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Abstract: The 4D Maxwell theory with single-sided planar boundary is considered. As a consequence
of the presence of the boundary, two broken Ward identities are recovered, which, on-shell, give rise
to two conserved currents living on the edge. A Kaç-Moody algebra formed by a subset of the
bulk fields is obtained with central charge proportional to the inverse of the Maxwell coupling
constant, and the degrees of freedom of the boundary theory are identified as two vector fields,
also suggesting that the 3D theory should be a gauge theory. Finally the holographic contact between
bulk and boundary theory is reached in two inequivalent ways, both leading to a unique 3D action
describing a new gauge theory of two coupled vector fields with a topological Chern-Simons term
with massive coefficient. In order to check that the 3D projection of 4D Maxwell theory is well defined,
we computed the energy-momentum tensor and the propagators. The role of discrete symmetries is
briefly discussed.
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1. Introduction

Boundaries exist in nature. Their presence is usually swept under the rug, when teaching
classes, except then saying, rather vaguely indeed, that “boundary effects” should be taken into
account, which substantially affect the idealized bulk-only theories. Think, for instance, to the
inexistent “infinitely long” solenoids, or to the ideal “infinitely extended” parallel plates of a capacitor.
The Casimir effect [1] perhaps is the first highly nontrivial example of boundary effect which has
been thoroughly studied in a systematic way. The role of boundaries has been largely discussed
in 2D Conformal Field Theory [2,3]. In particular, in [2], the zoo of Conformal Field Theories has
been tamed by means of a boundary put on the 3D topological Chern–Simons (CS) theory. In [3],
instead, the role of the boundary, and in particular of the boundary conditions, has been exploited
for the study of the Virasoro algebras and their extensions (Kaç–Moody, superconformal, W-algebras).
In field theory, the pioneering work which must be referred to is [4], where Symanzik gave the
first formulation of field theory with boundary, defined as the surface which separates propagators,
i.e., two-points Green functions, in the sense that propagators computed between points lying on
opposite sides of the boundary must vanish. This approach relies on very general principles of field
theory, like locality and power counting, and not much space is left to arbitrariness. For instance,
the conditions which must by fulfilled by the quantum fields on the boundary (of the Dirichlet,
Neumann or Robin type), are not put by hand in the theory, but are those which naturally come
out from the request of separability of propagators. This approach has been very fruitful in the
study of Topological Field Theories (TFT) with planar boundary [5]. TFT are characterized by the
absence of physical local observables, the only observables being global properties of the manifold
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where they are built, like the genus, or the numbers of holes and handles [6]. In other words,
TFT have vanishing Hamiltonian and energy-momentum tensor, and it is rather surprising that
for such non-physical theories it has been possible to establish [7–9] that on their lower dimensional
edge, conserved currents exist, which form Kaç–Moody algebras [10,11], whose central charge is
inversely proportional to the coupling constant of the bulk theory, and directly related to the velocity of
the boundary propagating Degrees Of Freedom (DOF). This property seems to be a common feature of
different physical situations, such as the 3D Fractional Quantum Hall Effect [12,13] and the Topological
Insulators in 3D [14–16] and 4D [17–19]. The boundary conditions, which are not imposed, as we
said, play a very important role in the identification of the nature of the edge DOF. Experimentally,
indeed, the edge states of the Fractional Quantum Hall Effect and of the Topological Insulators are
fermionic, while the corresponding bulk theories are completely bosonic, being described in terms
of gauge fields. However, the boundary conditions have been recognized to be the conditions for
the fermionization of bosonic DOF [20–22]. In the Symanzik’s approach, the boundary separates
two half-spaces: left and right hand side with respect to a plane. Single-sided boundaries can also
be considered, which correspond to quite different physical situations from the cases previously
described. Think for instance to the AdS/CFT correspondence [23–25], which is exactly of that type,
showing dualities between D-dimensional gravity bulk theories and their holographic counterparts on
their (D-1) boundaries, where the extra “energy” dimension run from zero to infinity. The AdS/CFT
holographic correspondence, also referred to as gauge/gravity duality, originally conjectured in string
theory [26], later received much attention in condensed matter theory, enough to introduce for that
case a new acronym (AdS/CMT). The bulk/boundary correspondence turned out to be a powerful
new technique to study strongly coupled systems, reviewed for instance in [27–30]. The gauge/gravity
duality falls in the more general topic of field theories with boundary, and one may indeed refers
to holography without gravity [31,32]. To avoid possible misunderstandings, we stress that the
holography we are dealing with in this paper does not concern the strong-weak coupling duality of
the AdS/CFT correspondence. The 4D Maxwell theory without matter is, in fact, a free theory without
interaction. Therefore, we can calculate anything exactly or, in some sense, the model is trivial. There
does not exist any non-perturbative effect like strong-weak duality. In the single-sided case, Symanzik’s
separation requirement on propagators does not seem to be the most natural one. It is easier, and more
intuitive, to implement the confinement of the theory in a half-space by means of a theta Heaviside
step function directly introduced in the bulk action [33,34]. Keeping strict the request of not imposing
particular boundary conditions, these can be found by means of a kind of variational principle on the
equations of motion. The theories with singe-sided boundaries are therefore treated with a different
approach, and the physical results on the boundary do not necessarily coincide with those of the
separating boundaries. This is the case, for instance, of 3D Maxwell–Chern–Simons theory, where the
Maxwell term is completely transparent in case of double-sided boundary [35] and algebraically active
in the single-sided case [36,37]. It is precisely the different role of the non-topological Maxwell term that
motivated the study of non-TFT, or theories with non-topological terms, defined in half-spaces [38,39].
In fact, all the mentioned results obtained for quantum field theories with boundary concern TFT:
3D Chern–Simons and BF theories, the latter being defined on any spacetime dimensions [6,40–43].
What is still lacking is the study of a physical, realistic, hence entirely non-topological, theory in
4D, defined on a half-space. The first example which comes to mind of such a theory is of course
4D Maxwell theory of electromagnetism, and it is intriguing to investigate the role of the boundary
in this case: Which are the edge DOF? Are there conserved currents, as in the topological cases?
Do they form an algebra and of which type? Is there a 3D holographic counterpart of 4D Maxwell
theory? Is this unique, or can more theories be found on the 3D boundary, which are holographically
compatible with the bulk theory? These questions motivated the present work, which is organized as
follows. In Section 2, the boundary is introduced in 4D Maxwell theory. From the gauge fixed action,
the equations of motion are derived, which yield the boundary conditions and the Ward identities,
which are broken by the presence of the boundary. Then, from the Ward identities, equations are
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derived which must be satisfied by the two-point Green functions, i.e., by the propagators, which,
on-shell, are recognized to form a Kaç–Moody algebra. In addition, from the breakings of the Ward
identities, the DOF on the boundary are identified, as well as the symmetries which leave invariant
their definition. It turns out that the symmetries are of the gauge type. In Section 3, the induced
3D theory is found in the following way. The Kaç–Moody algebra is interpreted as equal time
commutators of canonical variables, and the possible Lagrangians which yield these commutation
relations are considered, with a number of constraints, among which is the gauge invariance. In
Section 4, the holographic contact is performed. The correspondence between the bulk and the
boundary theories is realized through a match between the equations of motion of the 3D theory and
the boundary conditions found for the 4D bulk theory. There are two non equivalent ways to realize the
contact, which remarkably land on the same 3D action. The energy momentum tensor is computed in
Section 5, and, by imposing that its 00-component, i.e., the energy density, is positive, we determine the
coefficients of the 3D theory, so that we may propose the 3D holographic counterpart of 4D Maxwell
theory. Our results are summarized and discussed in the concluding Section 6. Appendices deal with
specific analysis, namely in Appendix A we compute and discuss the propagators of the 3D theory,
while in Appendix B we make some observations concerning symmetries of the bulk and boundary
theory.

In this paper, we adopt the Minkowskian metric ηµν = diag(−1, 1, 1, 1). Our notations concerning
indices, Levi–Civita tensors and coordinates are as follows

µ, ν, ρ... = {0, 1, 2, 3}
α, β, γ... = {0, 1, 2}

i, j, k... = {1, 2} .

(1)

εαβγ ≡ εαβγ3 . (2)

4D bulk coordinates : xµ = (x0, x1, x2, x3)

3D boundary x3 = 0 coordinates : Xα = (x0, x1, x2) .

(3)

(4)

2. The Model: Bulk and Boundary

2.1. The Action

The Minkowskian 4D Maxwell theory can be confined in the half-spacetime x3 ≥ 0 by means of
the introduction in the action of the Heaviside step function θ(x3)

SM = −κ

4

∫
d4x θ(x3) FµνFµν , (5)

where Fµν = ∂µ Aν − ∂ν Aµ is the electromagnetic field strength, and Aµ(x) is the gauge field,
with canonical mass dimension [A] = 1. In Equation (5), κ > 0 is a constant which must be positive in
order to have a positive-definite energy density. Maxwell theory, being a free field theory, does not
display a coupling constant, which can always be reabsorbed by redefining the gauge field Aµ(x).
Nonetheless, we do not normalize κ to one, in order to be able to identify at any time the role played
by the bulk action in the physics on the boundary.

The gauge fixing term

Sg f =
∫

d4x θ(x3) bA3 (6)

implements, through the Lagrange multiplier field b(x) [44,45], the axial gauge condition

A3(x) = 0 . (7)
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On the boundary x3 = 0, the fields and their ∂3-derivatives must be treated as independent
fields [46,47]. To highlight this fact, we adopt the following notation:

Ãα(X) ≡ ∂3 Aα|x3=0 , (8)

whose mass dimension is [Ã] = 2. Therefore, we must introduce another term in the action, coupling
these two independent fields, Aµ(x) and, on the boundary, Ãα(X), to the external sources Jµ(x) and
J̃α(X), respectively:

SJ =
∫

d4x
(
θ(x3)Jα Aα + δ(x3) J̃α Ãα

)
. (9)

The existence of the boundary requires an additional contribution to the action:

Sbd =
∫

d4x δ(x3)
(

aαβ Aα Aβ + bαβγ∂α Aβ Aγ + cαβ Ãα Aβ

)
, (10)

where
aαβ = aβα, bαβγ = −bαγβ, cαβ (11)

are constant matrices, with mass dimensions [aαβ] = 1, [bαβγ] = [cαβ] = 0. Such a lower-dimensional
term is tightly related to the presence of the boundary, and it must be present, wether the bulk action
is gauge invariant, as in the Maxwell case, or not, as in TFT, as a kind of counterterm, in a way similar
to the Gibbons–Hawking term of General Relativity. The boundary term must only satisfy the general
requirements of power counting, locality, and residual 3D Lorentz invariance. Gauge invariance must
not be required on it: if we did it in TFT, we would have not recovered the boundary dynamics which
characterizes those models. The total action, consisting in bulk term, gauge fixing, external sources
and boundary contribution, finally is

Stot = SM + Sg f + SJ + Sbd . (12)

2.2. Boundary Conditions

From the action Stot in Equation (12), we get the Equations Of Motion (EOM)

δStot

δAγ(x)
= θ(x3)[κ∂µFµγ + Jγ]

+δ(x3)[κF3γ + 2aαγ Aα + 2bαβγ∂α Aβ + cαγ Ãα] = 0 (13)
δStot

δÃγ(x)
= −κθ(x3)F3γ + δ(x3)[ J̃γ + cγα Aα] = 0 , (14)

from which, by acting with the operator limε→0
∫ ε

0 dx3, and then going on-shell J̃ = 0, we derive the
Boundary Conditions (BC)

κÃγ + 2aαγ Aα + 2bαβγ∂α Aβ + cαγ Ãα

∣∣∣
x3=0

= 0

cαβ Aβ

∣∣∣
x3=0

= 0 .

(15)

(16)

As can be seen, this corresponds to putting equal to zero the δ(x3) term of the EOM. It is interesting
to remark the analogy with the “MIT bag model” [48–51], which is one of the most successful
phenomenological models for quark confinement. In this model, it is simply assumed that the
quarks are confined to a spherical region of space (the “bag”), with a radius r = a, and V(r) = 0
for r < a. Hence, the quark is treated as a free particle inside the region r < a, but is subject to
boundary conditions (MIT bag model boundary conditions) at r = a that realize the confinement.
This mechanism is obtained by means of the introduction in the action of a theta function, as we
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did in Equation (5), and of a boundary term proportional to a delta function, in close analogy with
Equation (10). Consequently, the EOM have the same structure as Equations (13) and (14), i.e., they are
formed by two parts (theta and delta dependent). The MIT bag model boundary conditions are realized
by putting equal to zero the delta dependent part, exactly as we did to obtain Equations (15) and (16).
Moreover, instead of introducing theta functions by hand in the action, MIT boundary conditions
can be induced dynamically, as discussed in [52]. This remark suggests a possible application of
the method presented in this paper to the MIT bag model (We thank the referee for pointing out
this analogy).

2.3. Ward Identities

The EOM in Equations (13) and (14) give rise to the Ward identities, crucial for what follows.
From Equation (13), we have

∫ +∞

0
dx3 ∂γ Jγ = −κ

∫ +∞

−∞
dx3 θ(x3) ∂γ∂µFµγ

= −κ
∫ +∞

−∞
dx3 θ(x3) (∂

γ∂βFβγ + ∂γ∂3F3γ)

= κ
∫ +∞

−∞
dx3 δ(x3) ∂γF3γ

= κ ∂γ Ãγ

∣∣
x3=0 ,

(17)

where we use
∂3θ(x3) = δ(x3) . (18)

Analogously, from Equation (14) we find

∂γ J̃γ|x3=0 = −κ ∂γ Aγ|x3=0 . (19)

Notice that the Ward identity in Equation (19), differently from Equation (17), is local and not integrated.
Remark also that both the Ward identities in Equations (17) and (19) are broken, because of the presence
of the boundary, by a linear term at their right-hand side Such Ward identities are known [53,54] to
imply conservation laws. In fact, at vanishing external sources J̃ = J = 0, i.e., going on-shell, we find

∂α Ãα|x3=0 = 0

∂α Aα|x3=0 = 0 ,

(20)

(21)

which show the existence of a couple of conserved currents on the 3D edge of 4D Maxwell theory.

2.4. Algebra

Once the generating functional of connected Green functions Zc[J, J̃] has been defined in the
usual way

eiZc [J, J̃] =
∫

DADÃDb eiStot [A,Ã,b;J, J̃] , (22)

the following relations hold

δZc[J]
δJα(x)

∣∣∣∣
J=0

= Aα(x) (23)

δ(2)Zc[J]
δJα(x)δJβ(x′)

∣∣∣∣
J=0

= i〈T(Aα(x)Aβ(x′)〉 , (24)
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where the time-ordered product is defined as

〈T(Aα(x)Aβ(x′))〉 ≡ θ(x0 − x′0)〈Aα(x)Aβ(x′)〉+ θ(x′0 − x0)〈Aβ(x′)Aα(x)〉 . (25)

Differentiating the first Ward identity in Equation (17) with respect to Jβ(x′) and then going on-shell
J = J̃ = 0, we have

∂βδ(3)(X− X′) = iκ ∂α〈T(Ãα(X)Aβ(X′))〉
= iκ [Ã0(X), Aβ(X′)]δ(x0 − x′0) + iκ 〈T(∂α Ãα(X)Aβ(X′))〉 , (26)

where we use
δJα(x)
δJβ(x′)

= δ
β
αδ(4)(x− x′) . (27)

Choosing β = 0 in Equation (26), and remembering that, on-shell, Equation (20) holds, the second
term on the right-hand side of Equation (26) vanishes, and we get

δ(x0 − x′0)[Ã0(X), A0(X′)] =
i
κ

∂0δ(3)(X− X′) . (28)

By integrating with respect to x0 both sides of Equation (28), we are left with the equal time commutator

[Ã0(X), A0(X′)]
x0=x′0

= 0 . (29)

If, instead, β = i in Equation (26), then δ(x0 − x′0) can be factorized, and we find

[Ã0(X), Ai(X′)] = − i
κ

∂iδ
(2)(X− X′) . (30)

By differentiating the first Ward identity in Equation (17) with respect to J̃β(x′), we get

0 = ∂α δ(2)Zc[J, J̃]
δ J̃α(X)δ J̃β(X′)

∣∣∣∣
J= J̃=0

= ∂α〈T(Ãα(X)Ãβ(X′))〉
= [Ã0(X), Ãβ(X′)]δ(x0 − x′0) + 〈T(∂α Ãα(X)Ãβ(X′))〉 ,

(31)

which, using again the current conservation on the edge in Equation (20), leads to the equal
time commutator

[Ã0(X), Ãα(X′)]
x0=x′0

= 0 . (32)

We can extract similar informations from the second, local, Ward identity in Equation (19), which,
differentiated with respect to J̃β(x′) and put on-shell

∂α δ J̃α(X)

δ J̃β(X′)

∣∣∣∣
J= J̃=0

= −κ∂α δ(2)Zc[J, J̃]
δJα(X)δ J̃β(X′)

∣∣∣∣
J= J̃=0

, (33)

gives

∂βδ(3)(X− X′) = −iκ∂α〈T(Aα(X)Ãβ(X′))〉
= −iκ[A0(X), Ãβ(X′)]δ(x0 − x′0)− iκ〈T(∂α Aα(X)Ãβ(X′))〉 .

(34)
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For β = 0, we get the same result as in Equation (29), as a check of the coherence of our way to proceed.
Putting β = i in Equation (34), and using Equation (21), we have, again at equal time:

[A0(X), Ãi(X′)] =
i
κ

∂iδ
(2)(X− X′) . (35)

Finally, differentiating the local Ward identity in Equation (19) with respect to Jβ(x′), we get

0 = ∂α δ(2)Zc[J, J̃]
δJα(X)δJβ(X′)

∣∣∣∣
J= J̃=0

= ∂α〈T(Aα(X)Aβ(X′))〉
= [A0(X), Aβ(X′)]δ(x0 − x′0) + 〈T(∂α Aα(X)Aβ(X′))〉 ,

(36)

finding the equal time commutator

[A0(X), Aβ(X′)]
x0=x′0

= 0 . (37)

Summarizing, from the Ward identities in Equations (17) and (19), broken by the presence of the
boundary x3 = 0, we get the following equal time commutators for the conserved currents Aα(X)

and Ãα(X)

[Ã0(X), Ai(X′)] = − i
κ

∂iδ
(2)(X− X′)

[A0(X), Ãi(X′)] =
i
κ

∂iδ
(2)(X− X′)

[Ã0(X), Ãα(X′)] = [A0(X), Aα(X′)] = [Ã0(X), A0(X′)] = 0 .

(38)

(39)

(40)

To identify the correct DOF on the 3D boundary, it is convenient to introduce a field Bα(X) defined by
the linear transformations

B0 ≡ µA0 + νÃ0

Bi ≡ ρAi + σÃi ,
(41)

where µ, ν, ρ, and σ are constant parameters, which are set below at our convenience, with mass
dimensions constrained by the request of dimensional homogeneity of Equation (41)

[µ] = [ν] + 1 , [ρ] = [σ] + 1 , [µ] = [ρ] and [ν] = [σ] . (42)

In terms of Bα(X), the algebra in Equations (38)–(40) reduces to the only nonvanishing commutator

[B0(X), Bi(X′)] = i
µσ− νρ

κ
∂iδ

(2)(X− X′) , (43)

which describes an abelian Kaç–Moody algebra whose central charge is proportional to the inverse of
the Maxwell coupling κ:

1
κ̃
≡ µσ− νρ

κ
. (44)

We therefore recover for 4D Maxwell theory with boundary a property peculiar to TFT [7–9].
A comment is in order here: Conformal Field Theories in two and more dimensions are classified in
terms of the central charges of their Kaç–Moody algebras, which should be positive, for the unitarity
of the theory [53,54]. Remembering that the Maxwell coupling constant κ is positive, we thus have
the constraint

µσ− νρ > 0 . (45)
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Interestingly enough, we show in Section 5 that this requirement is strictly related to the positivity of the
energy density of the 3D theory we find on the boundary. Moreover, we have a physical interpretation
of the parameters appearing in Equation (41): each set (µ, ν, ρ, σ) respecting Equation (45) corresponds
to a different central charge, hence to a different Conformal Field Theory. This is an important novelty
with respect to TFT, where, instead, there is a bijection between bulk coupling constants and central
charges, which in this case is realized only if

µσ− νρ = 1 . (46)

2.5. Boundary Dynamics

The 3D current conservation relations in Equations (20) and (21) can be solved by

Ãα(X) = εαβγ∂β ξ̃γ(X)

Aα(X) = εαβγ∂βξγ(X) ,

(47)

(48)

where the fields ξ̃α(X) and ξα(X) have canonical dimensions

[ξ̃] = 1 and [ξ] = 0 . (49)

Consequently, we have

B0 =ε0ij∂
i(µξ j + νξ̃ j) = ε0ij∂

iλj

Bi =εiαβ∂α(ρξβ + σξ̃β) = εiαβ∂αλ̃β ,

(50)

(51)

where we define
λα ≡ µξα + νξ̃α

λ̃α ≡ ρξα + σξ̃α .

(52)

(53)

Equations (52) and (53) define the 3D vector fields λα(X) and λ̃α(X) which, as we show in what
follows, are the dynamical variables in terms of which the 3D theory induced on the boundary of 4D
Maxwell theory is constructed. Notice that the defining relations in Equations (50) and (51) are left
invariant under the transformations

λα → λα + ∂αΛ

λ̃β → λ̃β + ∂βΛ̃ ,

(54)

(55)

where Λ(X) and Λ̃(X) are local gauge parameters. For what concerns the canonical mass dimensions
of λα(X) and λ̃α(X), the standard possibilities for 3D gauge fields are

(a) [λ] = [λ̃] = 1

(b) [λ] = [λ̃] =
1
2

.

(56)

(57)

The first choice involves, for instance, topological Chern–Simons theory, or any 3D theory involving
one derivative only in its quadratic term. The second possibility, instead, is mandatory for 3D
gauge field theories with two derivatives, for instance Maxwell theory, possibly coupled with
a topological Chern–Simons term by means of a massive parameter, like topologically massive 3D
Maxwell–Chern–Simons theory [55]. It is interesting to remark that, in principle, the definition of
Bα(X) given by Equation (41) allows both possibilities, which is a nontrivial fact, because of the
two dimensional constraints on the fields ξα(X) and ξ̃α(X) in Equation (49) and on the parameters
{µ, ν, ρ, σ} in Equation (42). Indeed,
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(a) by choosing
[µ] = [ρ] = 1 and [ν] = [σ] = 0 (58)

then
[λ] = [λ̃] = 1 , (59)

to which corresponds [κ̃] = −1 ;
(b) if instead

[µ] = [ρ] =
1
2

and [ν] = [σ] = −1
2

(60)

we have
[λ] = [λ̃] =

1
2

. (61)

In this case the central charge of the Kaç–Moody algebra in Equation (43) formed by the fields B0

and Bi has, as with the 4D Maxwell coupling κ, vanishing dimension: [κ̃] = 0.

In this paper we study both possibilities.

3. Induced 3D Theory

In the previous section, we identify the 3D DOF induced on the boundary of 4D Maxwell theory
as the two vector fields λα(X) and λ̃α(X) defined by Equations (50) and (51). This same definition
is left invariant by the transformations in Equations (54) and (55). We may therefore claim that the
3D theory induced on the boundary of 4D Maxwell theory should be a gauge theory of two, possibly
coupled, gauge fields, which must satisfy the following three constraints:

1: invariance under the gauge transformations

δ1λα(X) = ∂αΛ(X)

δ2λ̃α(X) = ∂αΛ̃(X) ;

(62)

(63)

2: compatibility with the equal time Kaç–Moody algebra in Equation (43); and
3: compatibility with the BC in Equations (15) and (16).

For what concerns Constraint 2, the equal time Kaç–Moody algebra in Equation (43), written in
terms of the boundary fields λα(X) and λ̃α(X), becomes

[ε0ijλ
j(X), εkαβ∂′αλ̃β(X′)] =

i
κ̃

δk
i δ(2)(X− X′) , (64)

which, in the temporal gauge
λ0 = λ̃0 = 0 , (65)

reads
[ε0ijλ

j(X),−ε0kl∂′0λ̃l(X′)] =
i
κ̃

δk
i δ(2)(X− X′) . (66)

The key observation is to recognize in this algebra the canonical commutation relations

[qi(X), pj(X′)] = iδj
i δ

(2)(X− X′) , (67)

once the canonical variables have been identified as

qi = κ̃ε0ijλ
j

pi =− ε0ij∂0λ̃j ,

(68)

(69)
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where the conjugate momentum pi is defined as

pi =
∂L
∂q̇i

. (70)

The gauge invariant action satisfying Constraint 1 should depend on the fields λα(X) and λ̃α(X) in
a way to preserve the relation in Equation (70) between the canonical variables qi(X) in Equation (68)
and pi(X) in Equation (69). Finally, the action satisfying the first two constraints should display EOM
compatible with the BC of the bulk theory in Equations (15) and (16). We are now ready to analyze the
two possible cases in Equations (56) and (57).

3.1. Case a: [λ] = [λ̃] = 1

The canonical mass dimensions of the two vector fields of the 3D theory are both set to one.
This can be realized through the choice in Equation (58). We are looking for the most general quadratic
Lagrangian L(a)[λ, λ̃] respecting the power counting in Equation (56) and whose action is invariant
under the gauge transformations in Equations (62) and (63) (Constraint 1):

δ1,2S(a)[λ, λ̃] = δ1,2

∫
d3X L(a)[λ, λ̃] = 0 . (71)

It is immediate to verify that the result is

L(a)[λ, λ̃] = k1εαβγ∂αλβλγ + k2εαβγ∂αλβλ̃γ + k3εαβγ∂αλ̃βλ̃γ , (72)

where the coefficients ki have vanishing mass dimensions

[ki] = 0 . (73)

We find that the Lagrangian in Equation (72) contains only topological terms, of the Chern–Simons
and BF type. Let us consider now Constraint 2, which we show to be equivalent to the definition of the
canonical variables in Equations (68) and (69), related by Equation (70)

∂L(a)

∂q̇i
= pi = −ε0ij∂0λ̃j , (74)

where we use the temporal gauge choice in Equation (65). The left-hand side of this translates in

∂L(a)

∂q̇i
=

1
κ̃

ε0ij ∂L(a)

∂(∂0λj)

=
1
κ̃

ε0ij[k1ε0jkλk + k2ε0jkλ̃k]
= −1

κ̃

[
k1λi + k2λ̃i] .

(75)

Comparing Equations (74) and (75), it appears that it is not possible to set the parameters ki in such
a way that the relation in Equation (74) is verified.

We therefore proved a first nontrivial result: the 4D Maxwell theory cannot induce on its 3D
boundary a purely TFT.
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3.2. Case b: [λ] = [λ̃] = 1
2

In this case, it is easy to show that the most general quadratic Lagrangian L(b)[λ, λ̃] compatible
with the dimensional assignments in Equation (57) and whose action is invariant under the gauge
transformations in Equations (62) and (63), is the following

L(b) =k1GαβGαβ + k2GαβG̃αβ + k3G̃αβG̃αβ

+ m1εαβγ∂αλβλγ + m2εαβγ∂αλβλ̃γ + m3εαβγ∂αλ̃βλ̃γ ,
(76)

where we defined the field strengths for the 3D gauge fields λα(X) and λ̃α(X)

Gαβ ≡ ∂αλβ − ∂βλα

G̃αβ ≡ ∂αλ̃β − ∂βλ̃α ,

(77)

(78)

and the coefficients have mass dimensions

[ki] = 0 ; [mi] = 1 . (79)

The theory described by the Lagrangian in Equation (76) is not purely topological, as in Equation (72),
but it contains topological terms, of both the Chern–Simons and BF type. Let us proceed now to
check whether Constraint 2, concerning the identification of the canonical variables qi(X) and pi(X),
is fulfilled, which means

∂L(b)
∂q̇i

= pi = −ε0ij∂0λ̃j . (80)

We have

∂L(b)
∂q̇i

=
1
κ̃

ε0ij ∂L(b)
∂(∂0λj)

=
1
κ̃

ε0ij[4k1∂0λj + 2k2∂0λ̃j + m1ε0jkλk + m2ε0jkλ̃k]
=

1
κ̃

[
4k1ε0ij∂0λj + 2k2ε0ij∂0λ̃j−m1λi−m2λ̃i] .

(81)

We see that the above expression matches Equation (80) if

k1 = m1 = m2 = 0 and k2 = − κ̃

2
. (82)

Therefore, a possible candidate for Case b exists, which is represented by the 3D action

S3D ≡
∫

d3X L(b) =
∫

d3X
(
− κ̃

2
GαβG̃αβ + k3G̃αβG̃αβ + m3εαβγ∂αλ̃βλ̃γ

)
. (83)

We can summarize what is found above as follows: the 4D Maxwell theory in Equation (5), after the
definition of the fields in Equation (41), shows on its planar boundary the algebra of the Kaç–Moody
type in Equation (43), which can be interpreted as a canonical commutation relation in Equation (67).
The boundary DOF are identified as two vector fields λα(X) and λ̃α(X), which must have mass
dimensions 1/2, no other choices being possible. The gauge invariances in Equations (62) and (63) of
the 3D theory are not a request, but rather a consequence of the definitions in Equations (50) and (51).
We show that the gauge invariant 3D action in Equation (83) respects the relation in Equation (70)
between canonical variables. What is left to implement is Constraint 3, concerning the compatibility of
this new 3D theory with the BC in Equations (15) and (16) of the 4D bulk action. This nontrivial task,
which we call holographic contact, is achieved in the next section.
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4. Holographic Contact

The 3D theory in Equation (83) can be seen as the holographic counterpart of the 4D bulk Maxwell
theory in Equation (5) once Constraint 3 is fulfilled. This result is obtained by matching the BC in
Equations (15) and (16) of the 4D theory with the EOM obtained from the 3D action in Equation (83),
which are

δS3D
δλγ

= κ̃∂αG̃αγ = 0

δS3D

δλ̃γ
= κ̃∂αGαγ − 4k3∂αG̃αγ + 2m3εαβγ∂αλ̃β = 0 .

(84)

(85)

The contact is made by relating the coefficients aαβ, bαβγ and cαβ, appearing in the boundary term
Sbd in Equation (10) with κ̃, k3 and m3, which are the parameters of the 3D action in Equation (83).
The EOM in Equations (84) and (85) are written in terms of the fields λα(X) and λ̃α(X), while the BC
in Equations (15) and (16) depend on the 4D gauge field and its ∂3-derivative on the boundary x3 = 0:
Aα(x)|x3=0 and ∂3 Aα(x)|x3=0. Therefore, as a preliminary step, we have to write the four equations
involved in terms of the same fields, and the most convenient choice is to express everything in terms
of ξα(X) in Equation (48) and ξ̃α(X) in Equation (47), which are related to λα(X) and λ̃α(X) by means
of Equations (52) and (53), respectively. To do that, we write

Gαβ = ∂αλβ − ∂βλα = (δ
η
α δ

γ
β − δ

γ
α δ

η
β)∂ηλγ = εαβδεηγδ∂ηλγ , (86)

which we can use to rewrite the EOM in Equation (84) as

0 = ∂αG̃αβ = εαβγ∂α

(
εθδγ∂θ λ̃δ

)
. (87)

In terms of ξα(X) and ξ̃α(X), this translates into

ελκα∂λ
[
ηαβεγδβ∂γ(ρξδ + σξ̃δ)

]
= 0 , (88)

where we use Equation (53). In the same way, using Equation (86) in the EOM in Equation (85), we find

0 = ∂α

[
κ̃Gαγ − 4k3G̃αγ + 2m3εαβγλ̃β

]
= εαβγ∂α

[
−κ̃ εθδβ∂θλδ + 4k3 εθδβ∂θ λ̃δ + 2m3λ̃β

]
,

(89)

which, in terms of ξα(X) and ξ̃α(X), becomes

ελαθ∂λ
{

εβγδ∂γ
[
(κ̃ν− 4k3σ)ηαβ ξ̃δ + (κ̃µ− 4k3ρ)ηαβξδ

]}
− 2m3ελαθ∂λ(ρξα + σξ̃α) = 0 . (90)

Hence, the EOM in Equations (84) and (85), written in terms of the boundary fields ξα(X) and
ξ̃α(X), are Equations (88) and (90), respectively. We are now able to compare them with the BC in
Equations (15) and (16), which, written in terms of the same variables, are:

εβγδ∂γ[(κηαβ + cβα)ξ̃δ + 2(aαβ + bκβα∂κ)ξ
δ] = 0

cαβεβγδ∂γξδ = 0 .

(91)

(92)

We observe that, since the mass dimensions of the EOM and of the BC differ, in order to compare them
we need to introduce massive coefficients and/or derivatives. We find that the various possibilities of
contact eventually fall into two inequivalent categories, which we schematically represent as follows:

1:
(Equation (88))↔ c1 curl(Equation (92))

(Equation (90))↔ c2 (Equation (92)) + c3 curl(Equation (91)) ,

(93)

(94)
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2:
(Equation (88))↔ c4 curl(Equation (91))

(Equation (90))↔ c5 (Equation (91)) + c6 curl(Equation (92)) ,

(95)

(96)

where c1, c2, c3, c4, c5, and c6 are parameters with the following mass dimensions

[c1] = 1/2 ; [c2] = 3/2 ; [c3] = −1/2 ; [c4] = −1/2 ; [c5] = 1/2 ; [c6] = 1/2 . (97)

In the above expressions, by “curl(eq.)” we mean the curl of the equation in parenthesis:

curl(eq.) = εαβγ∂β(eq.)γ . (98)

We proceed now to study the above two possibilities in details. We are mostly interested in finding out
whether the two cases yield compatible 3D theories, and whether these theories are equivalent one to
each other or not.

4.1. Case 1

We have to relate the EOM (Equation (88)) and the BC (Equation (92)) by means of

(Equation (88))↔ c1 curl(Equation (92)) , (99)

which can be obtained if
σ = 0

cαβ =
ρ

c1
ηαβ .

(100)

(101)

As a consequence of Equation (100), from Equation (44), we get

ν = − κ

κ̃ρ
, (102)

which allows us to write the EOM (Equation (90)) as

− 2ρm3ηκβεβγδ∂γξδ + εκλα∂λ

{
εβγδ∂γ

[
− κ

ρ ηαβ ξ̃δ + 2( κ̃µ
2 − 2ρk3)ηαβξδ

]}
= 0 . (103)

The linear combination of the BC:

c2 (Equation (92)) + c3 curl(Equation (91)) (104)

explicitly reads

c2 cκβεβγδ∂γξδ + c3 εκλα∂λ

{
εβγδ∂γ

[
(κηαβ + cβα)ξ̃δ + 2aαβξδ + 2bθβα∂θξδ

]}
= 0 . (105)

The contact between 4D and 3D theories is achieved if Equation (103) equals Equation (105), i.e.

aαβ =
1
c3
(

κ̃µ

2
− 2ρk3)ηαβ ⇒ k3 =

1
2ρ

(
κ̃µ

2
− c3

3
Tr(aαβ)) (106)

cαβ = −2
m3ρ

c2
ηαβ ⇒ m3 = − c2

6ρ
Tr(cαβ) (107)

κηαβ + cβα = − κ

c3ρ
ηαβ ⇒ cαβ = −κ(

1
c3ρ

+ 1)ηαβ (108)

bαβγ = 0 . (109)
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Compatibility among Equations (101), (107) and (108) requires that

cαβ =
ρ

c1
ηαβ = −2

m3ρ

c2
ηαβ = −κ(

1
c3ρ

+ 1)ηαβ . (110)

The holographic link between the 4D bulk theory Stot in Equation (12) and the 3D boundary theory
S3D in Equation (83) is realized if the coefficients appearing in this latter are

k3 = − c3

6ρ
Tr(aαβ) +

µκ

4ρ

m3 = − c2

6ρ
Tr(cαβ) .

(111)

(112)

Therefore, the resulting 3D action, written in terms of parameters appearing in the 4D action Stot

Equation (12), reads

S
(1)

3D =
∫

d3X
[

κ

2νρ
GαβG̃αβ +

(µκ

4ρ
− c3

6ρ
Tr(aαβ)

)
G̃αβG̃αβ − c2

6ρ
Tr(cαβ) εαβγ∂αλ̃βλ̃γ

]
. (113)

The presence in the action S
(1)

3D in Equation (113) of a topological Chern–Simons-like term, with a
dimensional coefficient ([c2/ρ] = 1) and which can be switched off by requiring c2 = 0, reminds us of
the 3D Maxwell–Chern–Simons theory, where the coefficient of the Chern–Simons term serves as a
topological mass for the gauge field. In Appendix A, we compute the matrix formed by propagators of
this theory, which involves two gauge fields, and we show that a similar mechanism of generation of
a topological mass is not reproduced in this case. The EOM of the action (Equation (113)) are

κ

νρ
∂αG̃αγ = 0

κ

νρ
∂αGαγ +

[
µκ

ρ
− 2

c3

3ρ
Tr(aαβ)

]
∂αG̃αγ − c2

3ρ
Tr(cαβ) εαβγ∂αλ̃β = 0 ,

(114)

(115)

and, using Equation (114), the above EOM become

∂αG̃αγ = 0

∂αGαγ + m̃ εαβγ∂αλ̃β = 0 ,

(116)

(117)

where
m̃ ≡ − c2ν

3κ
Tr(cαβ) . (118)

Some of the parameters are set by the request that the action in Equation (113) yields a positive definite
energy density T00, where Tαβ is the energy-momentum tensor of the theory. This is done in the next
section. Finally, we remark that the same EOM in Equations (116) and (117) can be obtained from
the action

S̄(1)
3D =

∫
d3X

(
κGαβG̃αβ + mεαβγ∂αλ̃βλ̃γ

)
, (119)

with m/κ = m̃. One might therefore wonder if the two 3D actions in Equations (113) and (119)
are equivalent. This question belongs to the more general issue of the meaning of equivalent field
theories. The answer is that two theories can be considered equivalent if their physical observables
coincide. Given that the physical observables in field theory are the Green functions, in Appendix A,
we show that the simplest Green functions derived from the actions in Equations (113) and (119), i.e.,
the two-point functions, also referred to as the propagators, differ. Hence, we have here a nice example
of two theories with equivalent EOM, but which are nonetheless physically inequivalent.
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4.2. Case 2

The first linking equation in Equation (95) of Case 2 concerns the EOM (Equation (88)) and the
BC (Equation (91)), which we write here again

ελκα∂λ
[
ηαβεγδβ∂γ(ρξδ + σξ̃δ)

]
= 0

εβγδ∂γ[(κηαβ + cβα)ξ̃δ + 2(aαβ + bκβα∂κ)ξ
δ] = 0 .

(120)

(121)

We observe that Equation (95) is satisfied if

κηαβ + cβα =
σ

c4
ηαβ ⇒ cαβ = (

σ

c4
− κ)ηαβ

aαβ =
ρ

2c4
ηαβ

bβαγ = 0 .

(122)

(123)

(124)

The second linking equation involves the EOM in Equation (90)

− 2m3ελαθ∂λ(ρξα + σξ̃α) + ελαθ∂λ
{

εβγδ∂γ
[
(κ̃ν− 4k3σ)ηαβ ξ̃δ + (κ̃µ− 4k3ρ)ηαβξδ

]}
= 0 (125)

and the following combination of BC

c5 (Equation (91)) + c6 curl(Equation (92)) , (126)

which explicitly reads

c5εβγδ∂γ
[
(κηκβ + cβκ)ξ̃δ + 2aκβξδ

]
+ c6cαβεκλα∂λ(ε

βγδ∂γξδ) = 0 . (127)

The contact between 4D and 3D theories is achieved if

κ̃ν− 4k3σ = 0 ⇒ k3 =
κ̃ν

4σ
, σ 6= 0 (128)

aαβ = −m3ρ

c5
ηαβ ⇒ m3 = − c5

3ρ
Tr(aαβ) (129)

cαβ =
1
c6
(κ̃µ− 4k3ρ)ηαβ =

κ

σc6
ηαβ (130)

κηαβ + cβα = −2m3σ

c5
ηαβ ⇒ m3 = −ρc5

2
(κ +

1
3

Tr(cαβ)) . (131)

Compatibility among Equations (122), (130) and (131) requires that

σ

c4
− κ =

κ

σc6
= −2m3σ

c5
− κ (132)

which translates in
c5 = − 2m3c4

c4 =
σ2c6

κ(1 + σc6)
,

(133)

(134)

and the relation in Equation (133) is also confirmed by requiring compatibility between Equations (123)
and (129). Notice that, from Equations (129) and (131), we get

Tr(aαβ) =
3
2

ρ2[κ +
1
3

Tr(cαβ)
]

(135)
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which is a constraint between parameters of the 4D theory, coming from the bulk-boundary
correspondence, which is an interesting result.

Finally, the 3D action in Equation (83), which realizes the holographic contact through Case 2,
written entirely in terms of parameters of the 4D action Stot in Equation (12), is

S
(2)

3D =
∫

d3X
(
− κ

2(µσ− νρ)
GαβG̃αβ +

κ

(µσ− νρ)

ν

4σ
G̃αβG̃αβ − c5

3ρ
Tr(aαβ)εαβγ∂αλ̃βλ̃γ

)
, (136)

which is of the same type of S
(1)

3D in Equation (113), with a different choice of the parameters and with
the same possibility of switching off the Chern–Simons term by putting c5 = 0, thus proving the not
obvious fact that the two apparently inequivalent Cases 1 and 2 yield indeed the same 3D theory,
which therefore turns out to be uniquely determined by the holographic contact.

5. Energy-Momentum Tensor

On the boundary of 4D Maxwell action, we find the following unique model, holographically
compatible with the 4D bulk theory in a form and manner described in Section 4:

S3D =
∫

d3X L(b) =
∫

d3X
(

κ1GαβG̃αβ + κ2G̃αβG̃αβ + mεαβγ∂αλ̃βλ̃γ

)
. (137)

The coefficients κ1, κ2, and m in Equation (137) are expressed in terms of the parameters appearing in
the bulk theory Stot in Equation (12) according to the two possible ways of realizing the holographic
contact described in Sections 4.1 and 4.2. The results are given by the actions S(1)

3D in Equation (113) and

S(2)
3D in Equation (136), which are both of the type in Equation (137). We remark that it is not possible to

reabsorb the massive coefficient of the Chern–Simons term in Equation (137) by means of a rescaling of
the fields λα(X) and λ̃α(X). Hence, the dimensional parameter coupled to the Chern–Simons term in
the action S3D in Equation (137) is the only true parameter of the theory. A further necessary constraint
on the parameters appearing in the action in Equation (137) comes from the energy density, i.e., the
00-component of the energy-momentum tensor, which must be positive. The energy-momentum
tensor is defined as

Tαβ =
−2√−g

δS
δgαβ

, (138)

where we make explicit the dependence on the metric gαβ, which is eventually put equal to the
Minkowskian ηαβ. Using the definition in Equation (138), the Chern–Simons term in Equation (137)
does not contribute, and we can forget about it in what follows. Writing the non-topological part of the
action in Equation (137) as

Snt =
∫

d3X
√
−g

(
κ1Gαβ + κ2G̃αβ

)
G̃γδ gαγgβδ, (139)

we can apply the definition in Equation (138) and, remembering that

δ
√−g
δgαβ

= −1
2
√
−g gαβ , (140)

we find
Tαβ = −2κ1(GαγG̃ γ

β + GβγG̃ γ
α )− 4κ2G̃αγG̃ γ

β + gαβ

(
κ1Gγδ + κ2G̃γδ

)
G̃γδ . (141)

As a check, we may calculate the trace of this energy-momentum tensor

T = gαβTαβ = (D− 4)(κ1GαβG̃αβ + κ2G̃αβG̃αβ) , (142)
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which vanishes for D = 4, as it should. In Minkowskian spacetime gαβ = ηαβ, the 00-component of
Equation (141) is

T00 = −2κ1G0iG̃ i
0 − 2κ2G̃0iG̃ i

0 − κ1GijG̃ij − κ2G̃ijG̃ij . (143)

As in Maxwell theory, we have to look for terms containing time derivatives of the fields, which must
appear in the action with the positive sign, since, otherwise, sufficiently rapid change of the fields
with time could always make the action S3D in Equation (137) a negative quantity with arbitrary large
absolute value, and hence it could not have a minimum, as required by the principle of least action [56].
The terms in Equation (143) containing time derivatives are

Ttime
00 = −2κ1G0iG̃ i

0 − 2κ2G̃0iG̃ i
0 (144)

' −2κ1(∂0λi∂0λ̃i − ∂0λi∂
iλ̃0 − ∂iλ0∂0λ̃i)− 2κ2(∂0λ̃i∂0λ̃i − ∂0λ̃i∂

iλ̃0 − ∂iλ̃0∂0λ̃i) .

The terms with two time derivatives dominate, for fields rapidly varying with time. Hence, it must be

κ1 < 0 ; κ2 < 0 . (145)

Let us see what this implies for the Cases 1 and 2 studied in Sections 4.1 and 4.2:

Case 1

From Equation (113), we have

κ1 =
κ

2νρ
< 0 ⇒ νρ < 0

κ2 = − c3

6ρ
Tr(aαβ) +

µκ

4ρ
< 0 .

(146)

(147)

Case 2

From Equation (136), we have

κ1 = − κ

2(µσ− νρ)
< 0 ⇒ µσ− νρ > 0 (148)

κ2 =
κ

(µσ− νρ)

ν

4σ
< 0 ⇒ ν

σ
< 0 , (149)

where κ > 0 has been taken into account. Notice that in both cases the constraint Equation (45) is
automatically respected. This is very interesting because it suggests that the unitarity of the Conformal
Field Theories which are found on the boundary of 4D Maxwell theory is tightly related to the positivity
of the energy density of the 3D theory found by means of the holographic contact discussed in Section 4.
The conditions in Equations (146)–(149) have many solutions. In particular, solutions can be found
which yield the same 3D action S3D in Equation (137) and boundary action Sbd in Equation (10).

For instance, in Case 1, we can choose

µ = −2ρ ; ν = −1
ρ

(150)

while in Case 2
µ = 0 ; ν = −1

ρ
; σ =

1
ρ

; (151)
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these, together with the above request of matching solutions (i.e., requiring same aαβ, bαβγ, cαβ and
κ1, κ2, m for both cases), lead to constraints between the coefficients ci appearing in the linking
equations in Equations (93)–(96), which are:

c1 =
c6

κ
; c2 = ρ(c6 + ρ)c5 ; c3 = −1

ρ

c6

c6 + ρ
; c4 =

1
ρκ

c6

c6 + ρ
. (152)

Two parameters are left to choose: c6 and c5 (notice that the latter, taken equal to 0, allows us to switch
off the CS term in the action). With the choice c6 = 2ρ and c5 = ρ, both cases correspond to the same
3D action in Equation (137) with

κ1 = −κ

2
; κ2 = −κ

4
; m = −3

4
κρ2 < 0 (153)

and the same boundary action in Equation (10) with

aαβ =
3
4

κρ2ηαβ ; bαβγ = 0 ; cαβ =
κ

2
ηαβ . (154)

6. Conclusions

Undoubtedly, the most known and also physically relevant role played by boundaries
concerns TFT, in particular in 3D and 4D. This fact constitutes a kind of interesting paradox: TFT,
indeed, are characterized by global observables of geometrical type only, vanishing Hamiltonian,
no energy-momentum tensor and lack of particle interpretation. Nonetheless, when boundaries are
introduced, TFT show a surprisingly rich physical content, revealing themselves as the most promising
low-energy effective field theories for phenomena, such as the Fractional Quantum Hall Effect and
the physics of the Topological Insulators, which are not completely understood yet. The combination
of non-physical topological bulk and rich physical boundary dynamics finds some deviation in
3D, where non-topological bulk terms have also been considered. On a completely different side,
an important example of non-TFT with boundary is given by the gauge/gravity duality, where
gravity with an AdS black hole metric in 5D has a Conformal Field Theory as 4D holographic
counterpart. Quite unexpectedly, despite its original stringy framework and much later after its
first appearance in the literature, the AdS/CFT correspondence found relevant physical applications
in Condensed Matter Theory (again!), and, in particular, promising developments concern the theory
of superconductivity and of strange metals. Driven also by this important example, we focus our
attention on the introduction of a boundary in a purely non-TFT in 4D where, to our knowledge, it has
not been studied yet if and which role is played by a boundary. This question motivated our paper,
where the 4D Maxwell theory of electromagnetism, i.e., a theory which does not need a boundary to
display physical properties, is considered in a half-space, with single-sided boundary. We summarize
our results as follows

• The first point which should be stressed is that 4D Maxwell theory shows a nontrivial boundary
dynamics, which therefore is not peculiar to TFT, contrary to what usually is believed. There are
however similarities and differences with respect to TFT.

• On the boundary of 4D Maxwell theory, the broken Ward identities in Equations (17) and (19) are
found, which identify the two conserved currents in Equations (20) and (21). This reminds the
physics of the surface states of the Topological Insulators in 3D, which suggests that an aspect
to be developed in the future is to investigate whether the 4D Maxwell theory might be seen as
an effective bulk theory of the 3D Topological Insulators, alternative to the 4D topological BF
models [14].

• By means of Equation (41), it is possible to define the 3D field Bα(X) whose components form
the Kaç–Moody algebra in Equation (43) with a central charge proportional to the inverse of the
Maxwell coupling. The parameters appearing in Equation (41) correspond to different central
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charges, as represented by Equation (44), each identifying a different Conformal Field Theory.
This is an important difference with respect to TFT, which are characterized by a one-to-one
correspondence between bulk coupling constants and central charges. The relevant boundary
algebra appears to be formed by the subset in Equation (41) of the total number of components of
the bulk fields. An identical mechanism occurs in the topological twist of N = 2 Super Yang–Mills
Theories [57]. This is a curious analogy which deserves further deepening.

• We find that the 3D theory depends on two vector fields: it is gauge invariant and it must satisfy
the relation in Equation (70), coming from the compatibility with the Kaç–Moody algebra in
Equation (43). These constraints exclude the possibility of having on the boundary of 4D Maxwell
theory a purely TFT.

• The holographic contact with the bulk theory is realized, as in TFT, by matching the equations
of motion of the 3D boundary theory with the boundary conditions found for the bulk theory.
The difference with the TFT case is that this contact can be realized in two non equivalent
(and more complicated) ways. The nontrivial result is that, no matter how the holographic contact
is obtained, we land on the unique action in Equation (137), which has not been studied previously.

• The boundary term in Equation (10) is physically relevant and necessary, for at least two reasons.
The first is that it determines the boundary conditions in Equations (15) and (16), which would
be trivial without the boundary term. The second is that the couplings of the 3D action we find
as “holographic counterpart” in Equation (113) (or Equation (136) ) depend on the coefficients
of the boundary term in Equation (10). The 3D actions we find are nontrivial: they have non
vanishing energy momentum tensor and Hamiltonian, which also depend on the boundary term,
thus giving to it a physical meaning.

• The action in Equation (137) describes two coupled photon-like vector fields, with a topological
Chern–Simons term for one of them. We compute the propagators of the theory, which show that,
despite the similarity with the 3D Maxwell–Chern–Simons theory, a mechanism of topological
mass generation does not take place in this case.

• The energy-momentum tensor in Equation (141) of the theory in Equation (137) reveals a nontrivial
physical content. In particular, we tuned the coefficients appearing in the 3D action in order to
have a positive definite energy density.

• The holographic dictionary [29] might be improved by an additional entry involving the unitarity
of the Conformal Field Theory found on the boundary of 4D Maxwell theory and the positivity of
the energy density of its 3D holographic counterpart, represented by the action in Equation (137).
In fact, asking that the 00-component of the energy-momentum tensor in Equation (143) derived
from the action in Equation (137) is positive automatically implies that the central charge of
the Kaç–Moody algebra in Equation (43) is positive as well, thus ensuring the unitarity of the
corresponding Conformal Field Theory.
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Appendix A. Propagators

In Section 3, we show that the 4D Maxwell theory with planar boundary x3 = 0 induces on its 3D
boundary the action S3D in Equation (83), which we report here:

S3D ≡
∫

d3X L(b) =
∫

d3X
(

κ1GαβG̃αβ + κ2G̃αβG̃αβ + mεαβγ∂αλ̃βλ̃γ

)
, (A1)
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and in Section 4 we show that its EOM are compatible with the BC in Equations (15) and (16) of
the bulk theory, for certain values of the coefficients κ1, κ2 and m. We see that in Equation (A1) a
Chern–Simons-like topological term is present, coupled to m3, which is a dimensionful parameter.
The same term, when coupled to Maxwell theory, gives rise to a topological mass [55]. In this Appendix,
explore whether a similar mechanism occurs for the action S3D in Equation (A1) we found as the
holographic counterpart of 4D Maxwell theory. To do that, we have to compute the propagators of this
3D theory, being mainly interested in its (possibly massive) poles. The necessary, preliminary step is to
add to Equation (A1) a gauge fixing term

S(g f )
3D =

∫
d3X

(
− 1

2ξ
(∂αλα)2 − 1

2ξ̃
(∂αλ̃α)2

)
, (A2)

where ξ and ξ̃ are gauge parameters. In momentum space (∂α → −ipα), the gauge fixed action

S(tot)
3D [λ, λ̃] = S3D[λ, λ̃] + S(g f )

3D [λ, λ̃] (A3)

reads
S(tot)

3D [λ̂, ˆ̃λ] =
∫

d3 p λ̂A(p)KAB(p)λ̂B(−p) , (A4)

where we adopt the compact notation λ̂A(p) ≡ (λ̂α(p), ˆ̃λα̃(p)) for the Fourier transforms of the fields
(λα(X), λ̃α(X)), and the indices A ≡ (α, α̃), B ≡ (β, β̃), C ≡ (γ, γ̃), where the indices with the ∼ refer
to the matrix element acting on λ̃. In Equation (A4), the matrix KAB(p) is given by

KAB(p) ≡
(

− 1
2ξ pα pβ κ1(p2ηα̃β − pα̃ pβ)

κ1(p2ηα̃β − pα̃ pβ) 2κ2 p2ηα̃β̃ − (2κ2 +
1

2ξ̃
)pα̃ pβ̃ + imεα̃β̃δ pδ

)
. (A5)

The matrix ∆BC(p) formed by the propagators in its general form is

∆BC(p) =

 ∆(1)
βγ(p) ∆(2)

β̃γ
(p)

∆(2)
βγ̃(p) ∆(3)

β̃γ̃
(p)

 , (A6)

where
∆(i)

αβ(p) = Ai(p)ηαβ + Bi(p)pα pβ + iCi(p)εαβγ pγ . (A7)

In Equation (A7), Ai(p), Bi(p) and Ci(p) are functions of p2, and are determined by imposing that
∆BC(p) is the inverse of KAB(p), i.e.,

KAB∆BC = δA
C =

(
δα

γ 0
0 δα̃

γ̃

)
. (A8)

The matrix in Equation (A8) can be easily solved to finally find the propagators of the theory described
by Stot

3D[λ, λ̃] in Equation (A3):

∆(1)
αβ (p) = 〈λαλβ〉(p) = − 1

κ2
1 p2

[
2κ2ηαβ + (2ξκ2

1 + 2κ2)
pα pβ

p2 + im
εαβγ pγ

p2

]
∆(2)

αβ̃
(p) = 〈λαλ̃β〉(p) =

1
κ1 p2

(
ηαβ −

pα pβ

p2

)
∆(3)

α̃β̃
(p) = 〈λ̃αλ̃β〉(p) = −2ξ̃

pα pβ

(p2)2 ,

(A9)

(A10)

(A11)
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which do not show any massive pole, so that we can conclude that the presence of a topological term
in the action S3D[λ, λ̃] in Equation (A1) does not induce any mechanism of generation of a topological
mass as it happens in Maxwell–Chern–Simons theory in three spacetime dimensions.

As remarked in Section 4.1, the EOM derived from the action S3D in Equation (A1) are equivalent
to those obtained from the action S̄(1)

3D in Equation (119), which we write here again

S̄(1)
3D =

∫
d3X

(
κGαβG̃αβ + mεαβγ∂αλ̃βλ̃γ

)
. (A12)

We now compute the propagators for the theory described by this latter action, and we show that
these, indeed, do not coincide with those we computed for the action in Equation (A3), given by
Equations (A9)–(A11). Hence, the two theories have at least one Green function (the simplest, i.e.,
the two-point function) which differs. Therefore, we must conclude that the two theories do not
have the same physical content, although their EOM are equivalent. After adding to the action in
Equation (A12), the same gauge fixing term in Equation (A2), the gauge fixed action

S̄(tot)
3D [λ, λ̃] = S̄3D[λ, λ̃] + S(g f )

3D [λ, λ̃] (A13)

in Fourier transform is
S̄(tot)

3D [λ̂, ˆ̃λ] =
∫

d3 p λ̂A(p)K̄AB(p)λ̂B(−p) , (A14)

where the matrix K̄AB(p) is given by

K̄AB(p) ≡
(

− 1
2ξ pα pβ κ(p2ηα̃β − pα̃ pβ)

κ(p2ηα̃β − pα̃ pβ) imεα̃β̃δ pδ − 1
2ξ̃

pα̃ pβ̃

)
. (A15)

The propagator matrix ∆̄BC(p) must satisfy

K̄AB∆̄BC = δA
C =

(
δα

γ 0
0 δα̃

γ̃

)
, (A16)

and its most general form is

∆̄BC(p) =

 ∆̄(1)
βγ(p) ∆̄(2)

β̃γ
(p)

∆̄(2)
βγ̃(p) ∆̄(3)

β̃γ̃
(p)

 , (A17)

with
∆̄(i)

αβ(p) = Āi(p)ηαβ + B̄i(p)pα pβ + iC̄i(p)εαβγ pγ . (A18)

Analogously to what is done above, the matrix in Equation (A16) is solved by the following
propagators:

∆̄(1)
αβ (p) = 〈λαλβ〉(p) = − 1

p2

(
2ξ

pα pβ

p2 +
im
κ2

εαβγ pγ

p2

)
∆̄(2)

αβ̃
(p) = 〈λαλ̃β〉(p) =

1
κp2

(
ηαβ −

pα pβ

p2

)
∆̄(3)

α̃β̃
(p) = 〈λ̃αλ̃β〉(p) = −2ξ̃

pα pβ

(p2)2 ,

(A19)

(A20)

(A21)

which, again, do not show any topologically generated massive pole and, which matters more now,
do not coincide with the propagators previously computed for the action Stot

3D in Equation (A3).

In particular, the propagators ∆(1)
αβ (p) in Equation (A9) and ∆̄(1)

αβ (p) in Equation (A19) differ. Hence,
as anticipated, the two theories are physically inequivalent.
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Appendix B. Symmetries

The presence of the boundary at x3 = 0 does not prevent the bulk action in Equation (5) from
being invariant under the gauge transformation

δAµ = ∂µΦ , (A22)

where Φ(x) is a local gauge parameter. Under this respect, Maxwell theory differs form topological
field theories such as 3D Chern–Simons theory and BF models, whose Lagrangians transform into a
total derivative. A common feature of all theories with boundary, however, is the partial breaking
of general covariance, which justifies the axial gauge choice in Equation (7), and of discrete Parity
symmetry. Discrete symmetries are crucial for the boundary physics of topological field theories.
Think for instance to the almost defining role of Time Reversal for the Fractional Quantum Hall
Effect and for Topological Insulators in Chern–Simons and BF theories with boundary, respectively.
To investigate whether a similar role is played in the unknown 3D theory, or theories, possibly induced
on the boundary of 4D Maxwell theory, we pay particular attention to discrete symmetries. On the xα

coordinates, Parity P and Time Reversal T are defined as follows

Px0 → x0, Pxi → −xi

T x0 → −x0, T xi → xi .

(A23)

(A24)

Correspondingly, on the fields Aα(X) and Ãα(X), we have

PA0 → A0, PAi → −Ai

T A0 → −A0, T Ai → Ai

(A25)

(A26)

P Ã0 → −Ã0, P Ãi → Ãi

T Ã0 → −Ã0, T Ãi → Ãi .

(A27)

(A28)

In order for the boundary term Sbd in Equation (10) to be P and/or T invariant, we should impose the
following constraints on the constant parameters appearing in Equation (10)

PSbd → Sbd ⇔ a0i = b00i = bijk = c00 = cij = 0

T Sbd → Sbd ⇔ a0i = b0ij = bij0 = ci0 = c0i = 0

PT Sbd → Sbd ⇔ bαβγ = cαβ = 0 .

(A29)

(A30)

(A31)

Now, for what concerns the parameters found in Section 5, which we report again here:

aαβ =
3
4

κρ2ηαβ (A32)

bαβγ = 0 (A33)

cαβ =
κ

2
ηαβ , (A34)

it is readily seen that Equation (A32) is compatible with the request that Sbd in Equation (10)
satisfies both P and T (Equations (A29) and (A30)), while Equation (A34) is compatible only with
Equation (A30), i.e., T .



Symmetry 2020, 12, 1134 23 of 25

References

1. Casimir, H. On the Attraction Between Two Perfectly Conducting Plates. Indag. Math. 1948, 10, 261–263.
2. Moore, G.W.; Seiberg, N. Taming the Conformal Zoo. Phys. Lett. B 1989, 220, 422–430. [CrossRef]
3. Cardy, J.L. Boundary conformal field theory. arXiv 2004, arXiv:0411189.
4. Symanzik, K. Schrodinger Representation and Casimir Effect in Renormalizable Quantum Field Theory.

Nucl. Phys. B 1981, 190, 1–44. [CrossRef]
5. Amoretti, A.; Blasi, A.; Caruso, G.; Maggiore, N.; Magnoli, N. Duality and Dimensional Reduction of 5D BF

Theory. Eur. Phys. J. C 2013, 73, 2461. [CrossRef]
6. Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G. Topological field theory. Phys. Rept. 1991,

209, 129–340. [CrossRef]
7. Blasi, A.; Collina, R. The Chern–Simons model with boundary: A Cohomological approach. Int. J. Mod.

Phys. A 1992, 7, 3083–3104. [CrossRef]
8. Blasi, A.; Collina, R. Chern–Simons model in the Landau gauge and its connection to the Kac-Moody algebra.

Nucl. Phys. B Proc. Suppl. B 1991, 18, 16–21. [CrossRef]
9. Emery, S.; Piguet, O. Chern–Simons theory in the axial gauge: Manifold with boundary. Helv. Phys. Acta

1991, 64, 1256–1270.
10. Kaç, V. Simple graded algebras of finite growth. Funct. Anal. Appl. 1967, 1, 328.
11. Moody, R. Lie Algebras associated with generalized Cartan matrices. Bull. Am. Math. Soc. 1967, 73, 217–221.

[CrossRef]
12. Cappelli, A.; Maffi, L. Bulk-Boundary Correspondence in the Quantum Hall Effect. J. Phys. A 2018, 51, 365401.

[CrossRef]
13. Blasi, A.; Ferraro, D.; Maggiore, N.; Magnoli, N.; Sassetti, M. Symanzik’s Method Applied to the Fractional

Quantum Hall Edge States. Ann. Phys. 2008, 17, 885–896. [CrossRef]
14. Cho, G.Y.; Moore, J.E. Topological BF field theory description of topological insulators. Ann. Phys. 2011,

326, 1515–1535. [CrossRef]
15. Cappelli, A.; Randellini, E.; Sisti, J. Three-dimensional Topological Insulators and Bosonization. JHEP 2017,

5, 135. [CrossRef]
16. Blasi, A.; Braggio, A.; Carrega, M.; Ferraro, D.; Maggiore, N.; Magnoli, N. Non-Abelian BF theory for 2+1

dimensional topological states of matter. New J. Phys. 2012, 14, 013060. [CrossRef]
17. Schnyder, A.; Ryu, S.; Furusaki, A.; Ludwig, A. Classification of topological insulators and superconductors

in three spatial dimensions. Phys. Rev. B 2008, 78, 195125. [CrossRef]
18. Fu, L.; Kane, C.; Mele, E. Topological Insulators in Three Dimensions. Phys. Rev. Lett. 2007, 98, 106803.

[CrossRef]
19. Amoretti, A.; Blasi, A.; Maggiore, N.; Magnoli, N. Three-dimensional dynamics of four-dimensional

topological BF theory with boundary. New J. Phys. 2012, 14, 113014. [CrossRef]
20. Aratyn, H. FERMIONS FROM BOSONS IN (2+1)-DIMENSIONS. Phys. Rev. D 1983, 28, 2016–2018. [CrossRef]
21. Aratyn, H. A bose representation for the massless dirac field in four-dimensions. Nucl. Phys. B 1983,

227, 172–188. [CrossRef]
22. Amoretti, A.; Braggio, A.; Caruso, G.; Maggiore, N.; Magnoli, N. 3+1D Massless Weyl spinors from bosonic

scalar-tensor duality. Adv. High Energy Phys. 2014, 2014, 635286. [CrossRef]
23. Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253–291. [CrossRef]
24. Polchinski, J. Introduction to Gauge/Gravity Duality. arXiv 2010, arXiv:1010.6134,

doi:10.1142/9789814350525_0001.
25. Klebanov, I.R. TASI lectures: Introduction to the AdS/CFT correspondence. arXiv 2000, arXiv:hep-th/0009139,

doi:10.1142/9789812799630_0007.
26. Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 1999,

38, 1113–1133. [CrossRef]
27. Sachdev, S. Condensed Matter and AdS/CFT. Lect. Notes Phys. 2011, 828, 273–311. [CrossRef]
28. Hartnoll, S.A. Lectures on holographic methods for condensed matter physics. Class. Quantum Gravity 2009,

26, 224002. [CrossRef]
29. Zaanen, J.; Sun, Y.W.; Liu, Y.; Schalm, K. Holographic Duality in Condensed Matter Physics; Cambridge Univ.

Press: Cambridge, UK, 2015; ISBN 978-1-107-08008-9

http://dx.doi.org/10.1016/0370-2693(89)90897-6
http://dx.doi.org/10.1016/0550-3213(81)90482-X
http://dx.doi.org/10.1140/epjc/s10052-013-2461-3
http://dx.doi.org/10.1016/0370-1573(91)90117-5
http://dx.doi.org/10.1142/S0217751X92001381
http://dx.doi.org/10.1016/0920-5632(91)90118-X
http://dx.doi.org/10.1090/S0002-9904-1967-11688-4
http://dx.doi.org/10.1088/1751-8121/aad0ab
http://dx.doi.org/10.1002/andp.200810323
http://dx.doi.org/10.1016/j.aop.2010.12.011
http://dx.doi.org/10.1007/JHEP05(2017)135
http://dx.doi.org/10.1088/1367-2630/14/1/013060
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1088/1367-2630/14/11/113014
http://dx.doi.org/10.1103/PhysRevD.28.2016
http://dx.doi.org/10.1016/0550-3213(83)90148-7
http://dx.doi.org/10.1155/2014/635286
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1007/978-3-642-04864-7_9
http://dx.doi.org/10.1088/0264-9381/26/22/224002


Symmetry 2020, 12, 1134 24 of 25

30. Amoretti, A.; Braggio, A.; Maggiore, N.; Magnoli, N. Thermo-electric transport in gauge/gravity models.
Adv. Phys. X 2017, 2, 409–427. [CrossRef]

31. McGreevy, J. Holography with and without Gravity. Lectures Held at the “2013 Arnold
Sommerfeld School on Gauge-Gravity Duality and Condensed Matter Physics”. Available
online: https://www.theorie.physik.uni-muenchen.de/activities/schools/archiv/2013_asc_school/videos_
ads_cmt/mcgreevy/index.html (accessed on 11 June 2020 ).

32. Amoretti, A.; Braggio, A.; Caruso, G.; Maggiore, N.; Magnoli, N. Holography in flat spacetime: 4D theories
and electromagnetic duality on the border. JHEP 2014, 4, 142. [CrossRef]

33. Amoretti, A.; Braggio, A.; Caruso, G.; Maggiore, N.; Magnoli, N. Introduction of a boundary in topological
field theories. Phys. Rev. D 2014, 90, 125006. [CrossRef]

34. Maggiore, N. From Chern-Simons to Tomonaga-Luttinger. Int. J. Mod. Phys. A 2018, 33, 1850013. [CrossRef]
35. Blasi, A.; Maggiore, N.; Magnoli, N.; Storace, S. Maxwell–Chern–Simons Theory With Boundary.

Class. Quantum Gravity 2010, 27, 165018. [CrossRef]
36. Maggiore, N. Holographic reduction of Maxwell–Chern–Simons theory. Eur. Phys. J. Plus 2018, 133, 281.

[CrossRef]
37. Geiller, M.; Jai-akson, P. Extended actions, dynamics of edge modes, and entanglement entropy. arXiv 2019,

arXiv:1912.06025.
38. Blasi, A.; Maggiore, N. Topologically protected duality on the boundary of Maxwell-BF theory. Symmetry

2019, 11, 921. [CrossRef]
39. Wang, J. Black hole as topological insulator (II): The boundary modes. arXiv 2017, arXiv:1706.01630.
40. Horowitz, G.T. Exactly Soluble Diffeomorphism Invariant Theories. Commun. Math. Phys. 1989, 125, 417–437,

[CrossRef]
41. Karlhede, A.; Rocek, M. Topological Quantum Field Theories in Arbitrary Dimensions. Phys. Lett. B 1989,

224, 58–60. [CrossRef]
42. Blasi, A.; Maggiore, N.; Montobbio, M. Noncommutative two dimensional BF model. Nucl. Phys. B 2006,

740, 281–296. [CrossRef]
43. Blasi, A.; Maggiore, N.; Montobbio, M. Instabilities of noncommutative two dimensional bf model. Mod. Phys.

Lett. A 2005, 20, 2119–2126. [CrossRef]
44. Nakanishi, N. Covariant Quantization of the Electromagnetic Field in the Landau Gauge. Prog. Theor. Phys.

1966, 35, 1111–1116. [CrossRef]
45. Lautrup, B. Canonical Quantum Electrodynamics in Covariant Gauges. Kong. Dan. Vid. Sel. Mat. Fys. Med.

1967, 35, NORDITA-214.
46. Karabali, D.; Nair, V. Boundary Conditions as Dynamical Fields. Phys. Rev. D 2015, 92, 125003. [CrossRef]
47. Maggiore, N. Conserved chiral currents on the boundary of 3D Maxwell theory. J. Phys. A 2019, 52, 115401.

[CrossRef]
48. Chodos, A.; Jaffe, R.; Johnson, K.; Thorn, C.B.; Weisskopf, V. A New Extended Model of Hadrons. Phys. Rev. D

1974, 9, 3471–3495. [CrossRef]
49. Chodos, A.; Jaffe, R.; Johnson, K.; Thorn, C.B. Baryon Structure in the Bag Theory. Phys. Rev. D 1974, 10, 2599.

[CrossRef]
50. DeGrand, T.A.; Jaffe, R.; Johnson, K.; Kiskis, J. Masses and Other Parameters of the Light Hadrons.

Phys. Rev. D 1975, 12, 2060. [CrossRef]
51. Johnson, K. The M.I.T. Bag Model. Acta Phys. Polon. B 1975, 6, 865.
52. Guendelman, E.; Nissimov, E.; Pacheva, S. Vacuum structure and gravitational bags produced by

metric-independent space?time volume-form dynamics. Int. J. Mod. Phys. A 2015, 30, 1550133. [CrossRef]
53. Mack, G. Introduction to Conformal Invariant Quantum Field Theory in Two and More Dimensions. Cargèse

Lectures July 1987. In Nonperturbative Quantum Field Theory; Hooft, G., Jaffe, A., Mack, G., Mack, G., Stora, R.,
Eds.; Plenum Press: New York, NY, USA, 1988; ISBN 978-1-4613-0729-7.

54. Becchi, C.; Piguet, O. On the Renormalization of Two-dimensional Chiral Models. Nucl. Phys. B 1989,
315, 153–165. [CrossRef]

55. Deser, S.; Jackiw, R.; Templeton, S. Three-Dimensional Massive Gauge Theories. Phys. Rev. Lett. 1982,
48, 975–978. [CrossRef]

http://dx.doi.org/10.1080/23746149.2017.1300509
https://www.theorie.physik.uni-muenchen.de/activities/schools/archiv/2013_asc_school/videos_ads_cmt/mcgreevy/index.html
https://www.theorie.physik.uni-muenchen.de/activities/schools/archiv/2013_asc_school/videos_ads_cmt/mcgreevy/index.html
http://dx.doi.org/10.1007/JHEP04(2014)142
http://dx.doi.org/10.1103/PhysRevD.90.125006
http://dx.doi.org/10.1142/S0217751X18500136
http://dx.doi.org/10.1088/0264-9381/27/16/165018
http://dx.doi.org/10.1140/epjp/i2018-12130-y
http://dx.doi.org/10.3390/sym11070921
http://dx.doi.org/10.1007/BF01218410
http://dx.doi.org/10.1016/0370-2693(89)91050-2
http://dx.doi.org/10.1016/j.nuclphysb.2006.01.028
http://dx.doi.org/10.1142/S0217732305018372
http://dx.doi.org/10.1143/PTP.35.1111
http://dx.doi.org/10.1103/PhysRevD.92.125003
http://dx.doi.org/10.1088/1751-8121/ab045a
http://dx.doi.org/10.1103/PhysRevD.9.3471
http://dx.doi.org/10.1103/PhysRevD.10.2599
http://dx.doi.org/10.1103/PhysRevD.12.2060
http://dx.doi.org/10.1142/S0217751X1550133X
http://dx.doi.org/10.1016/0550-3213(89)90452-5
http://dx.doi.org/10.1103/PhysRevLett.48.975


Symmetry 2020, 12, 1134 25 of 25

56. Landau, L.D.; Lifshits, E.M. The Classical Theory of Fields Volume 2 in Course of Theoretical Physics; §28;
Pergamon Press: Oxford, UK, 1991; ISBN 978-0-08-025072-4. [CrossRef]

57. Witten, E. Topological Quantum Field Theory. Commun. Math. Phys. 1988, 117, 353–386. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/C2009-0-14608-1
http://dx.doi.org/10.1007/BF01223371
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Model: Bulk and Boundary
	The Action
	Boundary Conditions
	Ward Identities
	Algebra
	Boundary Dynamics

	Induced 3D Theory
	Case a: []=[]=1 
	Case b: []=[]=12 

	Holographic Contact
	Case 1
	Case 2

	Energy-Momentum Tensor
	Conclusions
	Propagators
	Symmetries
	References

