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Abstract: With the increase in transportation emissions, road diseases in the saline soil area of Jilin
Province have become a problem that requires serious attention. In order to improve the subgrade
performance, the structural yield strength (SYS) of remolded soil and its factor sensitivity are
investigated in this study. Saline soils in Western Jilin are structural in the sense that the bonding
strength of soil skeleton is mainly provided by the solidification bond formed by a physicochemical
interaction between particles. Its SYS is influenced by its cementation type, genetic characteristics,
original rock structure, and environment. Because of the high clay content in Zhenlai saline soil,
the specific surface area of soil particles is large, and the surface adsorption capacity of soil particles
is strong. In addition, the main cation is Na+. The cementation strength of bound water film between
soil particles is thus easily affected by water content and salt content, and compaction is also an
important factor affecting the strength of soil. Therefore, in this study, the back-propagation neural
network (BPNN) model and a support vector machine (SVM) are used to explore the relationship
of saline soil’s SYS with its compactness, water content, and salt content. In total, 120 data points
collected by a high-pressure consolidation experiment are applied to building BPNN and SVM model.
For eliminate redundant features, Pearson correlation coefficient (rPCC) is used as an evaluation
standard of feature selection. The K-fold cross-validation method was used to avoid over fitting.
To compare the performance of the BPNN and SVM models, three statistical parameters were used:
the determination coefficient (R2), root mean square error (RMSE), and mean absolute percentage
deviation (MAPD). The result shows that the average values of R2, RMSE, and MAPD of the BPNN
model are superior to the values of the SVM. We conclude that the BPNN model is slightly better
than the SVM for predicting the SYS of saline soil. Thus, the BPNN model is used to analyze the
factor sensitivity of SYS. The results indicate that the influence degrees of the three parameters
are as follows: water content > compactness > salt content. This study can provide a basis for
estimating the structural yield pressure of soil from its basic properties, and can provide a new way
to obtain parameters for geotechnical engineering, ensuring safety while maintaining symmetry in
engineering costs.
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1. Introduction

Pre-consolidation pressure is not only important for determining the stress history of soil, but is
also crucial for compression and deformation analysis of soil under different historical environments [1].
The traditional definition of pre-consolidation pressure is the maximum vertical effective consolidation
pressure that the soil has undergone over time, including self-weight pressure and other loads.
Clay soils are widely distributed in China. Our research team studied the engineering geology of
the representative clay soils. It was found that the rule of change of pre-consolidation pressure
with the depth of Xiashu loess in Wuhan is contrary to that of traditional pre-consolidation pressure.
The pre-consolidation pressure of the soil samples were determined by the Casagrande method [2].
However, its basic physical properties, hydraulic properties, and mechanical properties are positively
correlated with pre-consolidation pressure. In addition, the pre-consolidation pressure of the 20 cm
soil layer is higher than that of the 50 cm and 70 cm soil layers of saline soil in Western Jilin [3]. This is
due to the solidification bond formed between particles by physicochemical action in the long process
of soil formation, which gives the soil skeleton a type of connection strength called structural strength.
This kind of soil with structural strength is called structural soil. The pre-consolidation pressure
determined by the Casagrands method can only be applied to unstructured soils. For structural soils,
the result obtained by this method is called the structural yield strength (SYS) [3]. Butterfield (1979)
proposed a more appropriate method to determine SYS by using double logarithmic coordinates [4].
Later, many scholars confirmed the effectiveness of this method [5,6].

Western Jilin Province is one of the most problematic areas of soil salinization in China, and is also
a typical seasonal frozen distribution area [7]. The area’s freeze–thaw cycles and dry–wet cycles make
this ecosystem fragile, as salt migrates upward and the area of saline soil increases year by year [8].
The geological characteristics of the saline soil have led to aggravation of road diseases in the area,
such as salt heaving, frost heaving, and frost boiling [9]. With the development of construction projects
and the increase in heavy transportation tasks, it is urgent to improve the subgrade performance of
western Jilin. Therefore, in roadbed design, fully considering the SYS of soil and its variations under
the influence of various factors is beneficial for the design of the subgrade projects, ensuring safety,
and maintaining symmetry in the cost of engineering.

The SYS is usually obtained in a laboratory by a high pressure consolidation test [10], which is
time-consuming and expensive [11]. Specific laboratory equipment and experienced geotechnical
engineers are needed to obtain reliable SYS. Therefore, it is of great practical significance to establish a
mathematical model to determine SYS of soil on the basis of the existing test results [12]. Soil strength
and deformation parameters are affected by cementation type, genetic characteristics, the original rock
structure, and the environment. Therefore, it is feasible to mine the relationship of soil strength and
deformation parameters with their influencing factors, and to predict soil strength and deformation
parameters by influencing factors.

Many empirical formulas have been developed by many researchers to reflect the relationship
of various parameters and the strength of soil [13,14]. The main drawback of this method is that
it ignores the complex mechanism of soil mechanical properties. Regression analysis needs prior
knowledge about the nonlinear relationship between parameters and strength, and requires experts to
judge the degree of the nonlinearity. When multiple variables are needed for an empirical formula
model, there may be multicollinearity problems caused by the correlation between variables [15].
Artificial intelligence (AI) has advanced and shown excellent performance in solving engineering
problems compared with traditional methods [16]. Among AI methods, the back-propagation neural
network (BPNN) model and support vector machine (SVM) have significant advantages in learning
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the complex relationship between multi-dimensional data [14,17]. Because BPNN and SVM simplify
operations and have better robustness, they are widely used to explore the complex relationship
between soil parameters in geotechnical engineering [18]. In this way the BPNN and SVM models
were used to explore the relationship between water content, salt content, compactness, and SYS in
this study.

The main objective of this study is to develop a prediction model for SYS in the design stage of
roadbed engineering, so remolded soil was used. The remolded soil samples with different water
content, compactness, and salt content were used for the high-pressure consolidation test, and 120 data
points were obtained. To eliminate redundant features, the Pearson correlation coefficient (rPCC) is
an evaluation standard for feature selection. The K-fold cross-validation method was used to avoid
overfitting. The BPNN and SVM were used to determining the relationship of SYS with the water
content, salt content, and compactness of saline remolded soil in the west of Jilin Province, and the
prediction model for SYS was established. Finally, the influence of water content, salt content and
compactness on the SYS was studied.

2. Materials and Methods

2.1. Study Area

The western area of Jilin Province is a typical saline soil region in China. The study area is located
in the low-lying Songnen Plain, which belongs to a semi-humid and semi-arid climate and is also
a typical seasonal frozen soil area. Because of climate and environmental geological factors, salt
accumulates more easily on the surface of this area. As a consequence, vegetation in this area is scarce
and the ecological environment is fragile (Figure 1). Temperatures below zero in winter last from
November to March every year, resulting in surface freezing and upward salinity migration under
the influence of the temperature gradient. Precipitation is concentrated from June to August, and the
annual precipitation is low. The average precipitation from 2008 to 2018 in Zhenlai is shown in Figure 2,
along with the rainfall data collected from China Meteorological Science Data Center. The average
precipitation is distributed symmetrically, with the highest in July. In spring and autumn, evaporation
is especially strong, so a large amount of salt accumulates on the soil surface year by year under the
action of concentration gradient, which makes Jilin Province a typical saline soil area.
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The soil samples were collected from Zhenlai County, Jilin Province, on 8 May, 2016 (45◦59′41.62” N,
123◦13′46.88” E, H 137.0 ± 0 m). The location of the sampling points is shown in Figure 1. Soil samples
were taken vertically downward and collected every 10 cm of depth at the sampling points. The physical
and chemical properties of each soil layer were determined under the guidance of GB/T 50123 (1999).
From the surface to 150 cm, the natural density of the samples was 1.60~2.02 g/cm3, and the natural
moisture content was 3.20%~17.40%. Due to strong evaporation, the surface layer had the lowest
moisture content at 3.20%. The organic content was 0.168%~0.488%. The grain size composition of
the soil samples was obtained by particle size analysis, which showed that the sand content of the
samples is 5.66%~15.99%, the silt content is 46.92%~57.81%, and the clay content is 26.21%~45.07%.
Thus, the saline soil is mainly composed of silt particles, followed by clay particles and sand particles.

In this study, the total soluble salt content is determined using a constant temperature water bath.
The total soluble salt in the saline soil was 0.100%~0.408% from the surface to 150 cm. The salt content
of the soil samples at 0~70 cm depth was higher than 0.3%, and reduced below 70 cm. The content of
Na+ and K+ was determined by a flame photometer.

Results show that the primary anion in the saline soil is HCO3
−, and the primary cation is Na+.

The high clay and silt content in the saline soil increases the specific surface area and surface energy,
and also makes the adsorption capacity of the soil surface stronger [9]. Combined with the high content
of Na+, a thick diffusion layer forms on the surface of soil particles, which will weaken the bound
water connection between particles until it disappears [19].

The curve of ion components with depth is shown in Figure 3. We found that the 40 cm soil
layer is the turning point, providing the maximum point of total soluble salt content, HCO3

− content,
and SO4

2− content. Therefore, the 40 cm soil layer was selected as the experimental soil for studying
the compression characteristics of saline soil in Zhenlai, and the results from the physical and chemical
tests are shown in Tables 1 and 2.

Table 1. Physical indexes of 40 cm saline soil.

Property Grain Size Composition Water
Content ω

(%)

Optimum
Water Content

ω0 (%)

Atterberg Limits

Sand
(%) Silt (%) Clay (%) Liquid

Limit (%)
Plastic

Limit (%)

Value 8.0 53.5 38.5 14.46 20.5 35 17

Table 2. Concentration of major chemicals in saline soil.

Soluble
Content (%)

Main Ions Concentration(mmol/kg) Organic Content
(%)Na+ K+ Mg2+ + Ca2+ SO42− HCO3− Cl−

0.408 9.88 0.19 2.99 8.82 12.54 2.40 0.189
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2.2. Data Preparation

2.2.1. Specimen Design

The high clay and silt content in the saline soil increases the soil’s specific surface area and surface
energy and strengthens the adsorption capacity of the soil surface. The higher the content of Na+ in
the soil, the thicker the bound water film on the outer surface of the soil particles [20]. When the water
content is very low, salt crystallizes and forms a bond between soil particles. With an increase of the
water content, the strength and the stability of the soil decreases because the salt dissolves in water,
which thickens the bound water film and weakens the connection between soil particles. Because the
salt content and water content are the factors that affect the thickness and cementation strength of the
bound water film between soil particles, they have a great influence on the structural strength of saline
soil. The natural salt content of the 40 cm soil layer in western Jilin Province is 0.408%, and the highest
was 1.7%, so the salt content was set to 0.0%, 0.4%, 1.0%, and 2.0%. Combined with the natural water
content and the optimal water content, the water content was set to 13%, 14%, 15%, 16%, 17%, 18%,
19%, 20%, 21%, and 23%.

Compactness requirements are different for different projects. Compactness requirements in
highway projects are generally greater than 90%, and those of other projects are at least 85%.
When compactness exceeds 95%, it is difficult to compact the soil. In terms of economic benefits,
too much compaction should be avoided. Therefore, considering with the purpose of this test,
the compactness was set at 85%, 90%, and 95%, respectively.

2.2.2. High Pressure Consolidation Test

The soil samples were soaked repeatedly in distilled water and desalinated. According to the
water content and salinity setting, a certain quantity of soluble salt was added to distilled water to
prepare the solution. The prepared solution was evenly sprayed on the desalinated air-dried soil.
After full mixing, it was sealed in a freshness-preserving bag and placed in a humidifying cylinder
for 24 h to ensure the solution was fully and evenly distributed. The soil sample was compacted
into a cutting ring (D = 61.8 mm; H = 20 mm) by the layer-compaction method. A high-pressure
consolidation experiment was carried out and 120 data points were obtained by the double logarithmic
coordinate method [4]. The double logarithmic coordinate method is to draw the compression curve
of soil samples in ln(1 + e)–lg(P) (where e is the void ratio and P is the vertical load) coordinates (as
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shown in Figure 4). In the double logarithmic coordinate method, the compression curve of a soil
sample can be fitted by two straight lines, and the vertical load, corresponding to the intersection point
of the two lines, is the structural yield pressure (SYS). The results are shown in Table 3 below.
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Table 3. The structural yield strength of the remolded saline soil in Zhenlai.

Number ω

(%)
C

(%)
S

(%)
SYS
(kPa) Number ω

(%)
C

(%)
S

(%)
SYS
(kPa) Number ω

(%)
C

(%)
S

(%)
SYS
(kPa)

1 13 85 0.0 320 41 16 90 0.0 331 81 19 95 0.0 335
2 13 85 0.4 383 42 16 90 0.4 427 82 19 95 0.4 363
3 13 85 1.0 464 43 16 90 1.0 412 83 19 95 1.0 285
4 13 85 2.0 464 44 16 90 2.0 325 84 19 95 2.0 285
5 13 90 0.0 403 45 16 95 0.0 394 85 20 85 0.0 245
6 13 90 0.4 391 46 16 95 0.4 479 86 20 85 0.4 316
7 13 90 1.0 497 47 16 95 1.0 469 87 20 85 1.0 279
8 13 90 2.0 509 48 16 95 2.0 393 88 20 85 2.0 254
9 13 95 0.0 457 49 17 85 0.0 191 89 20 90 0.0 367

10 13 95 0.4 400 50 17 85 0.4 209 90 20 90 0.4 407
11 13 95 1.0 521 51 17 85 1.0 292 91 20 90 1.0 299
12 13 95 2.0 598 52 17 85 2.0 260 92 20 90 2.0 279
13 14 85 0.0 462 53 17 90 0.0 237 93 20 95 0.0 422
14 14 85 0.4 447 54 17 90 0.4 288 94 20 95 0.4 457
15 14 85 1.0 483 55 17 90 1.0 343 95 20 95 1.0 335
16 14 85 2.0 475 56 17 90 2.0 272 96 20 95 2.0 343
17 14 90 0.0 631 57 17 95 0.0 260 97 21 85 0.0 209
18 14 90 0.4 457 58 17 95 0.4 355 98 21 85 0.4 251
19 14 90 1.0 545 59 17 95 1.0 443 99 21 85 1.0 248
20 14 90 2.0 578 60 17 95 2.0 306 100 21 85 2.0 152
21 14 95 0.0 813 61 18 85 0.0 208 101 21 90 0.0 292
22 14 95 0.4 468 62 18 85 0.4 240 102 21 90 0.4 316
23 14 95 1.0 558 63 18 85 1.0 275 103 21 90 1.0 266
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Table 3. Cont.

Number ω

(%)
C

(%)
S

(%)
SYS
(kPa) Number ω

(%)
C

(%)
S

(%)
SYS
(kPa) Number ω

(%)
C

(%)
S

(%)
SYS
(kPa)

24 14 95 2.0 627 64 18 85 2.0 232 104 21 90 2.0 266
25 15 85 0.0 327 65 18 90 0.0 249 105 21 95 0.0 351
26 15 85 0.4 408 66 18 90 0.4 316 106 21 95 0.4 389
27 15 85 1.0 404 67 18 90 1.0 318 107 21 95 1.0 299
28 15 85 2.0 306 68 18 90 2.0 249 108 21 95 2.0 299
29 15 90 0.0 363 69 18 95 0.0 286 109 23 85 0.0 226
30 15 90 0.4 448 70 18 95 0.4 347 110 23 85 0.4 229
31 15 90 1.0 464 71 18 95 1.0 346 111 23 85 1.0 201
32 15 90 2.0 376 72 18 95 2.0 261 112 23 85 2.0 139
33 15 95 0.0 537 73 19 85 0.0 197 113 23 90 0.0 266
34 15 95 0.4 473 74 19 85 0.4 219 114 23 90 0.4 272
35 15 95 1.0 497 75 19 85 1.0 248 115 23 90 1.0 226
36 15 95 2.0 433 76 19 85 2.0 226 116 23 90 2.0 254
37 16 85 0.0 313 77 19 90 0.0 269 117 23 95 0.0 343
38 16 85 0.4 355 78 19 90 0.4 331 118 23 95 0.4 355
39 16 85 1.0 385 79 19 90 1.0 272 119 23 95 1.0 285
40 16 85 2.0 298 80 19 90 2.0 237 120 23 95 2.0 285

Note: (1) ω: water content; (2) C: compactness; (3) S: salt content; (4) SYS: structural yield strength.

2.2.3. Feature Selection

Feature selection uses some evaluation criteria to select feature subsets from the original feature
space and eliminate redundant features, and uses data preprocessing to improve the efficiency of the
model [21]. The Pearson correlation coefficient (rPCC) is an evaluation standard of feature selection.
Its values range from −1 to 1. The closer the value is to −1 or 1, the stronger the correlation between
features. The formula of the Pearson correlation coefficient is as follows [22]:

rPCC =

∑n
i = 1[(xi − x)(yi − y)]√∑n

i = 1(xi − x)2
√∑n

i = 1(yi − y)2
. (1)

The variable xi is water content, salt content or compactness, and yi is the structural yield strength.
x and y are the average values of the corresponding variables, and n is the number of samples. Generally
speaking, rPCC < 0.40 indicates weak correlation among variables, 0.40 ≤ rPCC < 0.70 indicates moderate
correlation, 0.70 ≤ rPCC < 0.9 indicates strong or high correlation, and extremely strong correlation is
indicated when 0.90 ≤ rPCC ≤ 1.

After calculation, the Pearson correlation coefficients of the water content, compactness, and salt
content with the structural yield pressure are 1, 1, and 0.402, respectively. There is an extremely
strong correlation between water content, compactness, and structural yield pressure. The relationship
between salt content and yield pressure is a moderate correlation. Therefore, in this study, the water
content, compactness, and moisture content are retained to establish the model.

2.2.4. K-Fold Cross-Validation

Performance evaluation of machine learning models is very important for model selection. K-fold
cross-validation is a method to evaluate the model’s performance through sample reuse, which can
effectively reduce the prediction error caused by sampling randomness in the modeling process [23].
Therefore, in this study we used K-fold cross-validation for model evaluation and to avoid over-fitting,
thus improving the stability and generalization ability of the models.

The main concept behind K-fold cross-validation is to divide the experimental data into K parts,
where K-1 parts are the training dataset, and 1 part is the testing dataset. One part was tested alternately;
training and testing were carried out K times to obtain the K group model evaluation parameters [24].
Finally, the average value of the evaluation parameters was used to evaluate the different models,
and the model with the best evaluation parameters was selected.
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Before the establishment of the two prediction models, in order to avoid over-fitting, 120 groups
of experimental datasets were divided through five-fold cross-validation.

In order to reduce the influence caused by differences in the order of magnitude, the variables of
the training dataset and testing dataset were normalized.

2.3. Methodology

2.3.1. Back Propagation Neural Network (BPNN)

The neural network method is a simplified mathematical model based on the concept of information
transmission between biological neurons. Neural networks have been applied in signal processing,
pattern recognition, machine control, expert system, and other fields, and have been frequently applied
in the field of prediction. BPNN has the strong ability of non-linear mapping and can correctly
solve some non-linear problems. The BPNN algorithm uses the Least Mean Square (LMS) learning
algorithm as its basic algorithm. The gradient search algorithm is used in the learning process of
the network and error propagation is used to correct the weight and to minimize the mean square
deviation of the actual output and the expected output of the network. The structure of the BPNN
model of this study is shown in Figure 5. Generally, though the BPNN model can get good results for
fitting and classification, there are some problems such as weak interpretability, over fitting, and so
on. Because of the advantages of BPNN, such as its simple topology, high error precision, easy
programming, and strong practicability, the applications of BPNN are extensive, making it one of the
most important algorithms in the field of intelligence. In the field of civil engineering, the BPNN has
been applied to structural damage detection [25], soft rock strength prediction [26], ground vibration
prediction [27], ground subsidence [28,29], engineering cost prediction [30,31], concrete expansion
prediction [32], and soil-well potential prediction [33,34], as well as conductivity prediction and other
engineering topics [35].
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2.3.2. Support Vector Machine (SVM)

Support vector machine (SVM) is a machine learning method based on statistical learning
theory [36], Vapnik-Chervonenkis dimension theory and structural risk minimization principles,
thereby giving it good generalization ability for future data [37,38]. SVM was originally used to
solve pattern recognition problems. With using the insensitive loss function, SVM is gradually
applied to solve non-linear regression problems [39]. The SVM is mainly used in tunnel deformation
prediction [40], structural damage detection and diagnosis [41], earthquake disaster prediction [42],
and saline–alkali degree classification [43] in the field of civil engineering.

For a training dataset
(xi, yi), i = 1, 2, . . . , l, xi ∈ Rn, yi ∈ R, (2)
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the dataset is fitted using linear functions in the high-dimensional feature space, as shown below:

y(x) = wTϕ(x) + b. (3)

The nonlinear mapping function ϕ (x) maps the dataset from the input space to the
high-dimensional feature space so that the nonlinear fitting problem in the input space becomes
the linear fitting problem in the high-dimensional feature space.

The regression estimation function obtained is

f (x) =
∑N

i = 1

(
αi − α

∗

i

)
k
(
xi, x j

)
+ b, (4)

where k(xi,xj) is called the kernel function, which is equal to the inner product of two vectors, xi and xj,
in their characteristic spaces, ϕ(xi) and ϕ(xj). The kernel function must satisfy the Mercer theorem.
The common kernel functions include the linear function, radial basis function, and multi-layer
perception function.

The coefficient αi in the formula can be obtained by solving the following quadratic programming
problems:

max−
1
2

∑N

i = 1

∑N

j = 1

(
αi − α

∗

i

)(
α j − α

∗

j

)
k
(
xi, x j

)
− ε

∑N

i = 1

(
αi + α∗i

)
+

∑N

i = 1
yi
(
αi − α

∗

i

)
, (5)

s.t.
∑N

i = 1
yi
(
αi − α

∗

i

)
= 0, (6)

0 ≤ αi,α∗i ≤ C, i = 1, 2, . . . , N, (7)

Only a part of (αi-αi*) is non-zero in the formula, and the corresponding data points are
support vectors. C is a normal number that determines the balance between empirical risk and
regularization [44,45].

For a dataset, only the kernel function and regularization parameter C are needed to construct the
SVM. The SVM learning algorithm problem is used to solve the constrained quadratic programming
problem, and the solution of the quadratic programming (QP) problem is global optimization.

2.3.3. Model Evaluation

In a previous study, Lei (2018) used the R2, RMSE and average relative deviation (MRD) to
evaluate the predictive effect of the support vector regression (SVR) and BPNN models for the energy
loss of a stepped spillway [46]. Zhang (2017) used the R2, RMSE and MAPD to evaluate the predictive
effect of the general regression neural network (GRNN) and BPNN models for frost heave behavior [34].
According to the significance of the above statistical parameters, this study compares the performance
of BPNN and SVM models by using three parameters: the R2, RMSE, and MAPD methods.

The formulas of the three statistical parameters are as follows [34]:

(1) Coefficient of determination (R2), also named the decision coefficient (R2): In a regression analysis,
R2 is an index that reflects the approximation between the regression predictions and real data.
More specifically, R2 indicates the proportion of the variance in the dependent variable that
is predicted or explained by the predictor variable, also known as the independent variable.
When the range of values is 0–1, the closer the values are to 1, the closer the regression predicted
values are to the experimental data:

R2 = 1−

∑N
i = 1(P_SYSi − E_SYSi)

2∑N
i = 1(P_SYSi)

2 (8)

where P_SYSi is the predicted SYS, E_SYSi is measured SYS, and N is the total amount of data.
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(2) Root mean square error (RMSE): the RMSE is used to accurately measure the prediction errors
of the different models of a particular dataset. The smaller the RMSE, the higher the matching
degree between the predicted value and the experimental value:

RMSE =

√√√
1
N

N∑
i = 1

(P_SYSi − E_SYSi)
2 (9)

(3) Mean absolute percentage deviation (MAPD): Because the explanation of the relative error by
MAPD is very intuitive, it is often used for model evaluation. The smaller the MAPD, the better
the prediction effect of the model:

MAPD =
100%

N

∑N

i = 1

∣∣∣∣∣ P_SYSi − E_SYSi
P_SYSi

∣∣∣∣∣ . (10)

3. Results

3.1. Determination of BPNN Parameters

In this study, the BPNN model adopts a three-layer network structure, because the BPNN with a
hidden layer can simulate a highly complex nonlinear function when the neuron number in the hidden
layer is sufficient [47]. There are three input variables: water content, compaction degree, and salt
content. The output variable is the SYS. The “logsig” function is applied to the hidden layer, and the
“tansig” function is applied to the output layer. The maximum number of iterations is set to 30,000,
and the learning rate is set to 0.8.

In addition, the appropriate number of hidden neurons is crucial for network performance.
However, it is a complex problem to determine. A BPNN with insufficient neurons will not learn the
problem. However, a BPNN with excessive neurons is not only difficult to train, but is also prone
to over fitting [48]. Many scholars simply suggest, “test and find it” [49,50]. According to Heaton’s
suggestion, when the number of neurons is close to twice that of the input layer, it is a good starting
point to find the appropriate neuron number in the hidden layer, and then increase or decrease neurons
according to the network performance [51]. At present, there is no authoritative calculation method for
the number of hidden neurons, but the range of the number of hidden neurons can be calculated by
the following empirical formula [34]:

n =
√

nin + nout + a0, (11)

where nin is the number of neurons in the input layer, nout is the number of neurons in the output layer,
and a0 is the revised value, ranging from 0 to 10.

According to equation (9), the number of hidden neurons of the BPNN in this study ranges from 2
to 12. The evaluation parameters of the 11 models when the number of neurons varies from 2 to 12 are
shown in Table 4. The average values of the three statistical parameters of the BPNN models, which are
established by the five datasets of five-fold cross-validation, are shown in Figure 6. When the number
of neurons is 8, R2 is the closest to 1, and the RMSE and MAPD values are the smallest. Therefore,
the optimal number of hidden neurons of the BPNN model is 8.
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Table 4. Statistical parameters of BPNN models when the hidden neurons varied.

K-Fold
Cross-Validation

Evaluation
Parameters

Number of the Hidden Neurons

2 3 4 5 6 7 8 9 10 11 12

K-1
R2 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.97 0.97

RMSE 66 62 67 66 66 60 56 56 70 62 62
MAPD 0.14 0.12 0.14 0.13 0.13 0.12 0.11 0.11 0.14 0.12 0.12

K-2
R2 0.98 0.98 0.97 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.98

RMSE 53 52 56 52 50 48 42 42 51 44 45
MAPD 0.12 0.12 0.13 0.12 0.11 0.11 0.09 0.09 0.12 0.10 0.10

K-3
R2 0.97 0.98 0.97 0.97 0.97 0.98 0.98 0.98 0.97 0.97 0.97

RMSE 60 57 62 60 59 56 47 47 66 59 59
MAPD 0.12 0.11 0.13 0.12 0.12 0.11 0.09 0.09 0.15 0.12 0.12

K-4
R2 0.97 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.96 0.97 0.98

RMSE 65 65 68 69 64 62 58 58 72 64 56
MAPD 0.14 0.14 0.15 0.15 0.13 0.13 0.12 0.12 0.15 0.13 0.11

K-5
R2 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.96 0.97 0.98

RMSE 65 65 66 65 64 59 57 57 69 64 58
MAPD 0.13 0.13 0.13 0.13 0.13 0.12 0.11 0.11 0.14 0.14 0.11

Note: (1) K-1, K-2, K-3, K-4, and K-5 represent the five datasets divided by five-fold cross-validation method; (2) R2:
coefficient of determination; (3) RMSE: root mean square error; (4) MAPD: mean absolute percentage deviation.
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3.2. SVM Parameter Determination

The quality of the parameter settings will affect the prediction effect of the SVM model. In this
study, radial basis function (RBF) is used as the kernel function, and the cross validation-grid search
method (Grid Search) is used for finding the optimal parameters C and g. C is the penalty factor of
the model, which indicates the tolerance of the model to errors. The higher the C value, the lower
the tolerance of the model to errors. The g is a parameter of the kernel function, which implicitly
determines the distribution of the original data mapped to high-dimensional feature space. The best
parameters for the C, g, and mean square error (MSE) of the five datasets are shown in Table 5 below.

Table 5. The best parameters C, g and MSE of five datasets.

Projects Parameters K-1 K-2 K-3 K-4 K-5

Rough selection results
C 1.7411 16 256 16 256
g 5.27803 0.108819 0.0625 0.0625 0.0625

MSE 0.0137 0.0159 0.0095 0.1258 0.0112

Fine selection results
C 1.4142 16 5.65685 16 0.5
g 0.5 0.176777 0.0625 0.125 0.353553

MSE 0.0154 0.0155 0.0114 0.0117 0.0122

Note: (1) C: the penalty factor of the model; (2) g: a parameter of the kernel function; (3) MSE: mean square error.
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4. Discussions

4.1. Model Performance Comparison

The regression relationships between the predicted SYS and measured SYS of the BPNN and SVM
are shown in Figures 7 and 8, respectively, including the training stage and testing stage. A comparison
of the BPNN and SVM evaluation parameters in the training stage is shown in Table 6, and a comparison
of BPNN and SVM evaluation parameters in the testing stage is shown in Table 7.

Symmetry 2020, 12, x FOR PEER REVIEW 13 of 19 

 

models during the training and testing stage were less than or that of SVM models. The MAPDs of 
the five SVM models during the training stage and the testing stage were all bigger than that of BPNN 
models. which indicates that the prediction errors of the SVM models were all greater than BPNN 
models. 

The R2 and RMSE ranges of the five BPNN models during the training and testing stage were 
more concentrated than that of the SVM models, which shows that the statistical parameters of the 
SVM models fluctuate greatly with different dataset groupings. The performance of the SVM models 
is greatly affected by different dataset groupings. This illustrates that the stability of the BPNN model 
is better than that of the SVM model. 

Next, the average values of the three statistical indicators were analyzed. The average R2 of the 
BPNN models during the training and testing stages was closer to 1 than that of SVM models. The 
average RMSE of the BPNN during the training and testing stage were 11.805 and 7.035 smaller than 
that of SVM, respectively. This showed that the prediction error of the BPNN models was smaller 
than that of SVM models. This indicates that the predicted data for the BPNN models match the 
experimental data well. The average MAPDs of the BPNN during training and testing stages were 
0.022% and 0.024% smaller than that of SVM, respectively. This shows that the relative error of the 
BPNN model is less than that of the SVM model, so the prediction effects of the BPNN models are 
better. 

 
Figure 7. Relationship between the estimated structural yield strength (SYS) of the BPNN models 
based on K-1 dataset and measured SYS: (a) training stage; (b) testing stage. 

 
Figure 8. Relationship between the estimated SYS (structural yield strength) of the SVM models and 
measured SYS: (a) training stage; (b) testing stage. 

The fitting curves between the predicted data of the BPNN and SVM models and the 
experimental data are shown in Figures 7 and 8. The slope and intercept of the fitting curves also 
reflect the accuracy of the prediction effect of the model. The closer the slope of the fitting curves is 
to 1 and the closer the intercept is to 0, the smaller the deviation between the predicted data and the 

Figure 7. Relationship between the estimated structural yield strength (SYS) of the BPNN models
based on K-1 dataset and measured SYS: (a) training stage; (b) testing stage.

Symmetry 2020, 12, x FOR PEER REVIEW 13 of 19 

 

models during the training and testing stage were less than or that of SVM models. The MAPDs of 
the five SVM models during the training stage and the testing stage were all bigger than that of BPNN 
models. which indicates that the prediction errors of the SVM models were all greater than BPNN 
models. 

The R2 and RMSE ranges of the five BPNN models during the training and testing stage were 
more concentrated than that of the SVM models, which shows that the statistical parameters of the 
SVM models fluctuate greatly with different dataset groupings. The performance of the SVM models 
is greatly affected by different dataset groupings. This illustrates that the stability of the BPNN model 
is better than that of the SVM model. 

Next, the average values of the three statistical indicators were analyzed. The average R2 of the 
BPNN models during the training and testing stages was closer to 1 than that of SVM models. The 
average RMSE of the BPNN during the training and testing stage were 11.805 and 7.035 smaller than 
that of SVM, respectively. This showed that the prediction error of the BPNN models was smaller 
than that of SVM models. This indicates that the predicted data for the BPNN models match the 
experimental data well. The average MAPDs of the BPNN during training and testing stages were 
0.022% and 0.024% smaller than that of SVM, respectively. This shows that the relative error of the 
BPNN model is less than that of the SVM model, so the prediction effects of the BPNN models are 
better. 

 
Figure 7. Relationship between the estimated structural yield strength (SYS) of the BPNN models 
based on K-1 dataset and measured SYS: (a) training stage; (b) testing stage. 

 
Figure 8. Relationship between the estimated SYS (structural yield strength) of the SVM models and 
measured SYS: (a) training stage; (b) testing stage. 

The fitting curves between the predicted data of the BPNN and SVM models and the 
experimental data are shown in Figures 7 and 8. The slope and intercept of the fitting curves also 
reflect the accuracy of the prediction effect of the model. The closer the slope of the fitting curves is 
to 1 and the closer the intercept is to 0, the smaller the deviation between the predicted data and the 

Figure 8. Relationship between the estimated SYS (structural yield strength) of the SVM models and
measured SYS: (a) training stage; (b) testing stage.

Table 6. The statistical parameters of the BPNN and SVM models (Training stage).

K-Fold
Cross-Validation

BPNN SVM

R2 RMSE MAPD R2 RMSE MAPD

K-1 0.978 55.523 0.106 0.967 66.791 0.120
K-2 0.986 41.809 0.091 0.976 52.294 0.116
K-3 0.984 47.061 0.087 0.967 65.182 0.131
K-4 0.974 57.946 0.120 0.961 68.578 0.133
K-5 0.976 57.270 0.112 0.967 65.788 0.127

Average 0.980 51.922 0.103 0.967 63.727 0.125

Note: (1) BPNN: back propagation neural network; (2) SVM: support vector model; (3) R2: coefficient of
determination; (4) RMSE: root mean square error; (5) MAPD: mean absolute percentage deviation; (5) K-1, K-2, K-3,
K-4, and K-5 represent the five datasets divided by five-fold cross-validation method.
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Table 7. The statistical parameters and the BPNN and SVM models (Testing stage).

K-Fold
Cross-Validation

BPNN SVM

R2 RMSE MAPD R2 RMSE MAPD

K-1 0.985 41.554 0.105 0.983 42.370 0.130
K-2 0.943 90.967 0.150 0.931 99.438 0.171
K-3 0.960 69.996 0.168 0.955 72.646 0.177
K-4 0.986 45.334 0.093 0.982 48.486 0.109
K-5 0.982 47.399 0.102 0.966 67.484 0.155

Average 0.971 59.050 0.124 0.963 66.085 0.148

Note: (1) BPNN: back propagation neural network; (2) SVM: support vector model; (3) R2: coefficient of
determination; (4) RMSE: root mean square error; (5) MAPD: mean absolute percentage deviation; (5) K-1, K-2, K-3,
K-4, and K-5 represent the five dataset divided by five-fold cross-validation method.

First, the three statistical indicators of each group of the dataset are analyzed in this section.
The R2 ranges of the five BPNN models during the training and testing stage were 0.974~0.986 and
0.943~0.986, respectively. The R2 ranges of the five SVM models during the training and testing stage
were 0.961~0.976 and 0.931~0.983, respectively. The R2

min and R2
max values of the BPNN models

during the training and testing stage were greater than those of the SVM models, and the R2 ranges
of BPNN models were smaller than those of the SVM models. The difference between the R2

max

and R2
min of the BPNN and SVM models during the training stage was 0.012 and 0.015 respectively.

The difference between the R2
max and R2

min of the BPNN and SVM models during the testing stage
was 0.043 and 0.052, respectively. This shows that the R2 fluctuation of the BPNN model is smaller
than that of the SVM model under different dataset grouping conditions. The explanation degree of
independent variable to dependent variable is less affected by dataset grouping.

The RMSE ranges of the five BPNN models during the training and testing stage were 41.809~57.946
and 41.554~90.967, respectively. The RMSE ranges of the five SVM models during training and testing
stage were 52.294~68.578 and 42.370~99.438, respectively. The RMSEmax and RMSEmin of the BPNN
models during the training and testing stage were less than those of the SVM models. The difference
between the RMSEmax and RMSEmin of the BPNN and SVM models during the training stage was
16.137 and 16.284, respectively. The difference between the RMSEmax and RMSEmin of the BPNN and
SVM models during the testing stage was 49.413 and 57.068, respectively. The RMSE range of BPNN
models is smaller than that of SVM models. The RMSE of the SVM models for the K-2 group of testing
dataset was 99.438, which indicates that the prediction error of the SVM models for K-2 group of the
testing dataset was greater than other dataset group. Under different dataset grouping conditions, the
RMSE fluctuation of the BPNN models was smaller, and the prediction errors of the BPNN models
ware less affected by grouping.

The MAPDs of the five BPNN models during the training and testing stage were 0.091~0.120 and
0.102~0.168, respectively. The MAPDs of the five SVM models during the training and testing stage
were 0.116~0.133 and 0.109~0.177, respectively. The MAPDmax and MAPDmin of the BPNN models
during the training and testing stage were less than or that of SVM models. The MAPDs of the five
SVM models during the training stage and the testing stage were all bigger than that of BPNN models.
which indicates that the prediction errors of the SVM models were all greater than BPNN models.

The R2 and RMSE ranges of the five BPNN models during the training and testing stage were
more concentrated than that of the SVM models, which shows that the statistical parameters of the
SVM models fluctuate greatly with different dataset groupings. The performance of the SVM models
is greatly affected by different dataset groupings. This illustrates that the stability of the BPNN model
is better than that of the SVM model.

Next, the average values of the three statistical indicators were analyzed. The average R2 of
the BPNN models during the training and testing stages was closer to 1 than that of SVM models.
The average RMSE of the BPNN during the training and testing stage were 11.805 and 7.035 smaller
than that of SVM, respectively. This showed that the prediction error of the BPNN models was smaller
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than that of SVM models. This indicates that the predicted data for the BPNN models match the
experimental data well. The average MAPDs of the BPNN during training and testing stages were
0.022% and 0.024% smaller than that of SVM, respectively. This shows that the relative error of the
BPNN model is less than that of the SVM model, so the prediction effects of the BPNN models are better.

The fitting curves between the predicted data of the BPNN and SVM models and the experimental
data are shown in Figures 7 and 8. The slope and intercept of the fitting curves also reflect the accuracy
of the prediction effect of the model. The closer the slope of the fitting curves is to 1 and the closer
the intercept is to 0, the smaller the deviation between the predicted data and the experimental data,
and the better the prediction effect of the model. By comparing the fitting lines of the predicted
data and the experimental value of the BPNN and SVM model, the predicted effect of the BPNN
model is shown to be better overall than that of the SVM. In order to avoid overfitting, the K-fold
cross-validation method was used in this study. From the results of the BPNN model parameters,
the R2 of K-2, K-3, and K-5 datasets in the testing stage are only slightly lower than those in the training
stage, and even the R2 of K-1 and K-4 datasets in the testing stage are higher than those in the training
stage. The results of RMSE and MAPD showed opposite regularity. And the results of the SVM model
parameters showed the similar regularity. Moreover, the model parameters of BPNN and SVM models
are very stable, neither excellent nor poor. Thus, the performance of BPNN and SVM models is stable,
the generalization ability of the model is good for the data of this study, and the generalization ability
for external data needs to be explored and improved in future research.

Kogure (1977) [52], Stas (1984) [53], and Degroot (1999) [54] established the empirical models
to predict the clay pre-consolidation pressure, and the R2 values were all less than 0.80. The model
performance was poor and the generalization ability was weak. Karim (2016) proposed a two-fold
simple empirical model with R2 = 83%, which greatly improved the performance of the model [55].
In this study, the R2 results of the pre-consolidation pressure prediction models are all above 90%.
Therefore, compared with the existing empirical formula model, the performance of the BPNN and
SVM models established in this study are much better.

In the learning process of the BPNN model, the gradient search algorithm is used to correct the
weight through error propagation, so that the MSE between the actual output and the expected output
is minimized. Because of its strong learning ability, the fitting accuracy of the BPNN model is high.
The SVM model is based on the principle of structural risk minimization, which transforms the plane
nonlinear problem into a linear problem by mapping data to the high-dimensional feature space.
The three independent variables have medium and extremely strong correlation with the dependent
variables in this study, and there is no redundancy feature. Therefore, the BPNN and SVM models
have good performance and stability. However, the main drawbacks of the BPNN model are that it
cannot give a clear mathematical relationship and the results are not interpretable. The performance of
the support vector machine mainly depends on the selection of the kernel function, but there is no
good method to solve the problem of kernel function selection in different fields.

In addition, in the studies of basic properties, ignoring scale-dependence will make the
experimental results deviate from the practical engineering [56]. Considering scale-dependence
in the establishment of the model, the prediction results of the model will be closer to the reality and
the generalization ability will be better [57–60]. But the size effect is not taken into account in this study,
which may affect the generalization ability of the model. This problem should be fully considered in
future research to improve the generalization ability of the model.

4.2. Sensitivity Analysis

Because the BPNN model is superior to the SVM model, we used it to explore the influence of
water content, compactness, and salt content on the SYS. The first model takes compactness and salinity
as the input variables, which are recorded as BPNN-1; the second model takes moisture content and
salinity as the input variables, which are recorded as BPNN-2; and the third model takes moisture
content and compactness as the input variables, which are recorded as BPNN-3. Similarly, according
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to the K-fold cross-validation method, the datasets are divided into five groups of training datasets
and test datasets, and the BPNN models are established and simulated. The statistical evaluation
parameters of the three models are shown in Table 8.

Table 8. Statistical parameters of BPNN models for sensitivity analysis.

Evaluation
Parameters

Training Stage Testing Stage

R2 RMSE MAPD R2 RMSE MAPD

BPNN-1 0.919 101.005 0.236 0.892 114.365 0.271
BPNN-2 0.966 66.420 0.140 0.949 81.488 0.174
BPNN-3 0.976 56.128 0.118 0.970 62.900 0.142

Note: (1) R2: coefficient of determination; (2) RMSE: root mean square error; (3) MAPD: mean absolute percentage
deviation; (4) BPNN-1: dewatering; (5) BPNN-2: de-compaction degree; (6) BPNN-3: desalination content.

As shown in Table 8, the average R2 of the BPNN-3 during the training and testing stages were
greater than 0.969 and were closer to 1 than the average R2 of the other two models. This shows that
the proportion of variance in the dependent variable that is explained by the independent variable is
high in BPNN-3. The R2 of BPNN-1 was the smallest, and the average R2 value during the training
and testing stages was about 0.9. This shows that the proportion of variance in the dependent variable
which is explained by the independent variable decreases obviously when the water content of the
input variable is removed.

The RMSE average value of BPNN-3 during the training and testing stages was the smallest,
which indicates that the error of BPNN-3 was the smallest, so the BPNN-3 matching degree of
experimental data and prediction data is the highest. The average RMSE of BPNN-2 during the training
and testing stages was 1.186 and 1.296 times that of BPNN-3, respectively. The RMSE average value of
BPNN-1 was the largest. The RMSE average value during the training and testing stage was 1.800 and
1.818 times higher than that of BPNN-3, respectively.

The average MAPD of BPNN-3 during the training and testing stages was the smallest,
which indicates that the relative error of BPNN-3 was the smallest. The average MAPD of BPNN-2
during the training and testing stages is 1.187 and 1.228 times higher than that of BPNN-3, respectively.
The average MAPD of the BPNN-1 model was the largest, and the average MAPD during the training
and testing stage was 1.991 and 1.915 times higher than that that of BPNN-3, respectively.

The average values of the three statistical parameters of the BPNN-3 model are the best.
The statistical parameters of the BPNN-2 model are better than those of BPNN-1. Because the
R2 average value of the BPNN-1 model is the smallest when removing the water content of the
input variable, and the RMSE and MAPD average values are also larger than BPNN-2 and BPNN-3,
the proportion of variance in the dependent variable that is predicted or explained by the independent
variable of the model is reduced significantly, and the prediction error and relative error increase
significantly when removing the water content of the input variable. Therefore, it can be concluded that
the influence degree of each variable is as follows: water content > compaction degree > salt content.

The relationship curve between the estimated SYS and the measured SYS of the BPNN model is
shown in Figures 9–11. The slope and intercept of the fitting curve also reflect the prediction effect
of the model. By comparing the fitting lines between the predicted data of the BPNN-1, BPNN-2,
and BPNN-3 models and the experimental data, we found that the predicted results of the BPNN-1
model are the worst, while those of the BPNN-3 model are the best.
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5. Conclusions

Structural yield strength (SYS) is a key geotechnical parameter. However, it is impractical for most
geotechnical engineering to determine the SYS of the soil layer in a region because of its relatively high
technical and cost requirements and because it is time-consuming. Therefore, it is of great engineering
significance and economic benefit to establish a prediction model for SYS based on the basic properties
of soil.

In this study, the BPNN and SVM models were used to predict the SYS of saline soil in western
Jilin Province. Comparing the performance of the BPNN and SVM models, we found that the BPNN
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model is slightly better than the SVM model. That is, in the BPNN model, the independent variables
have a higher explainable degree of dependent variables, the matching degree between the predicted
values and experimental values is higher, and the relative error is smaller.

A sensitivity analysis was also carried out by the BPNN model. Based on the same datasets,
a set of input variables was removed by an exhaustive method, and two sets of input variables were
left to establish the BPNN model; these sets were BPNN-1 (dewatering), BPNN-2 (de-compaction
degree), and BPNN-3 (desalination content). The evaluation parameters of the BPNN-3 model are
better than those of the BPNN-1 and BPNN-2 models. The evaluation parameters of BPNN-2 are better
than BPNN-1. The results show that water content has the greatest influence on the SYS, whereas salt
content has the least influence on the SYS. The sensitivity analysis showed that the influence degree of
each variable is as follows: water content > compaction degree > salt content.

Comparing the performance of the model established in this study with the traditional empirical
formula model based on the internal data set, it was found that the performance of BPNN and SVM
models is better. Although K-fold cross-validation is used to avoid the overfitting problem and to
improve the generalization ability of the model, the performance of the models based on external
datasets needs further research, which is a deficiency of this study.
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