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Abstract: In this research, we intend to develop a dynamical system for the magnetohydrodynamic
(MHD) flow of an electrically conducting Casson nanofluid on exponentially shrinking and stretching
surfaces, in the presence of a velocity and concertation slip effect, with convective boundary conditions.
There are three main objectives of this article, specifically, to discuss the heat characteristics of flow,
to find multiple solutions on both surfaces, and to do stability analyses. The main equations of flow
are governed by the Brownian motion, the Prandtl number, and the thermophoresis parameters,
the Schmid and Biot numbers. The shooting method and three-stage Lobatto IIIa formula have been
employed to solve the equations. The ranges of the dual solutions are fwc1 ≤ fw and λc ≤ λ, while the
no solution ranges are fwc1 > fw and λc > λ. The results reveal that the temperature of the fluid
increases with the extended values of the thermophoresis parameter, the Brownian motion parameter,
and the Hartmann and Biot numbers, for both solutions. The presence of dual solutions depends on
the suction parameter. In order to indicate that the first solution is physically relevant and stable,
a stability analysis has been performed.

Keywords: Casson nanofluid; dual solutions; Biot number; stability analysis

1. Introduction

There are many kinds of non-Newtonian fluids; namely, Casson fluid, Carreau fluid, Williamson
fluid, Maxwell fluid, Micropolar fluid, Jeffrey fluid, Second and third-grade fluids, Burgers’ fluid,
Eyring–Powell fluid, and so forth [1–7]. Non-Newtonian fluids are those which are composed of
blends. Examples of this type of fluid are pastes, blood, slurries, ketchup, polymer solutions and gels.
In simple words, fluids that don’t comply with Newton’s law of viscosity are non-Newtonian fluids,
where shear stress is not directly proportional to the gradient of velocity. However, most previous
attempts have been made to derive single solutions of non-Newtonian fluids over different surfaces.
In the current research, the MHD flow of a non-Newtonian nanofluid in the presence of velocity and
concentration slip parameters has been investigated, along with the effect of the convective boundary
condition on exponentially stretching and shrinking sheets. It is worth mentioning that the conduct
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of flow on an exponential sheet is very dissimilar between linear and non-linear sheets. According
to Nakamura and Sawada [8], Mustafa, et al. [9] and Nadeem et al. [10], Casson introduced the term
Casson fluid in 1959 for the prognostication of the flow conduct of a pigment–oil suspension. This is a
kind of non-Newtonian fluid in which the relation to yield and shear stresses are important. When the
applied shear stress is less than the yield stress at that momentum, the behavior of the fluid resembles
a solid. On the other hand, if the yield stress is not as much as the applied shear stress, then it begins
moving. Casson fluid can be described as a shear-thinning fluid that has a zero rate of shear at infinite
viscosity, and an infinite rate of shear at zero viscosity; yield stress below these values indicates no
occurring flow [11]. Honey, nectar, tomato sauce and jelly are some common examples of Casson
fluid. Motivated by the applications and practical significance of the Casson fluids in the fields of food
processing, bioengineering, and so on, the key objective of this research is to comprehend the basics
of numerous physical parameters and their effects on Casson fluid by employing the mathematical
Casson fluid model, proposed by the fundamental work of Casson, in the model of Buongiorno [12]
for a nanofluid.

Magnetohydrodynamics, or MHD, is the science of the electrically conducting fluid flow, along with
the magnetic field. MHD can be defined accordingly: ‘magneto’ means magnetic, ‘hydro’ means fluids
and ‘dynamics’ means motion or movement. Equivalent terms to MHD, that are utilized less as often,
are the terms hydromagnetic or magnetofluid dynamics. Ionized gases, like the solar atmosphere,
which are commonly called plasmas or fluid metals, like gallium, molten iron and mercury, are fluids.
The magnetohydrodynamics field was introduced by a famous Swedish physicist, Hannes Alfvén
(1908–1995). For pioneering work and disclosures in MHD with productive applications in various
areas of plasma physics, he was awarded the Nobel prize in physics in 1970. The focus of researchers
on MHD flow commenced in 1918 after an electromagnetic pump was introduced by Hartmann.
There are many useful applications of the non-uniform transverse magnetic field in the various fields
of engineering. In the presence of the magnetic field, electrically conducting fluids flow has significant
applications, for example, cooling nuclear reactors, oil exploration, magnetohydrodynamic generators,
plasma studies and geothermal energy extraction [13–19]. The flow of MHD had been taken into
account by numerous scholars in their studies because of its important usages, some examples being
William [20,21], Eastman et al. [22] and Hossain [23]. Recent work on the MHD boundary layer flow of
a Casson nanofluid with different slip boundary conditions can be seen in these articles [24–26]. All the
above studies have been performed on single solutions only. We tried to find all possible multiple
solutions and dual solutions in this study.

The concept of boundary axisymmetric flow, on a continuously stretched sheet with a fixed
velocity, was introduced by Sakiadis [27]. Since then, numerous works on the flow of the boundary
layer on a stretched surface have been undertaken due to their vast applicability in industry, for instance,
in materials manufactured by extrusion, the manufacture of rubber and plastic sheets, hot rolling,
the production of glass fiber, the cooling of a large metal plate in a bath, the production of paper and the
extrusion of polymer sheets. The exact analytical solution of the boundary layer flow over a stretching
surface was first found by Crane [28]. Gupta and Gupta [29] considered the viscous fluid flow, with a
concentration effect, on a stretched sheet. The important characteristics of the transfer of heat were
investigated by Grubka and Bobba [30] by considering the flow on the stretched surface. An unsteady
flow on the stretched surface has been studied by Andersson et al. [31]. The nanofluid flow over a
stretching flat sheet, incorporating the effects of thermophoresis and the Brownian motion parameters,
was first studied by Khan and Pop [32]. Due to the importance of both surfaces, we attempt to get
results for both surfaces; however, more results have been taken into account for the shrinking surface,
because a huge number of researchers consider stretching surfaces in their studies. It is our expectation
that these mathematical results will provide help for other researchers who are working on nanofluids
and in nano-technology fields via an experimental approach.
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2. Mathematical Formulation

The flow of an electrically conducting two-dimensional (2D) Casson nanofluid on exponentially
shrinking and stretching surfaces is assumed. The state rheological equations for the isotropics of
Casson fluid are expressed as [8–10]

τi j =


(
µB +

(
Py
√

2π

))
2ei j, π > πc(

µB +
(

Py
√

2πc

))
2ei j, π < πc

(1)

where Py,µB are the yield stress and plastic dynamic viscosity of Casson fluid, respectively. Moreover,
πc is a critical value of π based on the non-Newtonian model, and ei j is the (i, j)th component of the
deformation rate, expressed as π = ei jei j. The surface velocity is presumed as uw = λae

x
l , where a is

the characteristic velocity of the surface and λ < 0 and λ > 0 indicate the shrinking and stretching
surface, respectively. Further, we supposed that the variable magnetic field has a strength of B = B0e

x
2l ,

where B0 is the constant magnetic field. The induced magnetic field is neglected by assuming the
number of low magnetic Reynolds.

The field of the velocity of the boundary layers of the Casson nanofluid’s flow, with temperature
and concentration equations, can be expressed as

∂u
∂x

+
∂v
∂y

= 0 (2)

u
∂u
∂x

+ v
∂u
∂y

= ϑ

(
1 +

1
β

)
∂2u
∂y2 −

σ∗B2u
ρ

(3)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + τw

DB
∂C
∂y

∂T
∂y

+
DT

T∞

(
∂T
∂y

)2 (4)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT

T∞
∂2T
∂y2 (5)

The related boundary conditions (2–5) are

v = vw , u = uw + A∗ϑ
(
1 + 1

β

)
∂u
∂y ,−k f

∂T
∂y = h f

(
T f − T

)
, C = Cw + N ∂C

∂y at y = 0

u→ 0, T → T∞, C→ C∞ as y→∞
(6)

where u is the velocity component along the x-axis, v is the velocity component along the y-axis,

ϑ, β =
µB
√

2π
Py

,ρ, σ∗, α, DB, DT are the viscosity of the fluid, the Casson parameter, the density of
fluid, the electrical conductivity, the thermal diffusivity, the Brownian motion and the thermophoresis,
respectively. τw is the heat capacity of the nanofluid and the effective heat capacity of the nanoparticle
material, and T∞ and C∞ are ambient temperature and concentration correspondingly, such that
T f > T∞ and Cw > C∞. A∗ = A∗1e

−x
2l is the velocity condition, where A∗1 is the slip factor of velocity,

and N = N1e
−x
2l is the concentration condition where N1 is the slip factor of concentration.

We will employ similar variables (7) in Equations (2)–(6) in order to obtain similar solutions.

ψ =
√

2ϑlae
x
2l f (η) , θ(η) =

(T − T∞)(
T f − T∞

) , ∅(η) =
(C−C∞)
(Cw −C∞)

, η = y

√
a

2ϑl
e

x
2l (7)

where the stream function has the following relations with the velocity components u =
∂ψ
∂y , v = −

∂ψ
∂x .
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By substitution of the stream function relations with Equation (7) in (2)–(6), we obtain(
1 +

1
β

)
f ′′′ + f f ′′ − 2 f ′2 −M = 0 (8)

1
Pr
θ′′ + fθ′ + Nb∅′θ′ + Nt(θ

′)2 = 0 (9)

∅′′ + Sc f∅′ + Nt

Nb
θ′′ = 0 (10)

along with the boundary conditions

f (0) = fw, f ′(0) = λ+ δ
(
1 + 1

β

)
f ′′ (0), θ′(0) = −A[1− θ(0)],

∅(0) = 1 + δC∅′(0), f ′(η) → 0, θ(η)→ 0, ∅(η)→ 0 as η→∞.
(11)

Here, prime denotes the derivative with respect to η, M =
2lσ∗(B0)

2

ρa is the magnetic field, Pr = ϑ
α

is the Prandtl number, and Nt =
τ1DT(T f−T∞)

ϑT∞ and Nb =
τ1DB(Cw−C∞)

ϑ are the thermophoresis and
Brownian motion parameters, respectively. Furthermore, Sc = ϑ

DB
denotes the Schmidt number, λ is

the stretching/shrinking parameter, vw = −
√
ϑa
2l e

x
2l fw is the suction/blowing parameter, δ = A∗1

√
ϑa
2l is

the velocity slip parameter, δC = N1

√
a

2ϑl is the concentration slip parameter, and the Biot number

or convective parameter is A =
h f
k f

√
2ϑl
a e

−x
2l , where h f = U0e

x
2l (U0 is a constant), which implies that

A = U0
k f

√
2ϑl
a .

As regards the coefficient of skin friction, the local Nusselt and Sherwood numbers are physical
quantities of interest, and can be defined as follows

C f =

[
µ
(
1+ 1

β

)
∂u
∂y

]
y=0

ρa2 , Nu =
−x

(
∂T
∂y

)
y=0

(T f−T∞)
, Sh =

−x
(
∂C
∂y

)
y=0

(Cw−C∞)

C f (Rex)
1
2 =

(
1 + 1

β

)
f ′′ (0), Nu(Rex)

−
1
2 = −θ′(0), Sh(Rex)

−
1
2 = −∅′(0)

(12)

where Rex = ax
ϑ is the Reynold number.

3. Stability Analysis

Weidman et al. [33] proposed stability solutions, and Haris and Pop [34] proceeded with them in
their studies, wherein multiple solutions for the boundary layer have been considered. From their work,
it is determined that the additional solution is unrealizable, and said to be an unstable solution. On the
other hand, the first solution is the physically realizable solution, which is said to be a stable solution.
The initial step of obtaining the stable solution is to change Equations (2)–(5) to the unsteady governing
equations, by presenting a new dimensionless variable, τ = a

2l e
x
l .t, as suggested by Merkin [35]. Thus,

we have
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ϑ

(
1 +

1
β

)
∂2u
∂y2 −

σ∗ B2 u
ρ

(13)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + τw

DB
∂C
∂y

∂T
∂y

+
DT

T∞

(
∂T
∂y

)2 (14)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT

T∞
∂2T
∂y2 (15)
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It is interesting to highlight that the presence of τ is associated with initial value problems,

which correspond to the stable solution. After the integration of τ = a
2l e

x
l .t with η = y

√
a

2ϑl e
x
2l , we have

following new similarity transformation variables

ψ =
√

2ϑlae
x
2l f (η, τ), θ(η, τ) =

(T − T∞)(
T f − T∞

) , ∅(η, τ) =
(C−C∞)
(Cw −C∞)

(16)

Replacing Equations (13)–(15) with Equation (16), we obtain(
1 +

1
β

)
fηηη + f fηη − 2

(
fη
)2
−M fη − fητ = τ

(
fη fητ − fηη fτ

)
(17)

1
Pr
θηη + fθη + Nbθη∅η + Nt

(
θη

)2
− θτ = 2

(
fηθτ − θη fτ

)
(18)

∅ηη + Sc f∅η +
Nt

Nb
θηη − Sc∅τ = 2.Sc.τ.

(
fη∅τ −∅η fτ

)
(19)

subject to the boundary conditions

f (0, τ) = fw, ∂ f (0, τ)
∂η = λ+ δ

(
1 + 1

β

)∂2 f (0, τ)
∂η2 , and∂ f (η, τ)

∂η → 0 as η→∞
∂θ(0, τ)
∂η = −A[1− θ(0, τ)] and θ(η, τ) → 0 as η→∞

∅(0, τ) = 1 + δC
∂∅(0, τ)
∂η and ∅(η, τ)→ 0 as η→∞

(20)

Subsequently, to classify the stability of the solution f (η) = f0(η),θ(η) = θ0(η) and∅(η) = ∅0(η),
which solved the boundary value problems of Equations (17)–(20), we will follow the steps of Rosca
and Pop [36];

f (η, τ) = f0(η) + e−ετF(η, τ)
θ(η, τ) = θ0(η) + e−ετG(η, τ)
∅(η, τ) = ∅0(η) + e−ετH(η, τ)

(21)

where F(η, τ), G(η, τ) and H(η, τ) are corresponding small relatives of f0(η), θ0(η) and ∅0(η), and ε is
the unknown eigenvalue parameter which must be found.

By applying Equation (21) in Equations (17)–(19), including boundary condition (20) and keeping
the value of τ = 0, as recommended in paper [33] to compute the initial decay and growth of the
solutions of (21), the functions F(η, τ), G(η, τ) and H(η, τ) are expressed as F0(η), G0(η) and H0(η),
respectively. It should be noted that these functions’ ranges must be 0 < F(η, τ) < 1, 0 < G(η, τ) < 1
and 0 < H(η, τ) < 1. Henceforth, we have a system for the linearized eigenvalue problem.(

1 +
1
β

)
F′′′0 + f0F′′0 + F0 f ′′0 − 4 f ′0F′0 −MF′0 + εF′0 = 0 (22)

1
Pr

G′′0 + f0G′0 + F0θ
′

0 + Nb∅′0G′0 + NbH′0θ
′

0 + 2Ntθ
′

0G′0 + εG0 = 0 (23)

H′′0 + Sc
(

f0∅′0 + F0H′0
)
+

Nt

Nb
G′′0 + ScεH0 = 0 (24)

with the boundary condition

F0(0) = 0, F′0(0) = δ
(
1 + 1

β

)
F′′0 (0), and F′0(η)→ 0 as η→∞

AG0(0) = G′0(0) and G0(η)→ 0 as η→∞
H0(0) = δCH′0(0) and H0(η)→ 0 as η→∞

(25)
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According to the previous study of Haris et al. [34], in order to find the smallest possible
eigenvalues, we need to relax one boundary condition of the functions F0(η), G0(η) and H0(η). In the
current problem, we relaxed the F′0(η)→ 0 as η→∞ , and then solved the Equations (22)–(25) with
the new relaxed initial conditions F′′0 (0) = 1. It is worth mentioning that if the value of ε > 0, then the
initial decay of disturbances exists, and the flow becomes stable and physically realizable. Further,
if the value of ε < 0, this indicates the initial growth of disturbances in the system, and the flow
becomes unstable.

4. Numerical Methods

In this section, the numerical procedures of the shooting method and the three-stage Lobatto IIIa
formula are described. These methods are very simple and highly accurate in computing results for
the boundary layer flow problems, and many researchers use them to obtain multiple solutions and
the stability analyses of the solutions.

4.1. Shooting Method

The shooting method is an iterative method that changes the boundary value problems (BVPs)
into equivalent the initial value problems (IVPs) by using a sequence of initial condition guesses,
obtained using an appropriate iterative method, until the required accuracy is reached. The resultant
IVPs are then solved by employing the suitable IVP method presented in the literature. In this problem,
we have used the well-known Runge–Kutta method of the fourth order, which is known because of its
high accuracy. The descriptions of the method are as follows

p = f ′, q = p′;
(
1 +

1
β

)
q′ = 2p2

− f q + MP (26)

r = θ′; r′ = Pr
{
− f r−Nbs.r−Ntr2

}
(27)

s = φ′; s′ = −Sc f s−
Nt

Nb
r′ (28)

with conditions 
f (0) = fw, p(0) = λ+ δ

(
1 + 1

β

)
α1, and q(0) = α1

α2 = −A[1− θ(0)] and r(0) = α2

φ(0) = 1 + δCα3 and s(0) = α3

(29)

where the unknown initial conditions are denoted by α1, α2 and α3. It is worth mentioning that the
missing initial values of α1, α2 and α3 are needed to shoot such that the profiles of the solutions satisfy
the original boundary conditions, which are f ′(η)→ 0, θ(η)→ 0, and ∅(η)→ 0 as η→∞ .

4.2. Three-Stage Lobatto IIIA Formula

This is a well-known numerical method. All types of linear and non-linear differential equations
are solved by this method easily. The three-stage Lobatto IIIa formula is created in bvp4c with the help
of a finite difference code. Afterward, stability analysis is performed using the bvp4c solver function.
According to Rehman et al., [37] “this collocation formula and the collocation polynomial provides
a C1 continuous solution that is fourth-order accurate uniformly in [a , b]. Mesh selection and error
control are based on the residual of the continuous solution”. Further, the tolerance of the relative error
is fixed at 10−5. The suitable mesh determination is created and returned in the field sol.x. The bvp4c
returns the solution, called sol.y., as a construction. In any case, values of the solution are gotten from
the array named sol.y, relating to the field sol.x. The general procedure of this method, along with
stability analysis, is presented in Figure 1.
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5. Result and Discussion

Providing clear comprehension of the present problem, we performed numerical computation
using two numerical methods; specifically, the shooting technique along with the Runge–Kutta method
of the fourth order in MAPLE software, and the three-stage Lobatto IIIa formula in bvp4c by employing
the finite difference code in MATLAB software. We attempted to plot all the graphs of skin friction
( f ′′ (0)), heat (−θ′(0)) and concentration (−∅′(0)) transfer rates, and the temperature, velocity and
concentration profiles for numerous values of directly involved parameters, such as the Casson (β)

and magnetic parameters (M), the Schmidt (Sc) and Prandtl (Pr) numbers, the thermophoresis (Nt)

and Brownian motion (Nb) parameters, the suction ( fw) and velocity slip (δ) parameters, and the
convection parameter (A) and concentration slip parameter (δC). To validate the correctness of
the shooting method, the values of f ′′ (0),−θ′(0) and −∅′(0) are compared with those derived by
Rehman et al. [37] and Mustafa et al. [38] in Table 1, and we establish excellent concurrences with
them; henceforth, we can use the present code confidently. The system of highly non-linear ordinary
differential equations (ODEs) (8–10) subject to boundary condition (11) is solved by employing the
shooting method with the Runge Kutta (RK)-4th order method in MAPLE software. The shooting
technique is an iterative method which changes BVPs into equivalent IVPs by using a sequence of
initial condition guesses, obtained using an appropriate iterative method until the required accuracy
is reached, and then solved by the shooting technique. This is the accepted method for solving the
boundary value problems of ODEs. We kept the minimum and maximum range of η∞ = 6 and
η∞ = 10, respectively, which satisfied the hydrodynamic, temperature and concentration boundary
layers asymptotically.

It is worth mentioning that the solution to this problem is the local similar solution. Figure 2 is
drawn to show the presence of two solutions in both surfaces, namely the shrinking and stretching
surfaces. Figures 3–5 show the effect of λ on the shear stress f ′′ (0), the local heat flux −θ′(0) and
the local mass flux −∅′(0). From these figures, it can be concluded that two sorts of solutions
exist; explicitly dual solutions (λc ≤ λ) and no solution (λc > λ). It has been observed that the skin
friction coefficient is higher for the shrinking surface as compared to the stretching surface in both
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solutions (refer Figure 3). Further, the behaviors of the heat and concentration transfer seem the same,
where −θ′(0) and −∅′(0) increase over the stretching surface, as compared to the shrinking surface in
the first solution. On the other hand, dual behaviors are noticed in the second solution. The impact of
the Casson parameter (β) on the shear stress with various values of the suction parameter ( fw) is drawn
in Figure 6. From studies of Miklavčič and Wang [39], Fang and Zhang [40] and Bhattacharyya [41],
it can be concluded that “flow due to the exponentially shrinking surface needs more suction when
contrasted with the flow over a linearly shrinking surface so as to keep the larger amount of vorticity
produced inside the boundary layer”. For the case of a Newtonian fluid, β = ∞, the range of dual
solution is fwc1 ≤ fw, and the no solution range is fwc1 > fw. For Casson fluid cases, multiple solutions
rely upon the values of the Casson parameter; for example, high suction is expected to keep up the flow
inside the boundary layer for small values of the Casson parameter, as shown in Figure 6. On the other
hand, the Casson parameter is relative to the shear stress for the first solution, where the coefficient of
skin friction rises when β diminishes. For the second solution, the reverse trend was noticed. Figures 7
and 8 display the impact of β on local Nusselt and Sherwood numbers separately. The local Nusselt
and Sherwood numbers are higher for the greater value of β, contrasted with a smaller one, which is
because we have 1

β in the momentum equation.

Table 1. Compression of − f ′′ (0) , −θ′(0) and −∅′(0).

Nt

[38]
Nb = 0.1

[37]
Nb = 0.1

Present Results
Nb = 0.1

− f ′′ (0) −θ′(0) −∅
′(0) − f ′′ (0) −θ′(0) −∅

′(0) − f ′′ (0) −θ′(0) −∅
′(0)

0.1 1.28181 0.25374 0.37525 1.28180857 0.25373483 0.37525393 1.28180857 0.25373483 0.37525393

0.2 1.28181 0.25192 0.20423 1.28180857 0.25191722 0.20422841 1.28180857 0.25191726 0.20422841

0.3 1.28181 0.25008 0.03662 1.28180857 0.25007701 0.03660736 1.28180857 0.25007701 0.03660735

0.4 1.28181 0.24821 −0.12757 1.28180857 0.24821431 −0.12757046 1.28180857 0.24821430 −0.12757045

0.5 1.28181 0.24633 −0.28826 1.28180857 0.24632922 −0.28826784 1.28180857 0.24632921 −0.28826784
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The impact of β on the velocity profile appears in Figure 9. The momentum of the boundary
layer improves the first solution when 1

β changes in the absence or the presence of the magnetic
parameter. On the other hand, the double nature of the velocity distribution and its boundary layer
thickness is noticed in the second solution case when β rots; physically, this tends to be explained by
the fact that decreases in β are caused in order to produce greater viscosity, and as a result resistance
is produced in the flow of fluid. Consequently, the hydrodynamic boundary layer becomes thinner.
Figure 10 exhibits the impact of M on the velocity distribution with and without the velocity slip effect.
The slip effect reduces the velocity boundary layer monotonically in both solutions, when contrasted
with δ = 0. The momentum boundary layer ends up slenderer in the first solution, and the physical
magnetic parameter creates progressively more resistance in the flow of the fluid due to the moving
electric charges in nanofluid, and thus the velocity of the fluid deaccelerated. On the other hand,
the opposite pattern is perceived for the second solution. Figure 11 demonstrates the effect of the
Casson parameter (β) on temperature distribution. The reduction in β produces a contrary force in the
flow of fluid due to the high viscosity in the fluid flow, thus the temperature of the fluid and the thermal
boundary layer thickness decrease continually when β declines in both solutions. Figure 12 presents
the effect of different Prandtl numbers on the distribution of temperature. The higher convectional
number (A) improves the temperature of the surface and the boundary layer becomes thicker in both
solutions, as expected. It is worth noting that A→∞ indicates the constant temperature of the wall.
Further, we know the Prandtl number (Pr) is the ratio of momentum diffusivity to thermal diffusivity,
which implies an enhancement in Pr is the cause of the flimsier thermal diffusivity, and therefore the
thickness of the thermal boundary layer becomes thinner, as found in Figure 12. The impact of the
Brownian motion (Nb) and thermophoresis (Nt) parameters on the temperature profile is exhibited
in Figures 13 and 14, respectively. The thicker thermal boundary layer is present as the Brownian
motion and thermophoresis parameters rise in all the solutions. Practically, thermophoresis and the
Brownian motion help the nanoparticles to change their places from hot to cold regions; in this manner,
the thickness of the thermal boundary layer is enhanced monotonically. Figures 15 and 16 reveal the
impact of Nt and Nb on concentration distributions. The concentration profile causes a decline in the
Brownian motion parameter (Nb), which is improved in both solutions (refer to Figure 15). On the
contrary, the thermophoresis parameter (Nt) is provably relative to the concentration profile. It is
additionally seen that the effect of the concentration slip (δC) is the reason for the development of the
concentration boundary layer in both solutions (alluded to in Figures 15 and 16). The concentration
profile for numerous values of the Schmidt number (Sc) is drawn in Figure 17. Lower molecular
diffusivity is found for a higher Schmidt number (Sc). Henceforth, a thicker concentration boundary
layer in both solutions is possible with the lower values of the Schmidt number (Sc).

In this study, to measure the stability of the solution, stability analyses are performed. The fact
behind this investigation is that if there occurs more than one solution in any problem. The main objective
of performing this examination is to determine what solution is the first solution, which is linearly
stable and physically related, by utilizing the bvp4c solver in MATLAB programming. The solution’s
stability is based on the sign of the minimum value of ε. To find the unknown eigenvalue (ε) from
Equation (21), we have to solve Equations (22)–(24) with relaxed

(
F′′0(0) = 1

)
boundary conditions

(25). Table 2 displays the values of ε1 for different values of fw and λ. From Table 2, it is obvious to us
that the negative values of ε1 are demonstrated in the second solution, which shows the initial growth
of disturbance in the flow, and this is supposed to be an unstable solution. On the other hand, positive
values of ε1 are shown in the first solution, which signifies the initial decay of disturbance; thus the
flow becomes stable.



Symmetry 2020, 12, 1162 12 of 19

Table 2. Values of ε1 for different values of fw and λ by keeping β = 2.5.

λ fw ε1

1st Solution 2nd Solution

−1 2.1 0.17016 −0.15422
−1 2.05 0.10934 −0.04286
−1 2.048 0.03401 −0.00966
1 2.1 1.83592 −2.63523
−1.03 2.1 0.07409 −0.08139
−1.035 2.1 0.02781 −0.03149
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6. Conclusion Remarks

In the present research paper, the MHD flow of an electrically conducting Casson nanofluid on an
exponentially shrinking and stretching sheets, with the effects of velocity and concertation slips along
with the convective condition, is investigated numerically. By using exponential similarity variables,
governing equations are reduced into highly non-linear ODEs, which are solved by the shooting
method and three-stage Lobatto IIIa formula. In order to find a stable solution, stability analysis is also
conducted. These are the main results of the problem:

1. For both surfaces, there are dual solutions;
2. For the stable solution, the velocity profile decreases for higher values of Casson parameter β and

the magnetic field M;
3. With a rise in the intensity of the convection parameter A, the thermal boundary layer is

enhanced. Yet, the Prandtl number Pr has the inverse relationship with the temperature profile in
both solutions.

4. Stability analysis reveals that an unstable (/stable) solution is a second (/first) solution.
5. Dual solutions vary, and no solution depends on the parameters involved.

Author Contributions: L.A.L. derived the equations and generated the results and wrote the paper. Z.O.
formulated the model and proofread the manuscript. I.K. checked the whole manuscript. I.K., E.-S.M.S. derived
the equations of stability analysis and wrote the introduction section and H.S.A. run the stability program and
generated the values. All authors have read and agreed to the published version of the manuscript.

Funding: The authors appreciate the obtained fund from King Saud University through Deanship of Scientific
Research, Research Group Program.

Acknowledgments: The authors would like to extend their sincere appreciation to the Deanship of Scientific
Research at King Saud University for funding this research through the Research Group Project No. RGP-160.
The first author (L.A.L.) is thankful to the School of Quantitative Sciences (SQS) for providing a good environment
to conduct this research in the postgraduate lab, special thanks to Dean (SQs) Madya Mohd Kamal Bin Mohd
Nawawi and Deputy vice chancellor (Hal Ehwal Pelajar & Alumni) Madya Hendrik Lamsali. In last, I also would
like to acknowledge the help of Madam Latifah Binti Lateh.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2020, 12, 1162 17 of 19

Nomenclature

u, v Velocity components A Biot number
T Temperature f ′ Dimensionless velocity
T 0 Reference temperature Rex Local Reynolds number
T f Temperature of the hot fluid below the surface C f Skin friction coefficient
T∞ Ambient temperature Nu Local Nusselt number
β Casson parameter fw Injunction/suction parameter
C Concentration h f Convective heat transfer coefficient
C 0 Reference concentration uw Velocity of surface
C∞ Ambient concentration γ1 Smallest eigen value
B Magnetic field τ Stability transformed variable
M Hartmann number λ Stretching/shrinking parameter
Pr Prandtl number ψ Stream function
DB Brownian diffusion U0 A constant
DT Thermophoretic diffusion δ Velocity slip condition
vw Suction/injection velocity σ∗ Electrical conductivity
Sh Local Sherwood number Thermal buoyancy parameter

k f Thermal conductivity of the nanofluid
Nb Brownian motion parameter ε Unknown eigenvalue
Nt Thermophoresis parameter η Transformed variable
Sc Schmidt number α Thermal diffusivity
A∗ Velocity slip factor A∗1 Slip factor of velocity
N Concentration condition N1 Slip factor of concentration
C w Variable concentration at the sheet θ Dimensionless temperature
τw Heat capacity of the nanofluid and the effective heat

capacity of the nanoparticle material
∅ Dimensionless concentration
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