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Abstract: In this paper, we present several numerical simulation results of dendritic pattern formation
using an isotropic crystal growth model, which is based on phase-field modeling, on curved
surfaces. An explicit time-stepping method is used and the direct computing method to the
Laplace–Beltrami operator, which employs the point centered triangulation approximating Laplacian
over the discretized surface with a triangular mesh, is adopted. Numerical simulations are performed
not only on simple but also on complex surfaces with various curvatures, and the proposed method
can simulate dendritic growth on complex surfaces. In particular, ice crystal growth simulation
results on aircraft fuselage or metal bell-shaped curved surfaces are provided in order to demonstrate
the practical relevance to our dendrite growth model. Furthermore, we perform several numerical
parameter tests to obtain a best fitted set of parameters on simple surfaces. Finally, we apply this set
of parameters to numerical simulation on complex surfaces.

Keywords: crystal growth; Laplace–Beltrami operator; phase-field model; dendritic pattern formation

1. Introduction

The beauty of nature’s crystals has led many researchers to investigate them over the past
decades. From a physical point of view, crystal growth can be explained as a phase transition by
heat transfer from a liquid phase to a solid phase. Accordingly, many researchers have experimented
with forming dendritic patterns, a large amount of research results however are needed to find out
the influence of the parameters of the explainable model so that, the analysis through computer
simulation has been also actively conducted therefore. There are several methods that have been
devised and developed to investigate dendritic pattern formation of crystals such as the front tracking
method [1], Monte–Carlo simulation approach [2], the level set method [3], and the phase-field
method [4–6]. In particular, the phase-field modeling, which captures the interface in explaining
the dynamics when dendritic patterns are formed on surface, is a field that has been continuously
studied. The phase-field method has been widely applied in numerical simulation of dendritic crystal
growth model [7–11], however most literatures only consider the solidification of pure substances
in undercooled melts in two- and three-dimensional spaces; not on curved surfaces. Using the
phase-field method, for instance, the authors in [12] successfully simulate the crystal growth with
an anisotropic diffusion scheme in two dimensional space. A highly nonlinear system combined
with heat equation was proposed for numerical simulations of dendritic crystal growth model in [13]
using a similar anisotropic scheme. Li et al. [14] propose the thermodynamic consistent model for the
numerical approximation of energy and entropy conservation of crystal growth model, some numerical
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experiments of dendritic crystal growth are presented to demonstrate the accuracy of their proposed
scheme. A phase-field crystallization model is proposed for the formation of dendrite morphology in
the process of single component melt growth by Kobayashi [15]. In [5], a rescaling rule is presented
for simulating dendritic growth in a two-dimensional domain at various undercoolings with an
adaptive phase-field model and is also extended to the three-dimensional adaptive phase-field model.
Lin et al. [16] compare the simulated equilibrium shapes of different anisotropic strengths with the exact
solutions, and then further explore the dendrite growth of pure materials with different anisotropic
strengths under different undercoolings. In the study of [17], robust and fast phase-field simulations of
dendritic crystal growth are performed in both two- and three-dimensional spaces, their computational
results are consistent with the numerical experiments.

Meanwhile, there are several researches that have focused on pattern formation and computation
on surfaces. García et al. [18] focus on the mechanism of a crystal phase in two-dimensional curved
space. Ren et al. [19] simulate the dendrite growth by introducing an orientation field which is the
degree of freedom, the algorithm can generate arbitrary symmetric graphs with different degrees of
asymmetric damage effects on arbitrarily curved surfaces.

In this paper, we present several numerical simulation results of an isotropic crystal growth model,
which is based on phase-field approach, on curved surfaces with triangular discretizations. In order to
compute numerically the surface diffusion operator, called the Laplace–Beltrami operator, we employ
Xu’s approach [20], while there are several other approaches to calculate this operator [21,22].
Furthermore, a comparative study is conducted on the effect of parameters affecting dendritic pattern
formation on simple surfaces. Subsequently, a fitted parameter set is employed to simulate the dendrite
growth on complex surfaces. Especially, we provide the dendritic crystal growth simulations on aircraft
body or metal bell-shaped surfaces. As these surfaces are used in real life, the aircraft de/anti-icing
system is a very important problem in aerodynamics [23], and the process of growing ice crystals on
metal surfaces is a common phenomenon.

The manuscript is organized as follows. We introduce the mathematical model in Section 2.
In Section 3, we present the numerical solution. In Section 4, we perform the numerical analysis and
numerical experiments on surfaces. Finally, conclusions are drawn in Section 5.

2. Mathematical Model

The model of the crystal growth on a smooth closed surfaces S in R3 is derived from a Lyapunov
function [24]. As the crystal growth phase-field model which is consisted with the anisotropic function
has been studied in [17], and the model performed fast, robust, and accurate results of crystal growth
for phase-field simulation whether in two or three-dimensional space. In this study, we use phase-field
model to simulate the crystal growth without anisotropic function on surfaces. The solidification
process is modeled by using the standard dimensionless phase-field equations [25] and is represented
as follows:

∂φ

∂t
= ∆φ +

[
φ− λU(1− φ2)

]
(1− φ2), (1)

∂U
∂t

= D∆U +
1
2

∂φ

∂t
. (2)

In Equations (1) and (2), U is the temperature field, D is a constant which is defined by
D = ατ0/E0

2, where τ0 is the characteristic time, α is the thermal diffusivity, and E0 is the characteristic
length. λ is the coupling parameter and is defined by λ = D/0.6267 [25]. The order parameter φ

is 1 or −1 in the solid phase or liquid phase, respectively. The interface of two phases is defined
by φ = 0. Note that all the parameters are dimensionless. For more details, refer to [25] and the
references therein.
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3. Numerical Solution

In this section, we apply the explicit Euler method to solve the crystal growth systems (1) and (2)
on a smooth closed surface. At first, we present a discretization of Laplace–Beltrami operator [20,26]
on the curved surfaces.

Figure 1a shows that M is a triangular surface mesh of given surfaces S . The set {x}N
i=1 with N

points means the surface vertex set of M. Considering each surface vertex xi with index n, we define
that N1(i) = {i1, i2, · · · , in} is a set of surface vertex indices representing one-ring neighbors with
i1 = in (see Figure 1b). Here, Tj is a triangle composed of three vertices xi, xj− and xj as shown in
Figure 1c. We write simply for convenience as φ(xi) = φi and U(xi) = Ui. Now, we consider the
sum of triangles Tj sharing the vertex xi and denote it by A(xi) (see Figure 1d). A(xi) is expressed as
follows [20]:

A(xi) = ∑
j∈N(i)

√
||xj − xi||2||xj+ − xi||2 −

(
xj − xi, xj+ − xi

)2

2
. (3)

Then, we get the following discretization systems of Laplace–Beltrami operator over given
surface S [26].

∆Sφi ≈
3

A(xi)
∑

j∈N(i)

cot θij + cot θij+
2

(φj − φi),

∆SUi ≈
3

A(xi)
∑

j∈N(i)

cot θij + cot θij+
2

(Uj −Ui),

where θij and θij+ are angles in triangles Tj and Tj+, respectively (see Figure 1c).

(a)
(b)

(c) (d)

Figure 1. Schematic illustrations of (a) triangulation of surface, (b) the surface vertices set of one-ring
neighbors of xi with i1 = in, (c) triangles Tj and Tj+ with the angles θij and θij+ , and (d) area A(xi) at
vertex xi.
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Let φn
i = φ(xi, n∆t) and Un

i = U(xi, n∆t), where ∆t is the time step size. Then the governing
system is discretized as

φn+1
i − φn

i
∆t

= ∆Sφn
i +

[
φn

i − λUn
i (1− (φn

i )
2)
]
(1− (φn

i )
2), (4)

Un+1
i −Un

i
∆t

= D∆SUn
i +

1
2

φn+1
i − φn

i
∆t

. (5)

4. Numerical Results

We perform computational experiments to show the efficiency and robustness of the proposed
scheme on curved surfaces.

4.1. Crystal Growth on Sphere Surface

In this section, we test the crystal growth on a sphere. We take the condition for a sphere surface
and the initial condition of sphere surface is defined in domain Ω = (−200, 200)3 as follows.

f (x, y, z) =
√

x2 + y2 + z2 − 165,

φ(x, y, z, 0) =

{
1 if

√
x2 + y2 < r and z > 0

0 otherwise,

and

U(x, y, z, 0) =

{
−1 if φ > 0

∆ otherwise,

where r is a given zero level set radius of the initial condition, U = 0 represents the melting temperature
of the pure material, and U = ∆ corresponds to the initial undercooling.

A satisfied evolution effect depends on the appropriate choice of parameters. In following
simulations, it is important to set the time step size ∆t and mesh size appropriately. Then we first
test to know the effect of ∆t and mesh size and decide proper two parameters in our simulations.
One of the factors influencing crystal growth can be the curvature of the sphere. We study the
effect of the curvature through the below test. In addition, to verify the robustness of the proposed
scheme, we investigate the impact of the zero level set radius of the initial condition r, and the initial
undercooling ∆. Unless otherwise specified, we choose D = 7 and λ = 11.29. Then we perform
various simulations on a set of ∆ and r.

4.1.1. Effect of Time Step Size

First, we confirm the effect of time step size ∆t and decide the appropriate ∆t for our simulations.
Here, we set the initial radius r = 30, undercooling ∆ = −0.75 and use the same mesh size. Under
these conditions, we select four time step size such as ∆t = 0.3, ∆t = 0.2, ∆t = 0.1, and ∆t = 0.05.
As shown in Figure 2, the states of evolution look similar at same time. However, when ∆t = 0.2 and
∆t = 0.3, the results of crystal show a bit less-growing than other two conditions, and Figure 2c,d
show a satisfied performance. Therefore, we use ∆t = 0.1 as proper time step size for our simulations,
while a smaller ∆t will take more computational cost.
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(a) (b) (c) (d)

Figure 2. Snapshots of the evolution of crystal growth on the sphere having different time step size
with R = 165, ∆ = −0.75, and r = 30. (a) ∆t = 0.3, (b) ∆t = 0.2, (c) ∆t = 0.1, and (d) ∆t = 0.05.
The evolution time from top to bottom are t = 0, t = 50, t = 100, t = 150, respectively.

4.1.2. Effect of Mesh Size

In the following test, we examine the effect of mesh size. Because our proposed scheme is to
solve the Equations (1) and (2) on surface directly, the mesh size is decided by the average of edge
length h̄. We use DistMesh to represent the surface and decide the initial edge length h. Based on h,
this algorithm finds optimized surface and each edge length varies widely after optimization. Then,
we calculate the average of the varied edge length and denote by h̄.

We take R = 165, r = 30, ∆ = −0.75, ∆t = 0.1, D = 7 and λ = 11.29 and focus on the impact
which the mesh size affects. We select four conditions for initial edge length such as h = 5.4, 4.7, 4,
and 3.3. Then we can get the average edge length h̄ = 4.8, 4.1, 3.5, and 2.9. Figure 3 shows snapshots
of evolution states of crystal growth sources with different mesh size in surface at different time
(t = 0, 500∆t, 1000∆t, and 1500∆t).

As depicted in Figure 3, various mesh sizes affect the growth of dendritic crystals. In other words,
h̄ must be kept at a certain level in order to be relatively more suitable for dendrite pattern formation
and to have similar dendrite tip velocities to actual physical phenomena. In particular, results of
Figure 3c,d have a little difference in growth of crystal. This phenomenon indicates that the average
edge length h̄ = 3.5 is sufficient for crystal growth simulation, which saves the computing resources.
Based on the above simulations, we use ∆t = 0.1 and h̄ = 3.5 for following tests in this paper.
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(a) (b) (c) (d)

Figure 3. Snapshots of the evolution of crystal growth on the sphere having different mesh size with
R = 165, ∆ = −0.75 and r = 30. (a) h̄ = 4.8, (b) h̄ = 4.1, (c) h̄ = 3.5, and (d) h̄ = 2.9. The evolution time
from top to bottom are t = 0, 500∆t, 1000∆t, 1500∆t, respectively.

4.1.3. Effect of Curvature

Next we consider the effect of the curvature of sphere. It is known that the curvature of sphere
depends on the radius. As you know, there is an inverse relation between the curvature κ and the
radius R. That is, κ becomes larger when R is smaller and smaller when R is larger. The radius of
sphere used on the above simulations is R = 165. In this test, we use varied radii of the sphere by
R = 130, 165, and 200, and compare each result. Here, we use r = 30 and ∆ = −0.75 without changing
other parameters for the test.

As shown in Figure 4, from the perspective of visual effect, the states of dendritic crystals growth
show almost no difference on the sphere surfaces. In other words, each crystal source on the sphere
surface having different radius grows well under different curvatures. Therefore, we can conclude that
the curvature has little effect on the growth of crystal on the object surface.
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(a) R = 130 (b) R = 165 (c) R = 200

Figure 4. Snapshots of the evolution of crystal growth on the sphere having different radius R with
∆ = −0.75 and r = 10. (a) R = 130, (b) R = 165, and (c) R = 200. The evolution time from top to
bottom are t = 0, 500∆t, 1000∆t, 1500∆t, respectively.

4.1.4. Effect of Undercooling Parameter ∆

The initial undercooling ∆ affects on growth of crystal on surface. Therefore, we study the effect
of ∆ and set three conditions of ∆ = −0.55,−0.75 and −0.95. Setting the initial radius r = 30 on the
sphere, we compare results from different values of ∆. Figure 5 shows the evolution of crystal growth
on a sphere with different undercooling ∆ at different time (t = 0, 500∆t, 1000∆t, and 1500∆t).

As shown in Figure 5, we confirm the effect of ∆ easily. The bigger the value of ∆, the slower the
growth of crystal appears. Conversely, results using ∆ = −0.95 show more fast growth. These results
with ∆ = −0.55 and ∆ = −0.95 are hard to call crystal as shown in Figure 5a,c. However, crystal which
grew up using ∆ = −0.75 show the shape we want and we decide proper the value of ∆.
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(a) ∆ = −0.55 (b) ∆ = −0.75 (c) ∆ = −0.95

Figure 5. Snapshots of the evolution of crystal growth on the sphere with same radius r = 30 and
different ∆. (a) ∆ = −0.55, (b) ∆ = −0.75, and (c) ∆ = −0.95. The evolution time from top to bottom
are t = 0, 500∆t, 1000∆t, 1500∆t, respectively.

4.1.5. Effect of Radius r

Now, we investigate the effect of radius r of the initial crystal growth source. Unchanging other
parameters and conditions, we only set r differently. That is, we take three radius r = 15, 30, and 60,
and simulate under ∆ = −0.75.

Figure 6 shows states of crystal growth on sphere with different initial radius r over time
(t = 0, 500∆t, 1000∆t, and 1500∆t). The difference among three results is clear. Figure 6a shows
that crystal sources with r = 15 are less grown and branches are less stretched. However, results
using r = 60 show that crystals grow and branches stretch more as shown in Figure 6c. From this test,
we can see that when the initial radius r of the source is large, growth is fast and branches of crystal
are extended further.
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(a) r = 15 (b) r = 30 (c) r = 60

Figure 6. Snapshots of the evolution of crystal growth on the sphere with undercooling ∆ = −0.75
and different r. (a) r = 15, (b) r = 30, and (c) r = 60. The evolution time from top to bottom are t = 0,
500∆t, 1000∆t, 1500∆t, respectively.

Next, we observe the crystal growth states when sources are asymmetrically arranged on the
sphere. As shown in Figure 7a, six crystal growth sources set asymmetrically on sphere surface.
In addition, these sources are located the different positions and radius (r = 15, 20, 25, 30, 35, and
40). Parameters for this test are set as ∆t = 0.1, D = 7, λ = 11.29, and ∆ = −0.75. Figure 7b–d are
snapshots of evolution of crystal growth sources which are arranged asymmetrically on sphere at
500∆t, 1000∆t, and 1500∆t, respectively.

(a) t = 0 (b) t = 500∆t (c) t = 1000∆t (d) t = 1500∆t

Figure 7. Snapshots of the evolution of crystal growth on sphere: (a) t = 0, (b) t = 500∆t, (c) t = 1000∆t,
and (d) t = 1500∆t. The number of initial crystals is six and these are located asymmetrically.

4.2. Crystal Growth on Ellipsoid Surface

Asymmetrical arrangement of crystal sources is also applied on the ellipsoid surface. The initial
condition of ellipsoid surface is defined in domain Ω = (−200, 200)3 as follows.

f (x, y, z) =

√
x2

6
+ y2 +

z2

2
− 1552,
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where f = 0 denotes the ellipsoid surface. Three sources having different radius (r = 15, 30, and 45) are
located at different positions on the ellipsoid surface. Parameters used for this test are the same with
the above test and Figure 8 shows the initial condition of ellipsoid with three sources and snapshots of
evolution of these crystal growth at t = 300∆t, 600∆t, and 900∆t.

(a) t = 0 (b) t = 300∆t (c) t = 600∆t (d) t = 900∆t

Figure 8. Snapshots of the evolution of crystal growth on ellipsoid: (a) t = 0, (b) t = 300∆t, (c) t =
600∆t, and (d) t = 900∆t. The number of initial crystals is three and these are located asymmetrically.

4.3. Crystal Growth on Torus Surface

At last, we perform the crystal growth process on the torus surface. Three sources with radius
r = 10, 20, and 30 randomly distributed on the torus surface. Parameters used for this test are the same
with the above test and Figure 9 shows the initial condition of torus with three sources and snapshots
of evolution of these crystal growth at t = 800∆t, 1600∆t, and 2400∆t. Through these simulations,
our method can be applied not only to one crystal source on the surface, but many crystal sources that
have different radius.

(a) t = 0 (b) t = 800∆t (c) t = 1600∆t (d) t = 2400∆t

Figure 9. Snapshots of the evolution of crystal growth on torus: (a) t = 0, (b) t = 800∆t, (c) t = 1600∆t,
and (d) t = 2400∆t. The number of initial crystals is three and these are located asymmetrically.

4.4. Crystal Growth on Complex Surface

In this section, we present the evolutions of Equations (4) and (5) on complex surface. For a
concrete example, we adopt at first a point cloud data for an aircraft body to construct the discretized
surface using a DistMesh function in MATLAB. Numerical simulation of the structure in which
ice crystals form in the fuselage of airplane is a practically relevant experiment that can help in
de/anti-icing it from aerodynamics [23]. The surface is bounded by [−114, 114] × [−111, 111] ×
[−39, 39]. Similar to the above investigation cases, we manipulate the mean of spatial step size h̄ as
close as possible to 3.5 by multiplying the scaling factor. Figure 10 shows the evolutions of crystal
growth on the surface of aircraft body and wings. Initial states of crystals on aircraft surface are set to
be the most frequent parts in reality. Here, we use all the specific parameters are the same as above
except for ∆t = 0.125.

For the next example, we perform the similar test to the metal bell-shaped surface. We fit the
isosurface of the metal bell-shaped surface to [−69, 69]× [−69, 69]× [−69, 69]. The cubic interpolation
is used to make the signed distance function of the metal bell-shaped surface in MATLAB. Figure 11
shows snapshots of the evolutions of crystal growth on the metal bell-shaped surface. Here, we use
h̄ ≈ 3.5, r = 3.1883, and ∆t = 0.125.
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(a)

(b)

(c)

(d)

Figure 10. Snapshots of the evolutions of crystal growth on the surface of aircraft body and wings. We
use h̄ ≈ 3.5 and ∆t = 0.125. The evolution time at each row is (a) t = 0, (b) t = 300∆t, (c) t = 600∆t,
and (d) t = 900∆t, respectively. Note that each column in each row shows the isosurface from different
angle at the same time.

(a)

(b)

Figure 11. Cont.
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(c)

(d)

Figure 11. Snapshots of the evolutions of crystal growth on the metal bell-shaped surface. We use
h̄ ≈ 3.5, r = 3.1883, and ∆t = 0.125. The evolution time at each row is (a) t = 0, (b) t = 180∆t,
(c) t = 360∆t, and (d) t = 540∆t, respectively. Note that each column in each row shows the isosurface
from different angle at the same time.

5. Conclusions

The dendritic pattern formation in crystal growth is an important topic and has a bunch of
interesting applications in phase-field modelings. There are many studies related crystal growth
simulation on two- and three-dimensional domains using phase-field modeling so far, we present
the isotropic crystal growth simulation on curved surfaces in this paper. The Lyapunov function on
smooth closed surfaces S is the base of our mathematical model and the Laplace–Beltrami operator is
evaluated directly on triangularly discretized surfaces M by using Xu’s approach [20]. The first-order
time-stepping method is employed due to ease of implements. There are many parameters that affect
the dendritic pattern formation in crystal growth, such as time step size ∆t, average mesh size h̄,
and undercooling parameter ∆. We perform several numerical investigations to obtain a suitable set
of parameters and choose ∆t = 0.125, h̄ ≈ 3.5, ∆ = −0.75 as a default setting when a computational
domain is contained in boxed region which is bigger than [−120, 120]3 but smaller than [−180, 180]3

approximately, because this set has shown that dendrite crystals are growing physically correctly over
time and, further, it does not use excessive resources for computation. By using these parameters,
we describe the snapshots of isotropic crystal growth on various curved surfaces. In particular,
we provide dendrite growth simulations on physically and practically relevant shapes such as aircraft
body and metal bell-shaped surfaces. In addition, simulation results that can be applied to the actual
de/anti-icing problem are derived not only in the initial condition of the circular shape but also in
the initial state of the curvilinear or rim shape. Because this model does not contain anisotropic cross
derivatives, extending a mathematical model with anisotropic terms and computing the model directly
on surfaces is left to one of our future works.
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