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Abstract: Tuberculosis (TB) is is an infectious disease that generally attacks the lungs and causes death
for millions of people annually. Chest radiography and deep-learning-based image segmentation
techniques can be utilized for TB diagnostics. Convolutional Neural Networks (CNNs) has shown
advantages in medical image recognition applications as powerful models to extract informative
features from images. Here, we present a novel hybrid method for efficient classification of chest X-ray
images. First, the features are extracted from chest X-ray images using MobileNet, a CNN model,
which was previously trained on the ImageNet dataset. Then, to determine which of these features
are the most relevant, we apply the Artificial Ecosystem-based Optimization (AEO) algorithm as a
feature selector. The proposed method is applied to two public benchmark datasets (Shenzhen and
Dataset 2) and allows them to achieve high performance and reduced computational time. It selected
successfully only the best 25 and 19 (for Shenzhen and Dataset 2, respectively) features out of about
50,000 features extracted with MobileNet, while improving the classification accuracy (90.2% for
Shenzen dataset and 94.1% for Dataset 2). The proposed approach outperforms other deep learning
methods, while the results are the best compared to other recently published works on both datasets.

Keywords: Tuberculosis (TB); transfer learning; convolutional neural networks; deep learning;
Artificial Ecosystem-based Optimization; image processing

1. Introduction

Tuberculosis (TB) is considered one of the world’s biggest threats to humanity as it is ranked
as the fifth leading cause of death globally (1.5 mln deaths annually) [1]. For this reason, the World
Health Organization encourages interlacing efforts to root it out because it is rather easy to cure [2].
Although it has low specificity and difficult interpretation, posteroanterior chest radiography is one of
the preferred TB screening methods. In these circumstances, an automated computer-based diagnosis
system for TB could be an efficient method for widespread TB screening.
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As a result, the attention of the machine learning community was attracted by this topic,
and some works have tackled the problem by applying classical machine learning methods with
hand-crafted feature extraction, then applying a specific classifier such as Support Vector Machine
(SVM) [3], Random Forest (RF) [4], ensemble baggage tree (EBT) [5] or Optimum-Path Forest (OPF) [6],
while others apply nature-inspired evolutionary algorithms [7–9] or Convolutional Neural Networks
(CNN) [10]. Some works achieved brilliant results, as some of these methods achieve quite close
to human performance [11]. This makes deep learning an efficient method for medical image
analysis [12], breast cancer classification [13], tumor segmentation [14] and pneumonia detection [15].
For TB diagnosis, CNN has achieved performances close to the best, while providing a more
simple implementation to some competing methods, which employ complex machine learning
pipelines [16–19]. For example, Vajda et al. [19] use an approach that starts with several preprocessing
operations on lung-like segmentation, then extracting hand-crafted features such as the eigenvalues
of the Hessian matrix, then finally uses a classifier for diagnosis. The results were aligned with deep
learning results [20], however, their multi-stage approach is more complex than a CNN based approach
and needed more development work.

Previous works adopt transfer learning-based models such as pre-trained AlexNet, ResNet and
GoogLeNet models, which were applied on the image classifications tasks [20–23]. These models are
considered as very powerful because they have been carefully implemented, trained and optimized on
about 1 million images (the Imagenet dataset [24]), and then used to distinguish between some classes.
Consequently, they need a lot of memory, resources and computation, while they are more likely to
suffer from over-fitting are less likely to generalize well when used for medical classification tasks
with limited amounts of images available [25]. While in [26], a hybrid approach consists of two main
phases was proposed; a pretrained DenseNet-121 besides four types of local features such as SIFT,
GIST, LBP, and HOG, and convolutional features. The hybrid approach showed advantages over the
state of the art approaches in the classification of 14 chest diseases as it reaches 84.62% of classification
accuracy, compared to 80.97% accuracy of the pre-trained DenseNet-121 model.

In our previous work [27,28], a segmentation of white blood cells was done by extracting color,
shape, texture and hybrid features, and then a social spider optimization algorithm was used to
select the best features. We also used the hybrid method for the detection of the bad tissues in the
chest radiogram images [29]. The Moth–Flame and Ant Lion search heuristic optimization methods
combined with the custom neural network allowed to obtain an accuracy of 85% on Montgomery
County and Shenzhen datasets.

While CNN achieves the best performance on big datasets, often the dataset is small and may not
provide enough data to train a CNN from scratch leading to the “small data” problem [30]. In such
cases, transfer learning may be used [31,32]. The network is first trained on a large but generic
collection of images, and then used to solve a specific task [33]. The examples of pre-trained neural
networks are VGGNet [34], ResNet (GoogLeNet) [35], Nasnet [36], Mobilenet [37], Inception [38] and
Xception [39]. The use of CNN on chest X-Rays images has been performed in [23,40], the authors
recommended using CNN because there are available images that are similar to real-life medical
images. It also enables applying the computer-based systems at cheap prices. The impact of applying
CNN on chest diseases has been revealed in previous works [23].

Here we suggest a new approach to optimize deep learning architectures for medical image
classification purposes. Such methods might play a significant role as a computer-aided tool for
image-based clinical diagnosis soon. Our specific novelty and contribution is the combination of the
Artificial Ecosystem-based Optimization (AEO) algorithm [41] and the MobileNet [37] deep learning
network. The AEO algorithm has not been used for the analysis of the chest X-ray images and the
detection of pulmonary diseases yet. The proposed MobileNet-AEO approach is based on transfer
learning and starts by extracting deep features from raw Chest X-ray images using MobileNet. Then a
selection of the optimal subset of relevant features is performed using binary AEO as a feature selection
technique. The motivation of this work is to apply AEO as a feature selector from deep features that
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produced from CNN which is largely redundant. This can accordingly minimize the capacity and
resources consumption, then improve the classification of Chest X-ray images. up to our knowledge,
AEO has not applied on any real applications yet.

The other parts of the article are structured in the following order: Section 2 presents the
methodology and the techniques used including the model structure and description. The proposed
MobileNet-AEO approach is presented in Section 3. Datasets and evaluation measures are described
in Section 4. The experimental results and comparisons with other works are presented in Section 5,
while, the conclusions are presented in Section 6.

2. Material and Methods

2.1. Feature Extraction Using Convolutional Neural Networks

The main concept of transfer learning with very deep neural networks is to re-train a CNN model
(on our dataset) that was previously trained on the ImageNet [24] (about 1.2 million images). Since the
dataset covers a wide range of objects (1000 different categories), so the model can learn diverse types
of features, then they can be reused for other classification tasks.

In this work, we used MobileNet [37] with 88 layers. The MobileNet structure is mainly based on
the depth-wise separable convolutions (Conv.). Each Conv. layer is succeeded by a Batch Normalization
(BN.) [42] and ReLU. Figure 1 shows that down-sampling is performed with stride-Conv. in the
depth-wise Conv., and in the first layer. Then, a final average pooling is applied to reduce the
spatial resolution to be 1 before exposed to the fully connected layer. Counting depth-wise and 1× 1
(point-wise) Conv., shows that MobileNet contains 28 layers. It is worthwhile to mention that 95%
of it’s computation time is spent in 1× 1 convolutions which contain 75% of MobileNet parameters.
The whole MobileNet architecture consists of 17 of these blocks as seen in Figure 1. There are no pooling
layers between these depth-wise blocks. Instead, there is a stride of 2 to reduce the spatial dimensions.

In our case, the last layer has only 2 channels (TB or not TB). The final layer is the soft-max layer
because it is a binary classification. Hidden layers have the rectification non-linearity [20].

Figure 1. Standard MobileNet structure.

To implement transfer learning with MobileNet, we first retrieved the previously extracted
bottleneck features by MobileNet, then combine them with current extracted features from our TB
images by training MobileNet on existing training data. Finally, we assign another class (rather than
1000 classes as in Imagenet) at the top of the model (for classification) [43].

One of the drawbacks of CNN in general, especially, MobileNet is that it requires higher
computational resources such as memory and storage capacity. In order to get over this problem, some
statistical operations were applied to exclude irrelevant and correlated features, and also to make the
proposed approach computationally efficient, they are listed as follows [44]:
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1. Chi-square is applied to remove the features which have a high correlation values by computing
the dependence between them. It is calculated between each feature for all classes, as in
Equation (1):

χ2 =
n

∑
k=1

(Ok − Ek)
2

Ek
(1)

where Ok and Ek refer to the actual and the expected feature value, respectively.
2. Tree-based classifier is used to calculate feature importance to improve the classification since it

has high accuracy, good robustness, and is simple [45].

2.2. Feature Selection Using Artificial Ecosystem-Based Optimization

Recently, the Artificial Ecosystem-based Optimization (AEO) algorithm has been proposed [41].
It is inspired by the behavior in the earth system of biology of flow of the energy. Such mechanism
emulates some actions of living organisms like decomposition, consumption, and production.

In general, the producers can be any type of green plants that obtained their food using the
photosynthesis process. During this process (i.e., photosynthesis), the sugar (i.e., oxygen and glucose)
is produced by interactions between the water and carbon dioxide subject to the absence of sunlight.
Then, this obtained sugar is used by plants to make fruits, leaves, roots, and wood. So, the herbivore
consumers and omnivore consumers obtained their essential food from the producers. Since the
consumers are animals and they can’t produce their food and they only feed only on food from
either producers or other consumers. In nature, there are three types of consumers (1) carnivores,
(2) herbivores, and (3) omnivores. These animals that feed only on plants (i.e., producers) named
herbivores; whereas, omnivores are these animals that have the ability to eat the producers and
other animals. In addition, these animals that feed only on other animals are named carnivores.
Decomposers represent the organism that feeds on producers (i.e., dead plants) and consumers (i.e.,
animals) or on the waste from living organisms. The fungi and the most of bacteria are decomposers,
where the decomposers break down the remains of organisms dies and convert them into simple
molecules, for example, minerals, water, and carbon dioxide. Followed by absorbing these energy
types by producers to generate sugar using photosynthesis.

These actions can be modeled in a mathematical formulation where the action of production
can control the trade-off of exploitation vs. exploration during the optimization process. During the
decomposition action, the consumer can control the search space which is ended by deleting the
intensification. Through such a system, the plants reach food using water, carbon dioxide, the light of
the sun, and bacteria and fungi which can decompose nourishment.

The update process can be summarized as follows:

1. Production Procedure: according to the followed procedure in [41], the selection of the producer
position is performed in a random way and the corresponding producer is the worst. However,
the best solution represented by the decomposer can be modeled as following:

X1(t + 1) = (1− d)Xn(t) + d · Xrand(t), (2a)

d = (1− t
Tmax

)rand1 (2b)

Xrand(t) = rand2() · (ub− lb) + lb, (2c)

where t and Tma are the current iteration and total number of iterations, respectively. ub and lb
represents the upper and the lower boundaries of the search space. rand1 and rand2 are arbitrary
variables in the interval [0,1] and d is a the weight parameter. Xrand(t) donates a solution that
generated randomly in the search space.
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2. Consumption procedure: in such a procedure, the first user feeds to the other user with a lower
level of energy or on a producer. Each set of users known as omnivores, vegetarian or herbivores,
and carnivores has its mechanism in modernizing its position as follows:

(a) The herbivores locations can be modernized just with respect to the producers:

Xi(t + 1) = Xi(t) + K · (Xi(t)− X1(t)) (3)

where X1 represents the location of the producer and K represents a parameter for the
consumption, it is determined using the levy flight by the following equations:

K =
1
2

u
v

, u ∈ Norm(0, 1), v ∈ Norm(0, 1) (4)

where Norm(0, 1) is a variable generated using the normal distribution with the zero mean
and the unit variance.

(b) The update process of the carnivores is performed through the arbitrary customer with
several levels of the energy which has an index (l). Such procedure can be modeled as:

Xi(t + 1) = Xi(t) + K · (Xi(t)− Xl(t)), (5a)

l = randi([2 i− 1]), i = 3, ..., N, (5b)

where randi[a, b] is function used to generate random integer number in [a, b]].
(c) The position update of omnivores are depends on the producer and as well as the randomly

chosen consumer with high level of energy index (l) as framed follows:

Xi(t + 1) = Xi(t) + K · (rand3 · (Xi(t)− X1(t))) + (1− rand3) · (Xi(t)− Xl(t)), (6a)

l = randi([2 i− 1]), i = 3, ..., N, (6b)

3. Decomposition process: This represents the last phase in the biological system in which each
agent passes on and the remaining parts are separated. This step refers to the exploitation of AEO
and it is formulated as in [41]:

Xi(t + 1) = Xi(t) + D · (e · Xn(t)− h · Xi(t)), i = 1, ..., N, (7a)

D = 3u, u ∈ N(0, 1) (7b)

e = rand4 · randi([1 2])− 1, (7c)

h = 2 · rand4 − 1, (7d)

In Equation (7), the parameter D refers to the decomposition factor, h and e represent the weight
parameters. rand4 is random number generated from [0,1].

The steps of AEO are given in Algorithm 1. Moreover, The AEO has some advantages over the
other MH techniques such as no parameters need to be determined during the optimization process.
In addition, it has a high ability to balance between the exploration and exploitation which leads to
improve convergence and avoids stuck at local optima. Consequently, improve the quality of the
output. These characteristics made it more suitable to combine with DNN.
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Algorithm 1 The AEO algorithm steps [41].

Inputs: N the number of solution and Tmax: total number of iterations.

Generate initial ecosystem X (solutions).

Compute the fitness value Fiti, and X1 is the best solution.

t = 1.

repeat

Update X1 using Equation (2). . Production

for i = 2, ..., n do . Consumption

if rand < 1/3 then

Update Xi using Equation (3), . Herbivore

else if 1/3 < rand < 2/3 then

Update Xi using Equation (6), . Omnivore

else

Update Xi using Equation (5), . Carnivore

Compute the fitness of each Xi.

Find the best solution X1. . Decomposition

Update Xi using Equation (7).

Compute the fitness of each Xi.

Update the best solution X1.

t = t + 1.

until (t < Tmax)

Return X1.

3. Proposed MobileNet-AEO for Chest X-ray Classification Approach

The proposed MobileNet-AEO approach starts by extracting deep features from raw Chest X-ray
images using MobileNet as discussed in Section 2.1. About 50 K features are produced, which represent
the output of the last layer 7× 7× 1024.

Then a selection of the optimal subset of relevant features is performed using binary AEO as a
feature selection technique. The AEO set the initial value for N solutions each of them has dimension
equal to the total number of extracted features Dim. This process is formulated as:

Ui = LBi + αi × (UBi − LBi), j = 1, 2, ..., Dim (8)

where αi ∈ [0, 1] is a randomly generated number [46]. The LBi = 1 and UBi = 0 indicates the bottom
and top boundary of the domain of searching.

Thereafter, each solution Ui is converted into binary vector (BUi) using Equation (9).

BUij =

{
1 i f Uij > 0.5
0 otherwise

(9)
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The binary vector considered as the main step to determine the relevant features. Those extracted
features that corresponding to zeros will be removed and the rest features represent the relevant
features. For example, assume Ui = [0.58, 0.94, 0.72, 0.21, 0.12, 0.78]. By using Equation (9), BUi =

[1, 1, 1, 0, 0, 1]. Then, the 3rd and 4th features will be removed while the remaining features will be
kept as the relevant ones.

To validate the quality of the selected features using the current solution Ui, the following formula
is used which represents the fitness function.

Fiti = λ× γi + (1− λ)× (
|BUi|
Dim

) (10)

In Equation (10), |BUi| is the total number of the selected features. λ is applied to balance between
the ratio of the selected features (the second part of Equation (10)) and the error of classification (γi)
(first part). In this stage, KNN classifier is used to assess the performance of the selected features from
the training set (here, it is 80% from the whole dataset).

The next process is to find the best solution Ub which has the smallest Fitb. Followed by updating
the solutions using operators of traditional AEO as discussed in Section 2.2. The process of updating
the solutions is repeated until reaching the total number of iterations. The best solution Ub is the output
from this stage, to evaluate its quality, the testing set (represents 20% from the dataset) is reduced
according to it. Again, KNN is used to predict the target of the testing set and the classification metric
is computed. The outline of the proposed MobileNet-AEO approach is presented in Figure 2.

Figure 2. Flow chart of MobileNet-AEO approach.



Symmetry 2020, 12, 1146 8 of 17

4. Datasets and Evaluation

4.1. Dataset Description

The dataset we used is called Shenzhen dataset [47]. It was collected by Shenzhen Hospital,
in China. The chest X-rays were collected from outpatient clinics, they were captured daily- bases
routine within 1-month, mostly in 2012, using a specialized medical Diagnostic system. It contains 662
frontal chest X-ray images, of which 326 images represent the benign cases, while 336 images represent
TB (malignant) cases. All image file names have the same naming template: CHNCXR_####_X.png,
where X can be “0” for Non-TB (benign) or “1” for Tuberculosis (malignant) X-ray. A clinical report
is available for each X-ray in a file with the same format, which contains the patient’s age, gender,
and abnormality seen in the lung if any.

In order to validate the proposed approach, we apply it on another medical application that
works also with chest X-ray to detect Pneumonia.We also used a second, unbalanced and more recently
collected dataset [48], which we call Dataset 2. It was collected and labeled by physicians. It consists of
5232 children’s chest X-ray images, 3883 of them labeled as showing the signs of pneumonia (2538
bacterial and 1345 viral), where the rest 2538 labeled as normal. Both datasets represents a binary
classification problem, where the proposed approach has to classify each input image into malignant
or benign. Table 1 shows some examples for the two datasets.

Table 1. Samples from Shenzhen dataset (top) and Dataset 2 (bottom).

Dataset 2

Shenzhen

Table 1 illustrates the variation in each dataset, in terms of morphology, structure, shape, and zoom
level. The variation in size (height and width) is from 200 to 4000 pixels, also each of them has a
different image file format.

4.2. Evaluation

We used accuracy (Acc), sensitivity (Sens), specificity (Spec) [49] and time consumption as fitness
measures. These are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Sensitivity =
TP

TP + FN
(12)

Speci f icity =
TN

TN + FP
(13)

where TP (true positives) is the number of the TB samples that were labeled correctly, TN (true
negatives) is the number of the not-TB samples that were labeled correctly. FP (false positives) is the
number of the TB samples that were labeled incorrectly as being not TB samples, and “FN” (false
negatives) is the number of the not-TB samples that were miss classified as the TB samples.
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We also calculate the standard deviation (STD) of the fitness measures as follows:

STD =

√
1

r− 1

r

∑
i=1

(Fiti − µ)2, µ =
1
r

r

∑
i=1

Fiti (14)

where r is the run numbers. Fiti denotes a fitness function value. µ represents the average of the
fitness value overall r.

4.3. Implementation Environment

The proposed approach was implemented in Python 3 on Windows 10 64 bit using a Core i7 CPU
and 8 GB RAM, besides Google Colaboratory “Colab” [50]. The model was developed using Keras
library [51] with Tensorflow backend [52]. For feature selection, the experiment was performed using
Matlab 2018b on a computer Core i5 and 8 GB of RAM running with Windows 10.

5. Results and Discussion

5.1. Parameters

The proposed approach has been trained on 80% of samples (537 for Shenzhen dataset and 4160
for Dataset 2), while the rest 20% (134 for Shenzhen dataset and 1040 for Dataset 2) were used for
testing (external validation) the model’s performance. There is no overlap between any of the two
sets. Also, all results are given on the testing set. In this work, we adopt the following parameters for
building MobileNet. A learning rate of 0.0001 and a mini-batch of size 20 and binary cross-entropy
as a loss function were used. Also, we adopt Rmsprop as the optimization algorithm [53]. In total,
the model has 4,253,864 trainable parameters.

5.2. Performance

We compare the performance of AEO against other metaheuristic techniques including Harris
Hawks optimization (HHO) [54], Henry gas solubility optimization (HGSO) [55], Whale optimization
algorithm (WOA) [56], grey wolf optimization (GWO) [57], sine-cosine algorithm (SCA) [58], teaching
learning based optimization (TLBO) [59] and traditional AEO.

The parameters of each algorithm are set to default. The input to all feature selection algorithms
is the features extracted by Mobilenet.

Tables 2 and 3 show the results of the feature selection process over the two datasets, Shenzhen
and Dataset 2. From the presented results, it can be noticed that our method based on AEO excels
other methods. For example, in terms of accuracy, it achieves the first rank, followed by the SCA
and TLBO that allocate second and third rank, respectively. Similarly, in terms of sensitivity, AEO
performs well as has the highest best, worst, and means sensitivity values. In terms of specificity, AEO
shows better best value than all other methods. However, the SCA and TLBO provide better mean
and worst specificity when compared to other methods. These results indicates the high ability of
the proposed AEO algorithm to find the relevant features and this reflected from its Best value of
accuracy, sensitivity, and specificity. In addition, by analysis the value of the worst case in terms of
performance measures, one can be noticed that the AEO outperforms other FS methods in sensitivity
value. However, in accuracy and specificity allocates the third rank after SCA and TLBO, respectively.
For the stability of the FS algorithms as measured using STD, it can be noticed that the WOA, AEO,
and TLBO are more stable in terms of accuracy, sensitivity and specificity. Moreover, by analysis the
results in terms of Best, Worst, and STD value for Datatset 2, it cab be noticed that AEO has high
superiority over other models except in terms of STD of accuracy it has be observed that the GWO is
more stable.
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Table 2. Comparison of performance for Shenzhen dataset. The best values are shown in bold.

AEO HHO HGSO WOA SCA GWO TLBO

Acc

Best 0.9023 0.8195 0.8120 0.8120 0.8872 0.8421 0.8872
Mean 0.8617 0.7880 0.7835 0.7744 0.8436 0.8150 0.8526
Worst 0.8045 0.7368 0.7669 0.7293 0.8271 0.7744 0.8195
STD 0.0400 0.0374 0.0171 0.0340 0.0252 0.0294 0.0253

Sens

Best 0.9194 0.8923 0.8448 0.8636 0.8676 0.8500 0.9077
Mean 0.8839 0.8092 0.8069 0.7848 0.8294 0.8033 0.8369
Worst 0.8548 0.7231 0.7759 0.7273 0.8088 0.7667 0.7846
STD 0.0239 0.0612 0.0256 0.0540 0.0246 0.0361 0.0456

Spec

Best 0.9014 0.8382 0.8133 0.8358 0.9385 0.8630 0.8824
Mean 0.8423 0.7676 0.7653 0.7642 0.8585 0.8247 0.8676
Worst 0.7465 0.6765 0.7333 0.6567 0.8000 0.7123 0.8529
STD 0.0609 0.0627 0.0335 0.0711 0.0503 0.0653 0.0104

Table 3. Comparison of performance for Dataset 2. The best values are shown in bold.

AEO HHO HGSO WOA SCA GWO TLBO

Acc

Best 0.9418 0.9152 0.9041 0.9187 0.9307 0.9349 0.9050
Mean 0.9360 0.8964 0.8955 0.8991 0.9199 0.9322 0.8997
Worst 0.9307 0.8767 0.8759 0.8690 0.9110 0.9289 0.8955
STD 0.0048 0.0153 0.0116 0.0189 0.0081 0.0022 0.0038

Sens

Best 0.8722 0.8291 0.8306 0.8384 0.8630 0.8642 0.8148
Mean 0.8518 0.7905 0.7792 0.7848 0.8327 0.8463 0.7872
Worst 0.8307 0.7025 0.7264 0.6768 0.8017 0.8210 0.7609
STD 0.0174 0.0538 0.0393 0.0632 0.0247 0.0183 0.0191

Spec

Best 0.9708 0.9495 0.9501 0.9500 0.9612 0.9704 0.9495
Mean 0.9668 0.9357 0.9370 0.9438 0.9561 0.9652 0.9380
Worst 0.9637 0.9061 0.9268 0.9310 0.9491 0.9609 0.9288
STD 0.0027 0.0178 0.0094 0.0075 0.0054 0.0043 0.0091

Figure 3 shows a comparison between the proposed approach and other feature selection
algorithms. From this figure, it can be seen that the proposed approach shows advantages compared
to the other algorithms in terms of accuracy, sensitivity and specificity on all experiments (best, mean
and worst).
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(a) Accuracy

(b) Specificity

(c) Sensitivity

Figure 3. Comparison of optimisation methods using Accuracy, Specificity, and Sensitivity measures.

Table 4 depicts the performance of AEO in terms of computation time and number of selected
features for Shenzhen dataset and Dataset 2. For Shenzhen dataset, it can be seen that AEO allocates the
fourth rank by selecting 24.6 features on average, compared to WOA, which ranked first in selecting
the smallest subset features, with only 10.8 features selected on average. However, the extracted
features by WOA are less efficient as they show lower performance compared to AEO, as seen in
Tables 2 and 3. In contrast, the proposed AEO provides the smallest and most significant feature set
among other methods, on dataset 2.
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Table 4. Mean number of features selected and time performance. Best values are shown in bold.

AEO HHO HGSO WOA SCA GWO TLBO

Dataset1

Features 24.6 9.6 11.6 10.8 42.2 58.8 19.6
Best time (s) 8.8713 9.1562 8.1690 4.1322 5.1606 9.0793 9.1075

Mean time (s) 9.7251 9.6065 8.5953 4.3891 5.2591 9.5839 9.5879
STD time (s) 0.9068 0.3497 0.2658 0.1653 0.0912 0.3606 0.4349

Dataset2

Features 19 33.8 31.6 52.6 31.8 72 30.8
Best time (s) 137.7945 250.7114 671.3892 125.0128 251.9918 422.1539 247.6316

Mean time (s) 162.4733 281.7812 743.5204 128.3362 257.9852 467.4882 297.0471
STD time (s) 7.9267 30.0768 50.8346 2.2845 9.4944 26.7742 33.5236

5.3. Comparison with Other CNN Models

Here we compare the proposed approach (MobileNet-AEO) to MobileNet and other CNN models
based on the classification evaluation criteria, (i.e., accuracy, specificity and sensitivity). Table 5 shows
a comparison between our approach and MobileNet.

Table 5. Number of features and performance for Shenzhen dataset and Dataset 2. Best values are
shown in bold.

Shenzhen Features Percentage Accuracy Specificity Sensitivity

MobileNet 50176 100% 0.89 0.89 0.90
Proposed approach ∼25 0.05% 0.902 0.901 0.914

Dataset 2 Features Percentage Accuracy Specificity Sensitivity

MobileNet 50176 100% 0.842 0.846 0.846
Proposed approach 19 0.038% 0.941 0.97 0.872

In Table 5, we compare the features extracted from MobileNet and those extracted by our method.
Only 0.05% and 0.038% of MobileNet features were extracted from Shenzhen and Dataset 2, respectively.
The MobileNet-AEO method uses only 24 and 19 features (for Shenzhen dataset and Dataset 2,
respectively) shows better performance in all classification measures than the basic MobileNet feature
set that has some 50 K features. Figure 4 presents a comparison between the proposed approach
and different efficient CNN architectures such as VGGNet (VGG 16 and VGG 19) [34], ResNet [35],
NasNet [36], MobileNet [37], Inception [38] and Xception [39].
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Figure 4. Performance (accuracy, sensitivity and specificity) of models on Shenzhen (left) and Dataset 2
(right)

Table 6. Comparison of results with related works on Shenzhen and Dataset 2. Best values are shown
in bold

Shenzhen dataset Feature extraction Classifier Accuracy (%)
Jaeger et. al [17] Manually SVM 84.10
Hwang et. al [61] Deep features by CNN KNN 83.70
Lopes et. al [62] ResNet, VGG and GoogLeNet SVM 84.60
Sivaramakrishnan et. al [63] VGG16 with optimal features CNN 85.5
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Deep features by MobileNet,

feature selection by AEO CNN 90.2
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Figure 4. Performance (accuracy, sensitivity and specificity) of models on Shenzhen (left) and Dataset
2 (right).

As shown in Figure 4 (top), the proposed MobileNet-AEO approach outperforms all other
CNN architectures in both accuracy and sensitivity with a slight advantage than the basic version
of MobileNet, while VGG 19 comes first in specificity with 91% compared to ours, 90%. In Figure 4
(right) , which represents Dataset 2, the proposed approach shows an advantage among all CNNs
in all classification criteria. Also, ResNet comes last with both datasets for accuracy, sensitivity and
specificity . It is noted that NasNet was excluded from the second dataset experiments due to resource
limitations as it contains 88 K parameters, which produces about 487 K of features, which put it first as
the deepest CNN.

5.4. Comparison with Related Works

Here we compare our results with relevant works. Table 6 shows the most recent published works
on both Shenzhen and Dataset 2.
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Table 6. Comparison of results with related works on Shenzhen and Dataset 2. Best values are shown
in bold.

Shenzhen Dataset Feature Extraction Classifier Accuracy (%)

Jaeger et al. [17] Manually SVM 84.10
Hwang et al. [21] Deep features by CNN KNN 83.70
Lopes et al. [18] ResNet, VGG and GoogLeNet SVM 84.60
Sivaramakrishnan et al. [60] VGG16 with optimal features CNN 85.5

Proposed approach
Deep features by MobileNet,

feature selection by AEO CNN 90.2

Dataset 2 Feature extraction Classifier Accuracy (%)

Kermany et al. [48] Deep features N/A 92.8

Rajaraman et al. [61] Deep features
by CNN architectures

Residual CNN 91
Inception 88.6

Proposed approach
Deep features by MobileNet,

feature selection by AEO CNN 94.1

As seen in Table 6 (top), the proposed approach has an advantage in performance (accuracy) over
other recent works. Also, the first three models with the highest performance used CNN as a feature
extractor, which means that CNN can extract the most informative features that improve the model’s
performance. Although Jaeger et al. [17] extracted features from chest x-ray images then adopted
various classification methods, the results reported were achieved using low-level image features and
linear logistic regression classifiers. Also, Lopes et al. [18] adopted the bags of features method on
features extracted from GoogLeNet, ResNet, and VGG networks and then applied an ensemble of
individual SVM classifiers.

In Dataset 2, as shown in Table 6 (button), the proposed method come also first among other
previous works on the same dataset. Although in [61], the authors claim that they achieved 94.3% of
classification accuracy, but they provided no more details about the model they proposed, they named
their model as Sequential CNN.

6. Conclusions

In this paper, a new hybrid method for Tuberculosis X-ray image classification was introduced.
The method is based on extracting features from the chest X-ray images using a MobileNet deep
neural network, and then filtering the produced huge number of features using the recently proposed
Artificial Ecosystem-based Optimization (AEO) algorithm to include only the relevant features and
exclude the irrelevant features.

The classification approach (MobileNet-AEO) was validated using two publicly available datasets,
Shenzhen Dataset and Dataset 2, which both contain chest X-ray images. MobileNet-AEO performed
well by achieving high classification accuracy. Also, the complexity was reduced, which positively
affects the computation time. MobileNet-AEO was successful in reducing the number of features from
50 K to only 25 and 19 and achieving an accuracy of 90.2% and 94.1% for Shenzhen dataset and Dataset
2, respectively, while increasing the performance at the same time. The proposed MobileNet-AEO
approach outperforms all published works on the two datasets, as well as showed an advantage when
compared to other convolutional network models. Our future work will include building a hybrid
approach that combines a transfer learning model and a swarm optimisation algorithm to build a
classification model for COVID-19 diagnostics from the chest radiographs.
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7. Woźniak, M.; Połap, D. Bio-inspired methods modeled for respiratory disease detection from medical images.
Swarm Evol. Comput. 2018, 41, 69–96. [CrossRef]

8. Gupta, N.; Gupta, D.; Khanna, A.; Rebouças Filho, P.; de Albuquerque, V. Evolutionary algorithms for
automatic lung disease detection. Meas. J. Int. Meas. Confed. 2019, 140, 590–608. [CrossRef]
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14. Woźniak, M.; Połap, D.; Capizzi, G.; Sciuto, G.; Kośmider, L.; Frankiewicz, K. Small lung nodules detection
based on local variance analysis and probabilistic neural network. Comput. Methods Programs Biomed. 2018,
161, 173–180. [CrossRef] [PubMed]

15. Chouhan, V.; Singh, S.; Khamparia, A.; Gupta, D.; Tiwari, P.; Moreira, C.; Damaševičius, R.;
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