2F. We implement all
the experiments on a computer with a 2.8-GHz Intel Core i5-4200 CPU and 8-GB memory by 64-bit
MATLAB R2015a on Windows 7.

3.1. Synthetic Data

The synthetic data were generated in the following way: A = GGT + E, where G ∈ R100×30
+

was generated randomly and half of its entries were zeros. E was a matrix of noise whose intensity
was determined by signal-to-noise ratio (SNR). We tested AMU-SNMF in both noise-free and noisy
scenarios. In the noisy case, the noise level was SNR = 10 dB. For each scenario, 20 different A were
generated to test AMU-SNMF. To decrease the effect of initializations, the SNMF algorithms were
run 10 times with different initializations for each A. The SNMF algorithms were stopped when their
elapsed time exceeded 10 s. Following the strategy from [20], we report

E(G) =
||A−GGT ||F
||A||F

− emin (11)

of all the SNMF algorithms, where emin denotes the lowest relative error obtained by any algorithm
with any initialization. For the noise-free synthetic data, we use emin = 0. The use of E(G) allows us
to take meaningfully the average results over several synthetic data. We compute the average E(G)

over 200 trials (20 different A and 10 different initializations for each A), and plot them versus runtime
in Figure 2. We can see that in both noise-free and noisy cases (1) it took AMU-SNMF less than 2 s
to achieve lower average E(G) values than that MU-SNMF achieved at the end of the algorithm (10
s), i.e., AMU-SNMF was more than five times faster than MU-SNMF; (2) it took AMU-SNMF less
than 4 s to achieve lower average E(G) values than that the other 6 algorithms (including α-SNMF,
β-SNMF, Newton-like SNMF, BCD, sBSUM and vBSUM) achieved at the end of the algorithms (10 s),
i.e., AMU-SNMF was more than two times faster than the six algorithms; (3) AMU-SNMF had lower
average E(G) values at the end of the algorithm compared with all the other algorithms. The above
observations demonstrate that AMU-SNMF is not only fast but also of high accuracy.

Runtime (s)
0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

  E
( 

G
)

0

0.02

0.04

0.06

0.08

0.1

0.12
MU-SNMF
alpha-SNMF
beta-SNMF
Newton-like SNMF
vBSUM
sBSUM
BCD
AMU-SNMF

(a)

Figure 2. Cont.

http://math.ucla.edu/dakuang/
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Figure 2. The plots of the average E(G) versus runtime on the synthetic data. (a) Noise-free.
(b) SNR = 10 dB.

3.2. Document Clustering

In the experiment, we evaluate AMU-SNMF in the applications of document clustering.
The goal of document clustering is to organize the documents into different semantic categories
automatically [21]. Two widely used document collections, Topic Detection and Tracking 2 (TDT2)
(http://projects.ldc.upenn.edu/TDT2/) and Reuters-21578 (http://www.daviddlewis.com/resources/
testcollections/reuters21578/), were used here. The TDT2 corpus consists of data collected during
the first half of 1998 and taken from six sources: ABC, CNN, VOA, NYT, PRI, and APW. It contains
11,201 documents from 96 semantic categories. The Reuters-21578 corpus was collected from the
Reuters newswire in 1987. It contains 21,578 documents from 135 semantic categories. Both collections
are highly unbalanced with the sizes of categories ranging from one to thousands of documents.
To improve the reliability of our evaluations, we removed those documents appearing in two or more
categories and selected 10 categories for each collection. We selected the 10th to 19th largest categories
for the TDT2 corpus, and the 12th to 21th largest categories for the Reuters-21578 corpus. The sizes of
the selected categories are just a little unbalanced (see Table 1).

Table 1. The semantic categories from the TDT2 and the Reuters-21578 collections.

TDT2 Category 10 11 12 13 14 15 16 17 18 19

Number of documents 167 160 145 141 140 131 123 123 120 104

Reuters-21578 Category 12 13 14 15 16 17 18 19 20 21

Number of documents 63 60 53 45 45 44 42 38 38 37

We first normalized each document vector to unit length. Then we constructed the affinity matrix
A as follows. Denote the normalized document vectors by xi ∈ Rd, i = 1, 2, . . . , n. The affinity matrix
A was computed by

Aij =


exp

(
−
||xi − xj||2

σiσj

)
, if i ∈ N (j) or j ∈ N (i)

0, otherwise

, (12)

where N (i) = {j|xj is one of the kn nearest neighbors of xi, j 6= i}, and the local scale parameter σi of
each data point was set to be the distance between xi and its k-th neighbor. We used kn = blog2(n)c+
1 and k = 7 as suggested in [10,22]. After that, we performed SNMF for document clustering,
where every document was assigned to a cluster that had the largest entry in the corresponding row

http://projects.ldc.upenn.edu/TDT2/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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of G. To decrease the effect of initializations, the SNMF algorithms were run 20 times with different
initializations for each document collection. They were stopped when their elapsed time exceeded
30 s. The plots of the average F(G) versus runtime are displayed in Figure 3. We can see from
Figure 3a that it took AMU-SNMF less than 5 s to achieve lower average F(G) value than that the
other algorithms achieved at the end of the algorithms (30 s). Furthermore, we can see from Figure 3b
that (1) all the algorithms converged, and their convergence time was about 15 s (MU-SNMF), 7 s
(α-SNMF), 5 s (β-SNMF), 2.5 s (Newton-like SNMF), 25 s (BCD), 15 s (sBSUM), 15 s (vBSUM) and 5 s
(AMU-SNMF), respectively; (2) it took AMU-SNMF less than 2 s to achieve lower average F(G) value
than that the other algorithms achieved when they converged. The above observations demonstrate
that AMU-SNMF was more than six times faster than MU-SNMF, and more than two times faster than
the other algorithms except Newton-like SNMF. The clustering results on TDT2 and Reuters-21578,
averaged over 20 trials with different initializations, are shown in Table 2. We can see that AMU-SNMF
had higher, which demonstrates that AMU-SNMF achieved a better clustering performance compared
with the other algorithms.
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Figure 3. The plots of the average F(G) versus runtime on (a) TDT2 and (b) Reuters-21578.
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Table 2. The mean of CA and the mean of NMI of the SNMF algorithms on the TDT2 and the
Reuters-21578 collections.

MU-SNMF
[6]

α-SNMF
[6]

β-SNMF
[6]

Newton-Like
SNMF [10]

vBSUM
[8]

sBSUM
[8]

BCD
[7] AMU-SNMF

TDT2 CA 0.9266 0.9035 0.9187 0.9348 0.9299 0.9312 0.9133 0.9631

NMI 0.9363 0.9197 0.9292 0.9477 0.9450 0.9464 0.9354 0.9625

Reuters-21578 CA 0.6711 0.6803 0.6786 0.6778 0.6671 0.6630 0.6749 0.6877

NMI 0.6329 0.6380 0.6383 0.6408 0.6365 0.6345 0.6389 0.6449

3.3. Object Clustering

In the experiment, we evaluate AMU-SNMF on Columbia Object Image Library (COIL-20)
dataset (http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php). COIL-20 is a database
of gray-scale images of 20 objects. The objects were placed on a motorized turntable against a black
background. The turntable was rotated through 360 degrees to vary object pose with respect to a fixed
camera. Images of the objects were taken at pose intervals of 5 degrees. This corresponds to 72 images
per object. Each image is 128× 128 pixels in size.

We first constructed the affinity matrix A by (12). Then we performed SNMF for object clustering,
where every image was assigned to a cluster that had the largest entry in the corresponding row of
G. To decrease the effect of initializations, the SNMF algorithms were run 20 times with different
initializations. They were stopped when their elapsed time exceeded 30 s. The plot of the average
F(G) versus runtime is displayed in Figure 4. We can see that (1) it took AMU-SNMF about 3.5 s to
achieve the average F(G) value that MU-SNMF achieved when MU-SNMF converged (about 15 s),
i.e., AMU-SNMF was more than four times faster than MU-SNMF; (2) AMU-SNMF was more than
three times faster than α-SNMF, β-SNMF, BCD, sBSUM and vBSUM. The clustering results, averaged
over 20 trials with different initializations, are shown in Table 3. We can see that AMU-SNMF had
higher, which demonstrates that AMU-SNMF achieved a better clustering performance compared
with the other algorithms.

Runtime (s)
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Figure 4. The plot of the average F(G) versus runtime on the COIL-20 dataset.

Table 3. The mean of CA and the mean of NMI of the SNMF algorithms on the COIL-20 dataset.

MU-SNMF
[6]

α-SNMF
[6]

β-SNMF
[6]

Newton-Like
SNMF [10]

vBSUM
[8]

sBSUM
[8]

BCD
[7]

AMU-SNMF

COIL-20 CA 0.6641 0.6527 0.6890 0.7247 0.7086 0.6657 0.6362 0.7332

NMI 0.7826 0.7774 0.8160 0.8492 0.8454 0.8166 0.7882 0.8554

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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3.4. SNTF

In the experiment, we test AMU-SNMF in SNTF using the framework of the averaging
approach [1], which has been discussed in Section 2.4. The experiment was performed on synthetic
data which were generated in the following way: A =

∑r
i=1 gi ◦ gi ◦ gi + E, where r = 3,

gi ∈ R10
+ (i = 1, 2, 3) were generated randomly, and E ∈ R10×10×10 was a symmetric tensor of

noise whose intensity was determined by signal-to-noise ratio (SNR). Both noise-free and noisy (SNR
= 10 dB) synthetic data were used here with each including 10 different A. The SNTF was performed
by the averaging approach where eight different SNMF algorithms were separately used for (10).
The averaging approach was stopped when its elapsed time exceeded 0.5 s. To decrease the effect of
initializations, 10 trials were conducted by choosing different initializations for each A. We measure
the quality of SNTF by

Fit(G) = 1− ||A−
∑r

i=1 gi ◦ gi ◦ gi||
||A|| . (13)

The greater the value of Fit(G), the better approximation of the tensor A is obtained by
∑r

i=1 gi ◦
gi ◦ gi. We compute the average Fit(G) of the averaging approach over 100 trials (10 different A and
10 different initializations for each A). The results are listed in Table 4. We can see that the averaging
approach with AMU-SNMF yielded better approximate tensor than that with other SNMF algorithms
in both noise-free and noisy cases.

Table 4. The mean of Fit(G) of the averaging approach using different SNMF algorithms.

MU-SNMF
[6]

α-SNMF
[6]

β-SNMF
[6]

Newton-Like
SNMF [10]

vBSUM
[8]

sBSUM
[8]

BCD
[7] AMU-SNMF

free noise 0.9464 0.9471 0.9471 0.9430 0.9472 0.9460 0.9460 0.9483

SNR = 10 dB 0.7230 0.7234 0.7234 0.7228 0.7234 0.7230 0.7230 0.7243

4. Conclusions

In this paper, we propose an accelerated variant of the MU-SNMF algorithm designed to solve
the SNMF problem. The accelerated algorithm is referred to as AMU-SNMF. It is derived by exploiting
the extrapolation scheme in NAG and a restart strategy. Our contributions consist of two parts. First,
we derive an accelerated variant of the MU-SNMF algorithm. It is numerically shown that AMU-SNMF
is more than four times faster than MU-SNMF. Second, we empirically demonstrate that AMU-SNMF
outperforms other 6 state-of-the-art algorithms, including α-SNMF [6], β-SNMF [6], Newton-like
SNMF [10], BCD [7], sBSUM [8] and vBSUM [8]. The experiment results show that AMU-SNMF
is more than two times faster than the above algorithms except the Newton-like SNMF algorithm.
Moreover, the experiment results show that AMU-SNMF can achieve a better clustering performance
in the real-world clustering problems compared with the above algorithms. Furthermore, AMU-SNMF
is more suitable for the averaging approach in SNTF. As one of directions of future work, we plan to
investigate further the convergence properties of the AMU-SNMF algorithm. Another direction of
future work is that we could apply the methodologies adopted in this paper to other SNMF algorithm.
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