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Abstract: The dual-motor coupling drive system (DCDS), which is widely used in electric vehicles, has
attracted increasing attention due to its high transmission efficiency and economical fuel consumption.
Current research has mainly focused on the control scheme of dual motors and has ignored the dynamic
characteristics of the asymmetrical transmission structure. This paper presents an investigation of a
dynamic model and an analysis method of the transmission process for the DCDS. The entire dynamic
model of the DCDS was established by considering the planetary gear, differential bevel gear, and drive
shaft with the transfer matrix method (TMM). Then, a detailed theoretical analysis was developed to
study the influence of meshing stiffness and excitation source on the dynamic characteristics. Finally,
the DCDS experimental platform was utilized to validate the effectiveness of the proposed dynamic
model. For susceptibility to low-frequency vibrations, the first four natural frequencies and vibration
modes of the DCDS were analyzed through the processing and analysis of acceleration signals.
The experimental dynamic responses were generally consistent with the numerically computed
results, which demonstrates the effectiveness of the proposed dynamic model with TMM. Furthermore,
the proposed dynamic analysis method may be helpful for developing effective control algorithms to
suppress vibrations and achieving highly smooth motions for electric vehicles.

Keywords: dual-motor coupling drive system; transmission process; dynamic characteristics; transfer
matrix; electric vehicle

1. Introduction

With the increasing demand for a green economy and environmental protection, modern vehicles
are required to produce zero emissions, much less pollution, and little noise [1]. Electric vehicles,
which use a drive motor and a battery instead of a traditional internal combustion engine, can achieve
higher driving efficiency and control precision. Especially for the characteristics of constant torque at
low speeds and constant power at high speeds, the power transmission system of electric vehicles can
be tremendously simplified so as to improve the dynamic performance [2,3].

The dual-motor coupling drive system (DCDS) is a popular research topic in the field of electric
vehicles [4]. Compared with a normal single-motor driving axle system, the DCDS, which adopts
two motors rather than a high-peak-power motor, can significantly improve a vehicle’s dynamic
performance and energy efficiency [5]. The typical applications of the single-motor driving axle
system and the DCDS are shown in Figures 1 and 2, respectively. In Figure 2, two brushless direct
current motors (BDCM) are utilized with particular gear transmission equipment, such as a planetary
gear, a differential bevel gear, and so on. The drive power of the dual-motor system is synthesized
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and transferred by the gear transmission system. During the driving process, the main motor is
operated at a rated speed to improve energy efficiency. The assistant motor is controlled to adjust the
rotational speed. To improve the smoothness of stepless speed regulation, the dynamic and vibration
characteristics of the DCDS need to be analyzed.
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Implementation of a DCDS firstly requires high manufacturing and assembling precision to ensure
motion transmission smoothness. Moreover, achieving dual-motor coordinate motion is restricted by
the complicated power transmission chain from the dual motors to the wheels. The operation of a
DCDS, which usually adopts a planetary gear and differential bevel gear set, can suffer from meshing
deflection and torsional vibration. The actual driving dynamics are time varying and commonly
affected by the continuous change of the meshing stiffness. Hence, it is crucial to study the dynamic
response and natural characteristics of the transmission process for the DCDS.

At present, research on the DCDS has mainly focused on two aspects: optimizing the control
mode and improving energy efficiency. The dynamic characteristics of the transmission process for
the DCDS itself are ignored. Although many scholars have conducted extensive research on the
dynamics of the gear set, research on the dynamic performance of the DCDS in electric vehicles has
attracted less attention. A coupling structure diagram of a DCDS was studied in [6]. A dynamic model
of the planetary gear and vehicle was presented by considering the transmission ratio, which is an
oversimplification of the transmission system. Some studies have provided a seven-degrees-of-freedom
vehicle dynamic model. Several model-based vibration suppression algorithms have been proposed
and tested by road experiments [7,8]. Considering external disturbances and resistance, Kim et al. [9]
proposed a load torque estimation method for a parallel hybrid vehicle. The drive shafts from
motor to wheel suffer from the transmission power, which is amplified by the reducing gearbox.
The power transmission shaft also undertakes a load during the transmission process [10]. Xie et al.
and Berriri et al. merged the rotational inertia of the engine and gearbox in an equivalent inertia [11,12].
The transmission system was simplified as a drive shaft model, and the total stiffness of the shaft was
obtained by considering the axial stiffness and gearbox stiffness.
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The dynamic characteristics of the DCDS are critically influenced by the gear transmission system.
The driving power is transferred from the dual motors to actuators by complicated planetary and
differential gears. Previous research found that the meshing stiffness, which is varied periodically
during the engagement process, can be the main excitation source. Wang and Sinha [13] established the
lumped parameter model of the planetary gear to study its natural characteristics. Parker and colleagues
used the finite element method to analyze the nonlinear phenomenon in the gear transmission and
presented the phase regulation criterion to eliminate specific modes [14,15]. Several scholars studied
the influence of errors and stiffness on gear contact load characteristics [16,17]. The dynamic model
and response of the rotor system, which contains the planetary gear, was provided and the system
stability was analyzed in [18,19]. Moreover, the dynamics of the dual-motor motion mechanism with
constraints can be further applied in the asymptotical stability control [20]. Hence, how the meshing
stiffness and structural features affect the natural characteristics and dynamic response of the DCDS
needs to be further analyzed.

This paper is organized as follows: Section 2 presents the dynamic modeling and analysis of a
DCDS with the transfer matrix method (TMM). The dynamic model of the DCDS is established by
considering the transmission process of the planetary gear, differential bevel gear, and drive shafts.
The effects of meshing stiffness and structural features on the time–frequency dynamic response of
the DCDS are analyzed in Section 3. Reports on the dynamic characteristics test experiment that was
carried out, which adopted the DCDS platform and an NI vibration analyzer. The natural characteristics
and dynamic response were detected and analyzed by discrete Fourier transform (DFT). Further,
the effectiveness of the proposed dynamic model for the DCDS was verified by comparing the results
of numerical computing to the experimental test. Conclusions are drawn in Section 4.

2. Dynamic Model of DCDS with TMM

In this section, the dynamic model of the DCDS by considering the asymmetrical structure of the
DCDS is proposed with TMM. Then, the generating principles, geometries, and dynamics of the DCDS
are investigated. Based on this, the dynamic analysis is then carried out in Section 3.

2.1. Establishment of the Model for the Whole DCDS

The proposed DCDS consists of dual motors, a planetary gear, a differential gear, and drive
shafts, as shown in Figure 3. To provide high motion stability and accuracy, the driving process is
accomplished by two-set power sources. The main motor actuator which takes charge of the rotation
of sun gear Zs is mounted on the frame. The assistant motor actuator which is connected to the internal
gear ring Zr is used to adjust the motion velocity. Due to the differential speed of the dual motors
and the gear engagement law, both the revolution and rotation of planet gear Zp can be generated.
The planet carrier Zc which supports the planets is rotated around the center line. Furthermore,
the differential bevel gear is promoted by the assisted gear Z3, which is engaged with the planet carrier.
During the driving process, the sun gear Zs is promoted by motor 1 at a rated speed to improve the
energy efficiency. The gear ring Zr is coordinately rotated by assistant motor 2 to adjust the rotational
speed. The electric vehicle can be driven by the differential, which is composed of two pairs of
bevel gears.
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The generalized dynamic model of the DCDS is presented in Figure 4. To study the dynamic
characteristics of the transmission process, the mass (inertia) of the dual motors and the main body of
the gears are supposed to be a lumped mass (inertia). The shaft segment between each lump mass is
considered to be a massless torsional spring.
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Considering the torsional vibrations of the DCDS, the state vector of the lumped parameter shaft
contains five shaft segments in the system, as shown in Figure 3. Shafts I and II are the input shafts,
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which are connected to the dual motors; Shafts III and IV are the transmission shaft; and Shaft V is the
output shaft, which drives the wheels directly. The overall state vector of the DCDS can be defined as

ZW = [ZI, ZII, ZIII, ZIV, ZV]
T (1)

where Zi(i = I, II, III, IV, and V) are the state vectors of each shaft, and the state equation is presented in
the following formula: (

Z jL
)
= T j

(
Z jD

)
(2)

where ZjL and ZjD are the input drive torque and output load torque of the jth substructure, and j = 1,
2, . . . , 9. Tj is the transmission matrix between the two adjacent substructures. Then, the whole
transmission matrix of the DCDS based on TMM can be expressed as

TW = T9T8 · · ·T1 (3)

The following principles need to be followed when the whole transfer matrix TW is constructed,
owing to the difference of the location for each substructure and the coupling relationship between
two transmission components. The states of each substructure are transmitted simultaneously with
the overall state vector Z.

(1) If the state of the substructure is transmitted independently in a certain period, the transfer
matrix is established by the pure rotational matrix according to the corresponding position in the
whole transfer matrix; in addition, the coupling transmission matrix is 0.

(2) If the state of the substructure is not transmitted, the relative positions can be expressed by the
unit matrix E (the same order as the transfer matrix of individual pair of gears).

(3) If the state of the substructure is transmitted with both coupling and rotation motions,
the coupling unit of the whole transfer matrix is not 0. The transfer matrix needs to be established by
the coordination relation of specific torque balance and meshing deflection.

Hence, the diagram of the substructure division by TMM is shown in Figure 4, and the whole
transfer matrix of the DSDC can be established as

T1 =

(
TI 0
0 E4

)
, T2 =


TI 0 0
0 TII 0
0 0 E3

, T3 =


TC1

11 TC1
12 0

TC1
21 TC1

22 0
0 0 E3


T4 =


E1 0 0 0
0 TC2

11 TC2
12 0

0 TC2
21 TC2

22 0
0 0 0 E2

, T5 =


E2 0 0
0 TIII 0
0 0 E2

, T6 =


E2 0 0 0

0 T
Cp

11 T
Cp

12 0

0 T
Cp

21 T
Cp
22 0

0 0 0 E1

,

T7 =


E3 0 0
0 TIV 0
0 0 E1

, T8 =


E2 0 0 0
0 TCb

11 TCb
12 0

0 TCb
21 TCb

22 0
0 0 0 E1

, T9 =

(
E4 0
0 TIV

)
(4)

where E1, E2, E3, and E4 are 5 order, 10 order, 15 order, and 20 order unit matrices, respectively; TI, TII,
TIII, TIV, and TV represent the transfer matrix of Shafts I–V at certain transmission processes; and TCn

11 ,
TCn

12 , TCn
21 , and TCn

22 are the elements of the coupling transfer matrix for the engagement of the individual
gear and planetary gears.
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2.2. Modeling of Meshing Process for an Individual Pair of Gears

The meshed model of an individual pair of gears is shown in Figure 5. The meshing dynamic
model of can be expressed as

θ1L = θ1D
θ2L = θ2D

T1D − I1
..
θ1D − c

(
Rb1

.
θ1D −Rb2

.
θ2D −

.
e(t)

)
Rb1 − km(Rb1θ1D −Rb2θ2D − e(t))Rb1 = T1L

T2D − I2
..
θ2D + c

(
Rb1

.
θ1D −Rb2

.
θ2D −

.
e(t)

)
Rb2 + km(Rb1θ1D −Rb2θ2D − e(t))Rb2 = T2L

(5)

where θ1 and θ2 are the rotational angles of the driving gear and the driven gear, respectively. θD and
θL are the rotational angles caused by input drive torque and output load torque, respectively. Similarly,
T1D and T2D are the input drive torques of the driving gear and the driven gear, respectively. T1L and
T2L are the output load torques of the driving gear and the driven gear, respectively. Rb1 and Rb2 are
the base radii. e(t) is the geometric transmission error along with the meshing line. km is the meshing
stiffness, and c is the damp.
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Meshing error is caused by manufacturing and assembly errors. The basic frequency of the
meshing error is equal to the engagement frequency, which has obvious periodicity. Then, the meshing
error can be obtained by Fourier transform:

e(t) = em +
∞∑

j=1

[eAj cos ( jwet) + eBj sin ( jwet)] = em +
∞∑

j=1

e j cos
(
jwet + ϕ j

)
(6)

where em is the average error.
Then, the meshing model of an individual pair of gears can be expressed as



θ1L

T1L

θ2L

T2L

EL


=



1 0 0 0 0

−I1
(

d
dt

)2
−R2

b1km −R2
b1c d

dt 1 Rb1Rb2km + Rb1Rb2c d
dt 0 −Rb1km −Rb1c d

dt
0 0 1 0 0

Rb1Rb2km + Rb1Rb2c d
dt 0 −I2

(
d
dt

)2
−R2

b2km −R2
b2c d

dt 1 −Rb2km −Rb2c d
dt

0 0 0 0 1





θ1D

T1D

θ2D

T2D

e(t)


(7)
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The coefficient matrix in the right side of (7) is the transfer matrix, which can be rewritten as

TC1 =


1 0 0 0 0

−R2
b1km −R2

b1c d
dt 1 Rb1Rb2km + Rb1Rb2c d

dt 0 −Rb1km −Rb1c d
dt

0 0 1 0 0
Rb1Rb2km + Rb1Rb2c d

dt 0 −R2
b2km −R2

b2c d
dt 1 −Rb2km −Rb2c d

dt
0 0 0 0 1



1 0

−I1
(

d
dt

)2
1

0 0
0 0
0 0

0 0 0
0 0 0
1 0 0

−I2
(

d
dt

)2
1 0

0 0 1



(8)

The second matrix on the right side of (8) denotes the pure rotational motion of each gear. If
the gear is considered to be a rigid body, then the meshing deflection of the gear is zero. In this case,
the transfer process can be expressed as a pure lumped inertia matrix. The first matrix on the right side
of (8) points out the mechanical coupling between the pair of gears, which is affected by the meshing
stiffness km, damp c, and base radius.

2.3. Modeling of the Transmission Process for the Planetary Gear

Since the planetary gear set has the significant feature of mass concentration, the lumped parameter
model is proposed in this subsection. The lumped parameter modeling method contains two aspects:
a pure torsional model and a translational–rotational model. In the DCDS of an electric vehicle, since
the ratio of the support stiffness of the gears and the meshing stiffness at its engagement surface is
greater than 10, the natural characteristics computed by these two models are quite close [21]. Assume
that the three planet gears are uniformly distributed along the circumference and the support stiffness
and inertia of each planet gear are equal. The torsional model of the transmission process for the
planetary gear is shown in Figure 6.
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The sun gear is designated as s, the planet gear as pi (i = 1, 2, 3), the carrier as c, and the gear
ring as r. The rotational angles of the sun gear, planet gear, and carrier are labeled as θs, θpi, and θc.
The meshing stiffness between the sun gear and the ith planet gear is kspi. The base radii of the
sun gear, planet gear, and gear ring are Rbs, Rbp, and Rbr. Several sets of coordinates can be used to
describe the geometrical relationship of the DCDS. One set is given by the absolute coordinate, which is
established based on the fixed center O(x, y, z). The second set is given by the actual coordinate of the
sun gear, which is designated as {Ss-XsYsZs}. The planet gears are given by the equivalent coordinates
{Sp-XpYpZp}, which orbit around the sun gear with a variable angle velocity wz.

Suppose that, under the input drive torque, the rotational direction of the sun gear and carrier is
positive, and the rotational direction of the planet gear is the opposite. The input drive torque and
output torque are TD and TL. Then, the vibration differential equation can be established as

Is
..
θs +

3∑
i=1

(
Fspi + fspi

)
Rbs = TDs

Ir
..
θr +

3∑
i=1

(
Frpi + frpi

)
Rbr = TDr

Ipi
..
θpi −

(
Fspi + fspi − Frpi − frpi

)
Rbpi = 0(

Ic +
3∑

i=1
mpiR2

c

)
..
θc −

3∑
i=1

(
Fspi + fspi + Frpi + frpi

)
Rbc = −TL

(9)

Considering the transmission balance between the input drive torque and output load torque, the
meshing model of the sun gear can be expressed as

TsD − Is
..
θs −

3∑
i=1

[
Rbskspi

(
xs − xc − xpi − espi

)
+ Rbscspi

( .
xs −

.
xc −

.
xpi −

.
espi

)]
= TsL (10)

Similarly, the meshing model of the internal gear ring can be expressed as

TrD − Ir
..
θr +

3∑
i=1

[
Rbrkrpi

(
xpi − xr − erpi

)
+ Rbrcrpi

( .
xpi −

.
xr −

.
erpi

)]
= TrL (11)

The meshing model of the planet gear can be expressed as

TpiD − Ipi
..
θpi + Rbpikspi(xs − xc − xpi − espi) + Rbpicspi

( .
xs −

.
xc −

.
xpi −

.
espi

)
−Rbpikrpi

(
xpi − xr − erpi

)
−Rbpicrpi

( .
xpi −

.
xr −

.
erpi

)
−Rbscsp

( .
xs −

.
xc −

.
xpi −

.
espi

)
= TpiL

(12)

The meshing model of the carrier can be expressed as

TcD − Ic
..
θc −

3∑
i=1

mpiR2
c

..
θc −

3∑
i=1

[
Rbckspi

(
xs − xc − xpi − espi

)
+ Rbccspi

( .
xs −

.
xc −

.
xpi −

.
espi

)]
+

3∑
i=1

[
Rbckrpi

(
xpi − xr − erpi

)
+ Rbccrpi

( .
xpi −

.
xr −

.
erpi

)]
= TcL

(13)

where Is = msR2
bs, Ipi = mpiR2

bpi, and Ic = mcR2
bc are the equivalent masses of the sun gear, planet gear,

and carrier. FD = TD/Rbs and FL = TL/Rbs are the equivalent forces.
During the engagement process, the meshing force is determined by the relative displacement

along with the meshing line and the meshing stiffness of each component. The relative displacement
along with the meshing line is composed of the rotational displacement and the eccentric error of each
gear. The eccentric errors which contain the manufacturing and vibration errors of the sun gear, planet
gear, and gear ring are labeled Es, Epi, and Er. ϕs is the angle between Es and the external meshing line
of the ith planet gear. δs is the angle between Es and the x axis. γpi and ϕpi are the angles between Epi
and the internal and external meshing lines, respectively. δpi is the angle between Epi and the xpi axis.



Symmetry 2020, 12, 1171 9 of 20

ϕr is the angle between Er and the internal meshing line of the ith planet gear. δr is the angle between
Er and the x axis. From Figures 7 and 8, the following geometric relationship can be obtained:

δs = (ws −wc)t + βs

δpi =
(
wp −wc

)
t + βpi

δr = −wct + βr

ϕs =
π
2 − (δs + α−ψi)

ϕpi = δpi + α− π
2

ϕr = ψi − δr − α
γpi =

π
2 − δpi − α

(14)

where ws, wp, and wc are the rotational speeds of the sun gear, planet gear, and gear ring. ψi is the
initial angle between the ith planet gear and the x axis. The projection of Es and Epi on the external
meshing line can be expressed as{

Es cosϕs = Es sin(wsct + βs + α−ψi)

Epi cosϕpi = Epi sin(wpct + βpi + α)
(15)

The projection of Epi and Er on the internal meshing line can be expressed as{
Epi cosγpi = Epi sin(wsct + βpi + α)
Er sinϕr = −Er sin(wrct + βr + α−ψi)

(16)

The comprehensive error along with the meshing line can be obtained by combining (6), (15),
and (16): {

espi = Aspi sin(wt + βspi) + Es sin(wsct + βs + α−ψi) + Epi sin(wpct + βpi + α)
erpi = Arpi sin(wt + βrpi) + Epi sin(wsct + βpi + α) − Er sin(wrct + βr + α−ψi)

(17)

For the ith planet gear, the relative displacements along with the meshing line can be deduced as{
Xspi = xs − xpi − xc − espi
Xrpi = xpi − xr − erpi

(18)

where xs = Rbsθs and xpi = Rbpiθbpi are the rotational displacements of the sun gear and planet
gear, respectively.

Then, the drive force and damp of the ith gear can be expressed as{
Fspi = kspiXspi
Frpi = krpiXrpi

(19)

 fspi = cspi
.

Xspi

frpi = crpi
.

Xrpi
(20)

where cpi = 2ξ

√
kpi

1/ms+1/mpi
is the coefficient of the meshing damp.
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Hence, the dynamic model of the planetary gear shown in (10)–(13) can be rewritten as follows:

θsL

TsL

θrL

TrL

θcL

TcL

θpiL
TpiL

Espi
Erpi



=

 T
Cp

11 T
Cp

12

T
Cp

21 T
Cp
22





θsD

TsD

θrD

TrD

θcD

TcD

θpiD
TpiD
espi
erpi



(21)

The coefficient matrix on the right side of (21) is the transfer matrix of the planetary gear, which
can be defined as

TCp =

 T
Cp

11 T
Cp

12

T
Cp

21 T
Cp
22

 (22)

where

TCp

11 =



1 0 0 0 0

−Is
(

d
dt

)2
−R2

bskspi −R2
bscspi

d
dt 1 0 0

3∑
i=1

(
RbsRbckspi + RbsRbccspi

d
dt

)
0 0 1 0 0

0 0
3∑

i=1

(
R2

brkrpi + R2
brcrpi

d
dt

)
1 0

0 0 0 0 1


(23)

T
Cp

12 =



0 0 0 0 0

0
3∑

i=1

(
RbsRbpikspi + RbsRbccspi

d
dt

)
0

3∑
i=1

(
Rbskspi + Rbscspi

d
dt

)
0

0 0 0 0 0

0
3∑

i=1

(
RbrRbpikrpi + RbrRbpicrpi

d
dt

)
0 0

3∑
i=1

(
Rbrkrpi + Rbrcrpi

d
dt

)
0 0 0 0 0


(24)

T
Cp

21 =



3∑
i=1

(
RbcRbskspi + RbcRbscspi

d
dt

)
0 −

3∑
i=1

(
RbcRbrkrpi + RbcRbrcrpi

d
dt

)
0

−Ic
(

d
dt

)2
−

3∑
i=1

(
mpiR2

c

(
d
dt

)2

+R2
bckspi + R2

bccspi
d
dt

)
0 0 0 0 0

RbsRbpikspi + RbcRbpicspi
d
dt 0 RbpiRbrkrpi + RbpiRbrcrpi

d
dt 0 −RbpiRbckspi −RbpiRbccspi

d
dt

0 0 0 0 0

0 0 0 0 0


(25)

TCp

22 =



1
−

3∑
i=1

(
RbcRbpikspi + RbcRbpicspi

d
dt

−RbcRbpikrpi −RbcRbpicrpi
d
dt

) 0 −

3∑
i=1

(
Rbckspi + Rbccspi

d
dt

)
−

3∑
i=1

(
Rbckrpi + Rbccrpi

d
dt

)
0 1 0 0 0

0
−Ipi

(
d
dt

)2
−R2

bpikspi −R2
bpicspi

d
dt

−R2
bpikrpi −R2

bpicrpi
d
dt

1 −Rbpikspi −Rbpicspi
d
dt Rbpikrpi + Rbpicrpi

d
dt

0 0 0 1 0
0 0 0 0 1


(26)



Symmetry 2020, 12, 1171 11 of 20
Symmetry 2020, 12, x FOR PEER REVIEW 8 of 21 

 

 

Figure 7. Meshing model of the sun gear and planet gear. 

 

Figure 8. Meshing model of the planet gear and gear ring. 

The sun gear is designated as s, the planet gear as pi (i = 1, 2, 3), the carrier as c, and the gear ring 
as r. The rotational angles of the sun gear, planet gear, and carrier are labeled as s , pi , and c . 
The meshing stiffness between the sun gear and the ith planet gear is kspi. The base radii of the sun 
gear, planet gear, and gear ring are Rbs, Rbp, and Rbr. Several sets of coordinates can be used to describe 
the geometrical relationship of the DCDS. One set is given by the absolute coordinate, which is 
established based on the fixed center  , ,O x y z . The second set is given by the actual coordinate of 
the sun gear, which is designated as {Ss-XsYsZs}. The planet gears are given by the equivalent 
coordinates {Sp-XpYpZp}, which orbit around the sun gear with a variable angle velocity wz. 

Suppose that, under the input drive torque, the rotational direction of the sun gear and carrier 
is positive, and the rotational direction of the planet gear is the opposite. The input drive torque and 
output torque are TD and TL. Then, the vibration differential equation can be established as 

 

 

 

 

3

1

3

1

3 3
2

1 1

0

s s spi spi bs Ds
i

r r rpi rpi br Dr
i

pi pi spi spi rpi rpi bpi

c pi c c spi spi rpi rpi bc L
i i

I F f R T

I F f R T

I F f F f R

I m R F f F f R T













 


  




  

     

 

       
 





 









 (9) 

Figure 7. Meshing model of the sun gear and planet gear.
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Figure 8. Meshing model of the planet gear and gear ring.

2.4. Modeling of the Transmission Process for the Differential Bevel Gear

The differential bevel gears can be considered to be composed of one driving gear and two driven
gears. The meshing dynamic model of the differential bevel gears can be expressed as

TcD − Ic
..
θcD − c

(
2Rbc

.
θcD −Rb1

.
θ1D −Rb2

.
θ2D − 2

.
e(t)

)
Rbc − km(2RbcθcD −Rb1θ1D −Rb2θ2D − 2e(t))Rbc = TCL

T1D − I1
..
θ1D + c

(
Rbc

.
θcD −Rb1

.
θ1D −

.
e(t)

)
Rb1 + km(RbcθcD −Rb1θ1D − e(t))Rb1 = T1L

T2D − I2
..
θ2D + c

(
Rbc

.
θcD −Rb2

.
θ2D −

.
e(t)

)
Rb2 + km(RbcθcD −Rb2θ2D − e(t))Rb2 = T2L

(27)
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θcL

TcL

θ1L

T1L

θ2L

T2L

EbL
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=



1 0 0 0 0 0 0

−R2
bckm −R2

bcc d
dt 1 RbcRb1km + RbcRb1c d

dt 0 RbcRb2km + Rb1c d
dt 0 2Rbckm + Rbcc d

dt

0 0 1 0 0 0 0

RbcRb1km + RbcRb1c d
dt 0 −R2

b1km −R2
b1c d

dt 1 0 0 −Rb1km −Rb1c d
dt

0 0 0 0 1 0 0

RbcRb2km + RbcRb2c d
dt 0 −R2

b2km −R2
b2c d

dt 0 0 1 −Rb2km −Rb2c d
dt

0 0 0 0 0 0 1





θcD

TcD

θ1D

T1D

θ2D

T2D

eb(t)



(28)

where θcL, θ1L, and θ2L are the output load rotational angle of the driving gear and driven gear, and TcL,
Tc1, and Tc2 are the output torque of the driving gear and driven gear, respectively. The first matrix on
the right side of (28) is the transfer matrix of the differential bevel gear without the rotational motion of
lumped inertia.
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The shaft segments I–V are considered to be a massless torsional spring with a uniform cross
section. Considering the effect of torsional deformation, the transfer matrix of each shaft segment can
be obtained as

Ti =



1 −
l2i

2EIsi
0 0 0

−
GIsi

li
1 GIsi

li
0 −ks

0 0 1 −
l2i

2EIsi
0

GIsi
li

0 −
GIsi

li
1 −ks

0 0 0 0 1


(29)

where G is the shear modulus, Li and Isi are the length and rotational inertia of the ith shaft segment,
and ks is the torsional stiffness.

3. Dynamic Characteristics Analysis and Test of the Transmission Process for DCDS

The transfer matrix can be obtained by combining (8), (22), (28), and (29) sequentially from
substructure 1 to substructure 9. The dynamic response can be computed by the characteristics
equations of w. After the natural frequency computing, the certain order of frequency can be
substituted in the whole transfer matrix. Then, one can obtain the linear state equation and the state
variables. The eigenvalues represent the natural frequency, and the state vectors are the vibration
mode shapes.

3.1. Dynamic Characteristics Analysis

Solve the characteristic equation wi(i = 1 · · · 5), which shows that the natural frequencies can
be obtained. The rotational speeds of the dual motors were set to 0–3000 r/min. The diameters of
shaft segments I–V were 0.020, 0.018, 0.025, 0.030, and 0.030 m, respectively, and the modulus of
elasticity E = 2.06 × 1011 Pa. The parameters of the planetary gear and differential bevel gear for the
computational analysis are shown in Table 1.

Table 1. The parameters of the planetary gear and differential bevel gear.

Planetary Gear Differential Bevel Gear

Number of teeth 20 Number of teeth 35
Modulus 1.5 Modulus at main aspect 1.5

Pressure angle 20 Pressure angle 20
Length of shaft 30 mm Cone apex angle 45

Helical angle 12.5

Since the main exciting sources of the DCDS are the alternating resistance torques, the torsional
and radial vibrations were the main modes which were modeled in Section 2, and the axial motion
was ignored. To study the effect of axial motion on the dynamic characteristics, the dynamic analysis
of the planetary gear, which is the most complex component in the DCDS, is presented. In practice,
the driving force which is transferred by the contact of the teeth’s surface is composed of elastic force
and damping force. In the numerical computation and simulation, the impact function method (IFM)
was adopted to express the contact force:

F =

 0 q ≥ q0

K(q0 − q)e
−C( dq

dt )STEP(q, q0 − d, 1, q0, 0) q < q0
(30)

where K is the stiffness coefficient, q0 is the initial distance of the contact surface, q is the actual motion
displacement, and STEP is the step function. The simulated results are shown in Figures 9–11. As the
rotational speed increased from 1 to 50 r/s, the torsional, radial, and axial vibrations became more
severe. The torsional and radial vibrations were almost the same when considering axial motion or
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not, which means that the axial motion made no difference to the dynamic characteristics. Moreover,
Figure 11 shows that the difference of the axial vibration amplitudes in the z axis was several times
lower than the torsional and radial vibrations. Each pair of meshing gears had a symmetrical structure,
and the dynamic characteristics had periodic behavior. Figure 10 shows that the radial vibrations were
very close in the x and y axes. Hence, the axial vibration of the gears could be neglected in the dynamic
analysis of the DCDS, especially at low frequencies.
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Then, the time–frequency domain dynamic characteristics of the different substructures in the
transmission process were computed and analyzed by the dynamic model. Figure 12 shows the
dynamic response of the DCDS with the driving of the single main motor 1 at the speed of 600 r/min.
At this time, the rotational speeds of the gears related to the assistant motor 2 were 0, and the ring gear
could be considered to be fixed. Figure 13 shows the dynamic response of the DCDS with the driving
of the single assistant motor 2 at the same rotational speed. At this time, the rotational speeds of the
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sun gear and related gears were 0. From the time domain curve, the varying trend of each substructure
driven by the main motor 1 and assistant motor 2 was consistent. For the asymmetrical transmission
structure, the amplitude of the dynamic response driven by the main motor 1 was relatively larger
than that driven by the assistant motor 2. As can be seen in the frequency domain curve, in the initial
state, the dynamic response of each substructure mainly consisted of first, second, and third harmonic
frequencies. The amplitude of each harmonic frequency increased with the increasing of the rotational
speed, and the stabilizing time became longer as well.Symmetry 2020, 12, x FOR PEER REVIEW 15 of 21 
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The natural characteristics are related to the meshing stiffness of the gear. The variation of the
natural frequency along with the increase of the meshing stiffness is shown in Figure 14. The first and
second vibration modes were barely affected by the increasing of the meshing stiffness; the first two
vibration modes were mainly caused by the mass wheel at the end of the shaft. The variation trend
of the third and fourth order vibrations indicates that improving meshing stiffness can increase the
natural frequency. The third vibration mode increased as the meshing stiffness improved from 0 to
10 N/m; the third order vibration was mainly generated by the bevel gear set, and the amplitude was
obviously affected by the meshing stiffness. Meanwhile, the fourth vibration mode increased from
1167.1 to 1574.5 rad/s. The fourth order vibration mode reached a stable value more slowly than the
first three vibration modes. When the meshing stiffness was set to 6.5× 108 N/m, which is approximate
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to the actual value, the first four natural frequencies could be calculated as 219.604, 500.219, 1083.379,
and 1389.928 rad/s, respectively.Symmetry 2020, 12, x FOR PEER REVIEW 16 of 21 

 

 
Figure 14. The variation of natural frequency along with the increase of meshing stiffness. 

The DCDS can be divided into an input shaft (Shafts I and II), an intermediate shaft (Shaft III), 
and an output shaft (Shafts IV and V). The normalized vibration modal shapes of the first four natural 
frequencies from the dual motors to the output shaft are shown in Figure 15. The meshing stiffness 
were set to 2, 5, and 8 MN/m. The relative deflection of each part could be obtained with Gauss 
elimination and the recurrence formula of the differential motion equation on the basis of the 
calculated natural frequency. Figure 15a,b indicate that the first two vibration modes were mainly 
caused by the dual motors, which were mounted at the input end of the equivalent shafting. Figure 
15a shows that the increase of the meshing stiffness could obviously reduce the vibration amplitude 
of the front end of the DCDS. Figure 15b,d indicate that the change of the meshing stiffness had a 
distinct effect on the second and fourth vibration modes of the DCDS. Figure 15c shows that the third 
vibration mode shape with 8 MN/m stiffness was the opposite of the other two stiffness situations, 
while the variation rules were similar. With the increase of the meshing stiffness, the amplitudes of 
the vibration mode at the front end of the DCDS became lower. Overall, the variation trend of the 
third and fourth vibration modes had an increasing trend with the improving of the stiffness. Hence, 
increasing the meshing stiffness will suppress the vibration amplitude of the low-order vibration, 
especially the front and tail ends of the DCDS. Nevertheless, it may amplify the vibration of the high-
order modes of the DCDS. 

 
Figure 15. The normalized model of the first four vibration modes with different meshing stiffness: 
(a) The first mode shape varying from the axial length; (b) the second mode shape varying from the 
axial length; (c) the third mode shape varying from the axial length; (d) the fourth mode shape varying 
from the axial length. 

Figure 14. The variation of natural frequency along with the increase of meshing stiffness.

The DCDS can be divided into an input shaft (Shafts I and II), an intermediate shaft (Shaft III),
and an output shaft (Shafts IV and V). The normalized vibration modal shapes of the first four natural
frequencies from the dual motors to the output shaft are shown in Figure 15. The meshing stiffness
were set to 2, 5, and 8 MN/m. The relative deflection of each part could be obtained with Gauss
elimination and the recurrence formula of the differential motion equation on the basis of the calculated
natural frequency. Figure 15a,b indicate that the first two vibration modes were mainly caused by the
dual motors, which were mounted at the input end of the equivalent shafting. Figure 15a shows that
the increase of the meshing stiffness could obviously reduce the vibration amplitude of the front end of
the DCDS. Figure 15b,d indicate that the change of the meshing stiffness had a distinct effect on the
second and fourth vibration modes of the DCDS. Figure 15c shows that the third vibration mode shape
with 8 MN/m stiffness was the opposite of the other two stiffness situations, while the variation rules
were similar. With the increase of the meshing stiffness, the amplitudes of the vibration mode at the
front end of the DCDS became lower. Overall, the variation trend of the third and fourth vibration
modes had an increasing trend with the improving of the stiffness. Hence, increasing the meshing
stiffness will suppress the vibration amplitude of the low-order vibration, especially the front and tail
ends of the DCDS. Nevertheless, it may amplify the vibration of the high-order modes of the DCDS.

3.2. Experiment Setup and Test

To verify the proposed comprehensive dynamic model of the DCDS, the natural frequency and
dynamic response were tested by experiment. The experimental platform of the DCDS is shown in
Figure 16. The variation of the acceleration vibration response of the DCDS was measured by an NI
vibration analyzer. Triaxial acceleration sensors were selected to collect vibration signals, and the
dynamic performance of the DCDS was tested by eddy current sensors and an NI vibration monitoring
analyzer, as shown in Figure 17, so that the torsional and radial vibration of the gear set and power
shaft could be measured.
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from the axial length.

Symmetry 2020, 12, x FOR PEER REVIEW 17 of 21 

 

3.2. Experiment Setup and Test 

To verify the proposed comprehensive dynamic model of the DCDS, the natural frequency and 
dynamic response were tested by experiment. The experimental platform of the DCDS is shown in 
Figure 16. The variation of the acceleration vibration response of the DCDS was measured by an NI 
vibration analyzer. Triaxial acceleration sensors were selected to collect vibration signals, and the 
dynamic performance of the DCDS was tested by eddy current sensors and an NI vibration 
monitoring analyzer, as shown in Figure 17, so that the torsional and radial vibration of the gear set 
and power shaft could be measured.  

 
Figure 16. The dynamic experiment setup of the DCDS. 

 
Figure 17. Dynamic response detection diagram of the DCDS. 

The rotational speed of the dual motors could be set from 500 to 3000 r/min. According to 
sampling theorem 2s mf f , the sampling frequency was 1000 Hz in order to ensure the reliability of 

the experimental data. The vibration voltage signal   a k  (݇ = 0, 1, 2, ..., ܰ, where ܰ is the number 

of samples) collected by the acceleration sensor was converted into an acceleration signal with unit 
conversion; then, the time domain signal could be obtained. Figure 17 shows the filtered average 
curve after the separation of the trend term and the noise signal by an IIR digital filter. In order to 
obtain displacement signals, the acceleration signal needed to be integrated twice through the 
trapezoidal integral formula      11

k

i ii
y k t a a

     /2. Finally, the frequency characteristic curve 

could be obtained by DFT:   1 2 /

0
( )

N j kr N

r
Y k y r e  


 . Figure 18 shows the original time domain 

characteristic curve and the first four natural frequencies by DFT of the DCDS. 

Figure 16. The dynamic experiment setup of the DCDS.

Symmetry 2020, 12, x FOR PEER REVIEW 17 of 21 

 

3.2. Experiment Setup and Test 

To verify the proposed comprehensive dynamic model of the DCDS, the natural frequency and 
dynamic response were tested by experiment. The experimental platform of the DCDS is shown in 
Figure 16. The variation of the acceleration vibration response of the DCDS was measured by an NI 
vibration analyzer. Triaxial acceleration sensors were selected to collect vibration signals, and the 
dynamic performance of the DCDS was tested by eddy current sensors and an NI vibration 
monitoring analyzer, as shown in Figure 17, so that the torsional and radial vibration of the gear set 
and power shaft could be measured.  

 
Figure 16. The dynamic experiment setup of the DCDS. 

 
Figure 17. Dynamic response detection diagram of the DCDS. 

The rotational speed of the dual motors could be set from 500 to 3000 r/min. According to 
sampling theorem 2s mf f , the sampling frequency was 1000 Hz in order to ensure the reliability of 

the experimental data. The vibration voltage signal   a k  (݇ = 0, 1, 2, ..., ܰ, where ܰ is the number 

of samples) collected by the acceleration sensor was converted into an acceleration signal with unit 
conversion; then, the time domain signal could be obtained. Figure 17 shows the filtered average 
curve after the separation of the trend term and the noise signal by an IIR digital filter. In order to 
obtain displacement signals, the acceleration signal needed to be integrated twice through the 
trapezoidal integral formula      11

k

i ii
y k t a a

     /2. Finally, the frequency characteristic curve 

could be obtained by DFT:   1 2 /

0
( )

N j kr N

r
Y k y r e  


 . Figure 18 shows the original time domain 

characteristic curve and the first four natural frequencies by DFT of the DCDS. 

Figure 17. Dynamic response detection diagram of the DCDS.

The rotational speed of the dual motors could be set from 500 to 3000 r/min. According to
sampling theorem fs > 2 fm, the sampling frequency was 1000 Hz in order to ensure the reliability of
the experimental data. The vibration voltage signal

{
a(k)

}
(k = 0, 1, 2, . . . , N, where N is the number

of samples) collected by the acceleration sensor was converted into an acceleration signal with unit
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conversion; then, the time domain signal could be obtained. Figure 17 shows the filtered average curve
after the separation of the trend term and the noise signal by an IIR digital filter. In order to obtain
displacement signals, the acceleration signal needed to be integrated twice through the trapezoidal
integral formula y(k) = ∆t

∑k
i=1

[
a(i−1) + a(i)

]
/2. Finally, the frequency characteristic curve could be

obtained by DFT: Y(k) =
∑N−1

r=0 y(r)e− j2πkr/N. Figure 18 shows the original time domain characteristic
curve and the first four natural frequencies by DFT of the DCDS.Symmetry 2020, 12, x FOR PEER REVIEW 18 of 21 
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The comparison of the first four natural frequencies between the dynamic model and the
experimental test is shown in Table 2. On the whole, the first four natural frequencies of the
experimental test corresponded closely to the computed result of the dynamic model. The relative
errors, which ranged from 2.61% to 7.75%, were within allowable error. Due to the presence of damping,
the actual experimental results were relatively higher than the computed frequencies. The comparison
results confirmed that the computed results were approximate to the experimental natural frequencies,
which illustrates the efficiency of the proposed dynamic model.

Table 2. Comparison of the first four natural frequencies between the dynamic model and the
experimental test.

Order Natural Frequency of
Dynamic Model (rad/s)

Natural Frequency of
Experimental Test (rad/s) Relative Error (%)

First 219.604 211.008 4.07
Second 500.219 482.932 3.58
Third 1083.379 1005.428 7.75

Fourth 1389.928 1354.596 2.61

The experimental results of the dynamic response for the DCDS are shown in Figure 19.
The variation trend of the experimental dynamic responses was consistent with that of the computed
results. Furthermore, the first four harmonic frequencies were also approximate, which illustrates that
the dynamic model can reflect the actual operation process of the DCDS. Figure 19a–d show that the
first and second harmonic frequencies were significantly stimulated in substructures 2, 4, 6, and 8.
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However, the amplitudes of the second harmonic frequency of substructures 6 and 8 were much lower
than substructures 2 and 4, which indicates that the second harmonic component was mainly caused
by Shafts I and II connected with the dual motors. The amplitude of the second harmonic frequency
became lower as the distance away from the dual motors increased. Moreover, the third and fourth
harmonic frequencies were stimulated, which was unapparent in the computed results. That was
perhaps caused by nonlinear factors such as meshing backlash and friction, which can be a future
research topic.Symmetry 2020, 12, x FOR PEER REVIEW 19 of 21 
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for the substructure 6; (d) Experimental result of the dynamic response for the substructure 8.

4. Conclusions

A theoretical and experimental study of the dynamic characteristics of the DCDS by TMM was
proposed. The main conclusions of this study are as follows:

(1) Firstly, the transmission dynamics model for the DCDS was developed, and the whole system
was divided into several substructures by considering the asymmetrical transmission structure of the
dual motors. The dynamic model of the transmission process for the planetary gear and differential
bevel gear was proposed by considering the torsional vibration, transmission error, and meshing
stiffness, which can be excited in the practical driving process. The dynamic characteristics and
vibration shapes were analyzed with different driving mode and time-varying stiffness.

(2) Then, a detailed analysis of the variation trend of the natural characteristics and dynamic
responses was numerically computed and presented. The effect of the meshing force was affected by
the rotational speed of the dual motors. Compared with the torsional vibrations, the axial vibration
can be neglected in the dynamic analysis of a DCDS, especially in low frequencies.

(3) The natural characteristics were analyzed by considering the time-varying meshing stiffness
of the gear. The first two vibration modes are mainly caused by the input of the equivalent shafting,
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and increasing the meshing stiffness can obviously reduce the vibration amplitude. The main excitation
sources are the input front end and output tail end of the transmission chain. Increasing the meshing
stiffness will suppress the vibration amplitude of the low-order vibration. Nevertheless, it may amplify
the vibration of the high-order modes of a DCDS.

(4) Finally, the dynamic characteristics experiment for the DCDS was carried out. The natural
characteristics and dynamic responses were detected and analyzed by a vibration monitoring analyzer.
The first four natural frequencies and variation trend of the experimental test were generally consistent
with the numerically computed results. The relative errors ranged from 2.61% to 7.75%, which
illustrates the efficiency of the proposed dynamic model. Furthermore, the experimental results
of the dynamic responses indicate that the first and second harmonics of meshing frequencies are
mainly caused by the shafts connected to the dual motors, which is consistent with the analysis of
the dynamic model. The third and fourth harmonics are mainly caused by the planetary gear and
bevel gear, respectively. In the practical driving process, the damping and control scheme can be
specifically designed.

The main implication of this study is the dynamic characteristics analysis of the transmission
process for the DCDS in electric vehicles. The modeling and experimental test method, which has
been validated by the vibration detection system, can be used in the dynamic analysis of a DCDS.
The proposed analysis and test method can also help develop effective control algorithms to create a
proper driving control mode so as to suppress vibration and improve driving smoothness.
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