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Abstract: Dirac’s Generalized Hamiltonian Dynamics (GHD) is a purely classical formalism for
systems having constraints: it incorporates the constraints into the Hamiltonian. Dirac designed
the GHD specifically for applications to quantum field theory. In one of our previous papers,
we redesigned Dirac’s GHD for its applications to atomic and molecular physics by choosing
integrals of the motion as the constraints. In that paper, after a general description of our formalism,
we considered hydrogenic atoms as an example. We showed that this formalism leads to the existence
of classical non-radiating (stationary) states and that there is an infinite number of such states—just
as in the corresponding quantum solution. In the present paper, we extend the applications of
the GHD to a charged Spherical Harmonic Oscillator (SHO). We demonstrate that, by using the
higher-than-geometrical symmetry (i.e., the algebraic symmetry) of the SHO and the corresponding
additional conserved quantities, it is possible to obtain the classical non-radiating (stationary) states of
the SHO and that, generally speaking, there is an infinite number of such states of the SHO. Both the
existence of the classical stationary states of the SHO and the infinite number of such states are
consistent with the corresponding quantum results. We obtain these new results from first principles.
Physically, the existence of the classical stationary states is the manifestation of a non-Einsteinian
time dilation. Time dilates more and more as the energy of the system becomes closer and closer to
the energy of the classical non-radiating state. We emphasize that the SHO and hydrogenic atoms are
not the only microscopic systems that can be successfully treated by the GHD. All classical systems of
N degrees of freedom have the algebraic symmetries ON+1 and SUN, and this does not depend on
the functional form of the Hamiltonian. In particular, all classical spherically symmetric potentials
have algebraic symmetries, namely O4 and SU3; they possess an additional vector integral of the
motion, while the quantal counterpart-operator does not exist. This offers possibilities that are absent
in quantum mechanics.

Keywords: generalized Hamiltonian dynamics; spherical harmonic oscillator; classical non-radiating
stationary states; algebraic symmetry of classical systems

1. Introduction

The generalized Hamiltonian dynamics (hereafter GHD) was developed by Dirac 70 years
ago [1–3]. While the conventional Hamiltonian dynamics employs an assumption that the momenta
are independent functions of velocities, Dirac considered a more general situation where momenta
are not independent functions of velocities [1–3]. From the physical point of view, the GHD is a
purely classical formalism for constrained systems: in the GHD, constraints are incorporated into the
Hamiltonian. Dirac developed the GHD with the purpose to apply it to quantum field theory [3].

For the application to the quantum field theory and statistical mechanics, Dirac’s GHD was
further developed by a number of authors—see, e.g., papers by Sergi [4–7] and references therein.
The focus of Sergi’s works [4–7] was on non-Hamiltonian mathematical structures, including
non-Hamiltonian commutators.
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In search of a purely classical formalism that can be applied to atomic and molecular physics and
can reproduce quantum results classically, Oks and Uzer, in 2002 [8], brought up an idea of choosing
integrals of the motion as the constraints. The authors of paper [8] first provided a general description
of their formalism. Then they considered hydrogenic atoms as an example. The authors of paper [8]
demonstrated that this purely classical formalism allows the existence of classical non-radiating states,
so that such states are stable. Remember that, according to the usual classical formalism (including
classical electrodynamics), the electron would lose the energy through the radiation and fall into the
nucleus: this failure of the usual classical formalism was one of the primary reasons for the birth of
quantum mechanics. In distinction, in the purely classical formalism from paper [8] the electron does
not fall into the nucleus.

Further, the authors of paper [8] derived the formula for the energy of such classical non-radiating
states. They showed that this set of classical energies coincides with the energies of the corresponding
quantal stationary states. While obtaining this result, the authors of paper [8] did not “forcefully”
quantize any physical quantity describing the atom.

It should be emphasized that the physical interpretation was that the existence of these classical
non-radiating states is due to a new kind of a time dilation. This new kind of the time dilation is
non-Einsteinian (see paper [9] and book [10]): it has nothing to do with the time-dilation in the theory
of relativity.

The purpose of the present paper is to present another application of the Oks–Uzer purely classical
formalism [8] within atomic and molecular physics, i.e., to microscopic systems of discrete (rather
than continuous) charges. Before proceeding with our presentation, we note in passing that, outside
atomic and molecular physics, some authors studied whether there are continuous moving charge
distributions that would not radiate—see, e.g., the paper by Goedecke [11] and references therein.
It was found that certain continuous charge distributions would not radiate. However, first, the radius
of their “orbit” should be less than the size of the charge distribution (so that the the distribution would
only “wobble”). Second, this result is valid only for continuous charge distributions, so that atoms and
molecules do not qualify.

In our view, the most interesting (and potentially relevant to atomic physics) paper of that series
was published by Raju [12]. He considered classical circular orbits of the electron and of the proton
in a hydrogen atom. He took into account the relativistic effect of the retardation, due to which the
force on the electron is at the “last-seen” position of the proton, while the proton has moved since
then. This results in a torque that would initially accelerate the electron and later on decelerate the
electron and so on. Then Raju [12] added radiative damping into the consideration, which provides
a decelerating torque for the electron. Raju [12] found sets of parameters for which the initially
accelerating torque due to the retardation would be totally compensated by the decelerating torque
due to the radiative damping. Then Raju [12] stated that “it was prematurely concluded that radiative
damping makes the classical hydrogen atom unstable”. However, this statement seems to be incorrect.
In reality, within Raju’s concept [12], the radiative damping does make the classical hydrogen atom
unstable. Indeed, when the retardation torque compensates the radiative damping torque, this means
only that the tangential acceleration of the electron vanishes, but the centripetal acceleration of the
electron remains and so does the radiation. Another view of this situation is that the two torques can
compensate each other, but one of them is due to the radiation, which carries the energy away from the
electron. The electron would therefore continuously lose energy and would fall into the proton. Thus,
the concept by Raju [12] did not lead to a non-radiating state of hydrogen atoms.

To avoid any confusion, we also mention that there were attempts to find stable states of hydrogen
atoms in frames of a so-called stochastic electrodynamics, where the interaction with the zero-point
fluctuations of a vacuum were added into the system to counterbalance the effect of the radiative
damping—see, e.g., papers by Puthoff [13], Cole and Zou [14], as well as by Nieuwenhuizen [15],
and references from these papers. However, first and foremost, the zero-point fluctuations are purely
quantum effects. These kind of works are thus beyond the scope of the present paper devoted to purely
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classical description of microscopic systems. Second, the study by Nieuwenhuizen [15] (the latest out
of the above three works) showed that this concept leads to the self-ionization of hydrogen atoms
from states of relatively low (by absolute value) energy. Thus, this mixed quantum–classical concept
actually does not explain the stability of all states of hydrogen atoms.

In the present paper, we apply the GHD to a charged Spherical Harmonic Oscillator (hereafter
SHO). The SHO is important both fundamentally and practically. From the theoretical point of
view, the SHO is one of the two fundamental microscopic systems (the other one being hydrogenic
atoms), characterized by higher-than-geometrical symmetry (i.e., algebraic symmetry) and thus having
conserved quantities beyond energy and the angular momentum. The algebraic symmetries of these
two fundamental microscopic systems manifest classically by closed orbits and quantally by an
“additional” degeneracy of their energy levels. From the practical point of view, the SHO is employed,
e.g., in nuclear physics in nuclear shell models.

According to classical physics, the charged SHO is unstable with respect to radiating
electromagnetic waves: it would lose its energy and end up in the state of zero energy. Of course,
this is contrary to quantum mechanics, according to which the charged SHO has relatively stable
stationary states. We show that, similarly to the Oks–Uzer results [8], the GHD—the purely classical
formalism—allows the existence of, generally speaking, an infinite number of classical non-radiating
states of the SHO.

2. Overview of the General Formalism and of Its Application to Hydrogenic Atoms

This overview is absolutely necessary for readers to facilitate their understanding of the new
results (presented in Section 3) and of the conclusions (Section 4). The alternative would be to simply
refer to our previous publications [8,10], but, in this case, readers would have to spend lots of time
searching through our paper [8] and book [10]. Therefore, out of the respect to readers, we provide here
excerpts from our two previous publications [8,10] as quotations (enclosed in the quotation marks).

From [8]:
“Dirac [1–3] considered a dynamical system of N degrees of freedom characterized by generalized

coordinates qn and velocities vn = dqn/dt, where n = 1, 2, ..., N. From the Lagrangian of the system

L = L(qn, vn) (1)

momenta are defined as
pn = ∂L/∂vn (2)

From [10]:
“The quantities qn, vn, pn can be varied by small amounts δqn, δvn, δpn, respectively. The latter

small quantities are of the order of ε and the variation should be worked to the accuracy of ε. As a
result of the variation, the set of Equation (2) would not be satisfied any more. This is because their
right side would differ from the corresponding left side by a quantity of the order of ε.

Further, Dirac made a distinction between two types of equations. One type is equations that do
not hold after the variation, such as the set of Equation (2). Dirac called them “weak” equations. Below
for weak equations, following Dirac, we use an equality sign � different from the usual equality sign.
Another type constitute equations that hold exactly even after the variation, such as Equation (1). Dirac
called them “strong” equations. If quantities ∂L/∂vn are not independent functions of velocities, it is
possible to exclude velocities vn from the set of Equation (2) and obtain one or several weak equations

ϕ(q, p) � 0 (3)

containing only the sets of q and p (here and below we skip the suffix of quantities q and p).”
From [8]:
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“In his formalism, Dirac [1–3] used the following complete system of independent Equations of
the type (3):

ϕm(q, p) � 0, (m = 1, 2, ..., M) (4)

Here the word “independent” means that neither of theϕ’s can be expressed as a linear combination
of the other ϕ’s with coefficients depending on q and p. The word “complete” means that any function
of q and p, which would become zero with the allowance for Equation (4) and which would change by
ε under the variation, should be a linear combination of the functions ϕm(q, p) from Equation (4) with
coefficients depending on q and p.

Finally, proceeding from the Lagrangian to a Hamiltonian, Dirac [1–3] obtained the following
primary result:

Hg = H(q, p) + umϕm(q, p) (5)

(here and below, the summation over a twice repeated suffix is understood).”
From [10]:
“Equation (5) is a strong equation expressing a relation between the generalized Hamiltonian Hg

and the conventional Hamiltonian H (q, p). Quantities um are coefficients to be determined.”
From [8]:
“Generally, they are functions of q, v, and p; by using the set of Equation (2), they could be made

functions of q and p. It should be emphasized that Hg � H(q, p) would be only a weak equation - in
distinction to Equation (5).

From Equation (5) it is seen that the Hamiltonian is not uniquely determined, because a linear
combination of ϕ’s may be added to it. Equation (4) are called constraints. The distinction between
constraints (i.e., weak equations) and strong equations, described above, can be reformulated as follows.

Constraints must be employed in accordance to certain rules. Constraints can be added. Constraints
can be multiplied by factors (depending on q and p), but only on the left side, so that these factors
must not be used inside Poisson brackets.

If f is some function of q and p, then df/dt (i.e., a general equation of motion) in the Dirac’s GHD is

df/dt � [f, H] + um[f, ϕm] (6)

where [f, g] is the usual Poisson bracket. Substituting ϕm’ in Equation (6) instead of f and taking into
account the set of Equation (4), one obtains:

[ϕm’, H] + um[ϕm’, ϕm] � 0. (m’ = 1, 2, ..., M) (7)

these consistency conditions allow determining the coefficients um.”
From [10]:
“It should be emphasized that the GHD was designed by Dirac specifically for applications

to quantum field theory [3], that is, for the purpose totally different from the purpose of Oks-Uzer
work [8].”

From [8]:
“The authors of paper [8] reformulated the GHD for atomic and molecular physics where many

systems have a higher than geometrical symmetry and therefore possess additional integrals of the
motion. Oks and Uzer [8] suggested using integrals of the motion as the constraints in the GHD.

In their general formalism, they considered a classical atomic or molecular system of N degrees
of freedom, possessing M classical integrals of the motion Am (q, p), m = 1, 2, ..., M. They wrote the
generalized Hamiltonian in the form (see Equations (4) and (5)):

Hg = H(q, p) + um{Am(q, p) − A0m}, A0m = const. (8)
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Here A0m is the value of Am (q, p) in a particular state of the motion, so that in this state

Am(q, p) − A0m � 0. (9)

Since the quantities Am(q, p) are integrals of the motion, their Poisson bracket with H(q, p)
vanishes and the consistency condition (7) reduces to the form

um[Am’, Am] � 0. (m’ = 1, 2, ..., M). (10)

From [10]:
“The set of Equation (10) allows determining the coefficients um.
Specifically, for a hydrogenic atom of the nuclear charge Z, the integrals of the motion (other than

the energy) are the angular momentum L = r�p and the Runge-Lenz vector (see, e.g., [16]) A(r,p) =

{rp2
− p(r·p)}/(µZe2) − r/r, where µ is the reduced mass. Therefore, Oks and Uzer [8] presented the

generalized Hamiltonian in the form:

Hg = p2/(2µ) − Ze2/r + u×(r�p − L0) + w×(A(r,p) − A0). (11)

Here L0, A0, and the energy H0 are connected by the well-known relation [16]:

L0
2 = µZ2e4(A0

2
− 1)/(2H0). (12)

From [8]:
“The consistency conditions [r�p, Hg] � 0, [A(r,p), Hg] � 0 resulted into the following equations

for the unknown vector-coefficients u and w:

u�L0 + w�A0 � 0, u�A0 − 2w�A0H0/(µZ2e4) � 0. (13)

By using the consistency Equation (13), Oks and Uzer [8] reduced the number of yet unknown
coefficients to just one, which they denoted as B. Of course, B was yet unknown function of energy H0

in the particular state of the atom. Oks and Uzer [8] showed that in terms of B(H0), the generalized
Hamiltonian and the equations of the motion take the following form:

Hg = p2/(2µ) − Ze2/r + 2B(H0)H0{M0·(r�p)/M0
2
− (1 − A0·A(r,p))/(1 − A0

2)} (14)

dr/dt = {1 + B(H0)}p/µ (15)

dp/dt = − {1 + B(H0)}Ze2r/r3

From [10]:
“The Equation of the motion (15) differ from their conventional form only by the factor {1 + B(H0,

A0)}. Therefore, the transformation of the time

t′ = {1 + B(H0)}t (16)

the equations of the motion with respect to the new time t′ would be formally brought back to their
conventional form.

Thus the authors of paper [8] came to the following central point. In the above generalized
formalism, the trajectory of the atomic electron remains the same as in the conventional formalism.
However, the generalized period Tg and the generalized frequencyωg differ from their conventional
values T0 andω0 as follows:

Tg = T0/|1 + B(H0)| (17)

ωg =ω0|1 + B(H0)| = |1 + B(H0)||2H0|3/2/D1/2, D � µZ2e4 (18)
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(in Equation (18), the explicit expression for the Kepler frequencyω0 has been used).”
From [8]:
“Equation (18) clearly demonstrates that the generalized formalism allows the existence of such

state (or states) of the motion, whereωg = 0 despite H0 , 0 (the conventional formalism allows to be
ω0 = |2H0|3/2/D1/2 = 0 only for H0 = 0). This is a state (or states) where B(H0) = −1. Therefore, such state
or states would not emit the electromagnetic radiation, would not lose energy for the radiation, and
would thus constitute stable states of the classical atom.”

The authors of paper [8] showed that there is infinite number of the energies of the classical
stationary states—just as in the corresponding quantum solution.

From [10]:
“Oks and Uzer [8] pointed out that in a classical non-radiating stable state, one has dr/dt = dp/dt

= 0, so that r(t) = r0 and p(t) = p0, where r0 and p0 are some vector constants. Thus, the electron is
motionless, but its momentum differs from zero. This is not surprising: the momentum p is a more
complex physical quantity than the velocity v ≡ dr/dt. For example, for a charge in an electromagnetic
field characterized by a vector-potential A, it is also possible to have v = [p − eA/(mc)]/m = 0 while
p = eA/(mc) , 0 [17].

It is also very important to emphasize that the physics behind such classical non-radiating states
is a new kind of time-dilation expressed by Equation (16): a non-Einsteinian time-dilation, as pointed
out in book [10]. The closer the energy of the system to the energy of the classical non-radiating state,
the more dilates the time. At the classical non-radiating state, the time gets dilated infinitely, so that
the frequencyωg in Equation (18) vanishes and so does the radiation.”

3. New Results

We consider a charged Spherical Harmonic Oscillator (SHO). The “conventional” conserved
quantities are the energy E and the angular momentum vector M, the conservation of the latter
following from the geometrical (spherical) symmetry of this system. It is well-known that the SHO
also possesses another set of conserved quantities, whose conservation is the consequence of the
higher-than-geometric (algebraic) symmetry:

Imn = pmpn/µ + kxmxn, m = 1, 2, 3, n = 1, 2, 3 (19)

Here, pm and xm are the Cartesian components of the momentum p and of the radius-vector
r, respectively; µ is the mass of the SHO. Obviously, Inm = Imn, so that there are generally only six
independent conserved quantities Imn. The unperturbed Hamiltonian H can be actually expressed via
some of the conserved quantities from Equation (19) as follows:

H = (I11 + I22 + I33)/2 (20)

It is well known that the motion is limited to a plane. We choose the x3-axis (the z-axis)
perpendicular to the orbital plane. Then, the dynamical variables are x1, p1, x2, p2.

In order to study whether classical non-radiative states of the SHO are possible, it should be
sufficient to consider the generalized Hamiltonian Hg, which differs from H only by the addition of
the constraints corresponding to the conserved quantities responsible for the algebraic symmetry, i.e.,
the conserved quantities from Equation (19), but only those of them that are relevant to the motion in
the orbital plane:

Hg = (I11 + I22)/2 + B11(E) (I11 − I11,0) + B22(E) (I22 − I22,0) + B12(E) (I12 − I12,0) (21)

where Imn,0 are the values of these conserved quantities in the particular state of the system; E is the
energy of the system in a particular state of the motion.
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The conserved quantities Imn “commute” with each other: the Poisson bracket of any two of them
vanishes. Therefore, the consistency conditions from Equation (10) in this case reduce to equating to
zero the Poisson brackets of the components of the angular momentum M with the second term in the
right side of Equation (21):

[Mi, amn Imn] = [eijqxjpq, Bmn(pmpn/µ + kxmxn)] = 0 (22)

where eijq is the Levi-Civita symbol.
The calculations of the Poisson brackets from Equation (22), with the subsequent substitution of

Imn by Imn,0 (as required by the GHD), lead to the following equations:

B22I12,0 = B12I22,0 (23)

B12I11,0 = B11I12,0 (24)

From Equation (19), it is obvious that the quantities I11 and I22 are non-negatively defined.
For definiteness, we assume that I11,0 differs from zero, i.e., I11,0 > 0. Then, from Equations (23)

and (24), it is easy to obtain

B12 = B11I12,0/I11,0, B22 = B11I22,0/I11,0 (25)

Thus, the consistency conditions help reduce the unknown coefficients in the generalized
Hamiltonian Hg from three to one, so that Hg can be represented in the form:

Hg = (I11 + I22)/2 + B11(E) {(I11 − I11,0) + I22,0/I11,0 (I22 − I22,0) + I12,0/I11,0 (I12 − I12,0)} (26)

Based on the Hamiltonian Hg from Equation (26) and using dxi/dt = ∂Hg/∂pi, dpi/dt = −∂Hg/∂xi,
we find the following equations of motion:

dx1/dt = {(1+2B11)p1 + (B11I12,0/I11,0)p2, dx2/dt = (1+2 B11I22,0/I11,0)p2 + (B11I12,0/I11,0)p1}/µ (27)

dp1/dt = −k{(1+2B11)x1 + (B11I12,0/I11,0)x2, dp2/dt = (1+2 B11I22,0/I11,0)p2 + (B11I12,0/I11,0)x1} (28)

By differentiation of Equation (27) with respect to time and substituting Equation (28) into the
outcome, we obtain the following system of equations:

d2x1/dt2 = −ω0
2{[(1+2B11)2 + (B11I12,0/I11,0)2]x1 + 2(B11I12,0/I11,0)[1 + B11(1+ I22,0/I11,0)]x2}, (29)

d2x2/dt2 = −ω0
2{[(1+2B11I22,0/I11,0 )2 + (B11I12,0/I11,0)2]x2 + 2(B11I12,0/I11,0)[1 + B11(1+I22,0/I11,0)]x2}

where
ω0 = (k/µ)1/2 (30)

is the “unperturbed” frequency of the oscillator.
We seek a solution of system (29) in the form:

x1 = exp(iωgt), x2 = α exp(iωgt), α = const (31)

here,ωg is the (yet unknown) generalized frequency of the oscillator.
Substituting x1 and x2 from Equation (31) into the first equation in Formula (29), we obtain:

ω2/ω0
2 = (1+2B11)2 + (B11I12,0/I11,0)2 + 2α(B11I12,0/I11,0)[1 + 2B11(1 + I22,0/I11,0)] (32)
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Substituting x1 and x2 from Equation (31) into the second equation in Formula (29), we obtain:

ωg
2/ω0

2 = (1+2B11I22,0/I11,0)2 + (B11I12,0/I11,0)2 + (2/α)(B11I12,0/I11,0)[1 + 2B11(1+ I22,0/I11,0)] (33)

For Equations (32) and (33), which have the same left sides, to be compatible with each other, their
right sides should also be equal to each other. By equating the right sides of Equations (32) and (34),
after some simplifications, we find that the parameter αmust satisfy the following quadratic equation:

α2
− 2γα − 1 = 0, γ = (I22,0 − I11,0)/I12,0 (34)

The two solutions of Equation (34) are

α± = γ ± (γ2 + 1)1/2 (35)

Obviously, α+ > 0 while α− < 0. Physically, these two solutions correspond to the two opposite
directions of the revolution along the orbit (see Equation (31)).

Equation (33) can be represented in a more explicit form:

ωg
2/ω0

2 = (4 + 2α±εδ +δ2)B11
2 + 2(2 + α±δ)B11 + 1 (36)

where we temporarily introduce the following notation:

ε = (1 + I22,0/I11,0), δ = I12,0/I11,0 (37)

Using Equation (35), it is easy to find out that

4 + 2α±εδ +δ2 = (2 + α±δ)2 (38)

so that Equation (35) simplifies to

ωg
2/ω0

2 = [(2 + α±δ)B11 + 1]2 (39)

which is equivalent to the following:

ωg/ω0 = |(2 + α±δ)B11 + 1| (40)

Coming back to the original notations, we rewrite Equation (40) in the form

ωg/ω0 = |{1 + I22,0/I11,0 ± [(I22,0/I11,0 − 1)2 + I12,0
2/I11,0

2]1/2}B11(E) + 1| (41)

where we have restored the argument E of the coefficient B11(E). It is seen that, for each direction of
the revolution of the charged particle in the orbital plane, there is a value of B11(E), for which the
generalized frequency isωg vanishes and so is the radiation. These non-radiating (stationary) states
correspond explicitly to the following values, B11+(Est) and B11– (Est) of B11(E), where the subscript “st”
stands for “stationary”:

B11+(Est) = −1/{1 + I22,0/I11,0 + [(I22,0/I11,0 − 1)2 + I12,0
2/I11,0

2]1/2} (42)

for α = α+ and

B11- (Est) = −1/{1 + I22,0/I11,0 − [(I22,0/I11,0 − 1)2 + I12,0
2/I11,0

2]1/2} (43)

for α = α–. Remember that α ± (γ) is given by Equation (35), where γ = (I22,0 − I11,0)/I12,0.
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Figure 1 shows a three-dimensional plot of B11+ (denoted in the plot for brevity as B+) versus
I22,0/I11,0 (denoted in the plot as C) and I12,0/I11,0 (denoted in the plot as D).
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Here is an intermediate summary of the above results. By employing the GHD, we have proven
the existence of the classical non-radiating states of the charged spherical harmonic oscillator—similarly
to the corresponding results of paper [8] for hydrogenic atoms.

Physically, this is the manifestation of a non-Einsteinian time-dilation. Time dilates more and more
as the energy of the system becomes closer and closer to the energy of the classical non-radiating state:

t′ = |{1 + I22,0/I11,0 ± [(I22,0/I11,0 − 1)2 + I12,0
2/I11,0

2]1/2}B11(E) + 1|t (44)

At the classical non-radiating state, the time gets dilated infinitely. As a result, the frequency
of the revolution along an elliptical orbitωg in Equation (41) vanishes—consequently, the radiation
also vanishes.

In the important particular case of I22,0 = I11,0, corresponding to the circular orbits, the above
formulas can be simplified as follows. In this case, from Equation (34) follows γ = 0, so that from
Equation (35) we get α+ = 1 and α– = −1, as it should be for the circular orbits (see Equation (31)). Then
Equation (36) simplifies to

ωg/ω0 = |(2 ± |I12,0|/I11,0)B11(E) + 1| (45)

where the plus sign corresponds to α = 1 and the minus sign corresponds to α = −1.
It is seen that, in this particular case, the generalized frequency ωg vanishes (and so does the

radiation) at the following values of B11(E):

B11+(Est) = −1/(2 + |I12,0|/I11,0) for α = 1 (46)

and
B11− (Est) = −1/(2 − |I12,0|/I11,0) for α = −1 (47)

Obviously, Equation (47) is valid, except if |I12,0|/I11,0 = 2. In the exceptional case, Equation (45)
yields a trivial result: ωg =ω0.

The primary result for the circular orbits is non-trivial. Namely, there are classical non-radiating
states, corresponding to B11(E) = B11+(Est) for α = 1 or B11(E) = B11−(Est) for α = −1.

Thus, for each direction of the revolution of the charged particle in the orbital plane, there is
one value of B11(E)—given by Equations (42) and (43) in the general case of the elliptical orbits or by
Equations (46) and (47) for the particular case of the circular orbits—for which the radiation vanishes.
The fact that, for each direction of the revolution, there is only one value of B11(E), does not mean
that there is only one classical stationary state. Indeed, if the dependence of B11 on the energy E
is oscillatory (with the amplitude greater than or equal to the absolute value of the right side of
Equation (42) for α = α+, or with the amplitude greater than or equal to the absolute value of the right
side of Equation (43) for α = α–), then there would be an infinite number of the energies of the classical
stationary states Est—just as in the corresponding quantum solution.

Here is an example, illustrating the statement from the previous sentence for the case of circular
orbits—for the subcase of α = 1 chosen for definiteness. Let us consider the following dependence of
B11+ on the energy E:

B11+(E) = −|cos[π(E − C)/(Est,0 − C)]|/(2 + |I12,0|/I11,0) (48)

where Est,0 is the energy of the lowest non-radiating state (the ground state) and both E and Est,0 are
measured in units of h̄ω0. In Equation (48), C is a constant, which is an analog of the Maslov index [18],
which, for spherically symmetric potentials, is equal to 1/2 (see, e.g., the textbook [19]). With C = 1/2,
Equation (48) takes the form

B11+(E) = −|cos[π(E − 1/2)/(Est,0 − 1/2)]|/(2 + |I12,0|/I11,0) (49)
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From Equation (49), it is easy to find out that E = Est,n, where

Est,n − 1/2 = (n + 1)(Est,0 − 1/2), n = 0, 1, 2, . . . , (50)

where the quantity B11+ satisfies Equation (46), so that the sequence of values Est,n from Equation (50)
is the sequence of the energies of the classical non-radiating stationary states. More explicitly,

Est,n = (n + 1)Est,0 − n/2 (51)

If Est,0 = 3/2, then the sequence of values Est,n from Equation (51) would coincide with the
corresponding quantum results.

4. Conclusions

We extended the applications of the GHD to a charged Spherical Harmonic Oscillator (SHO).
We demonstrated that, by using the higher-than-geometrical symmetry (i.e., the algebraic symmetry)
of the SHO and the corresponding additional conserved quantities, it is possible to obtain classical
non-radiating (stationary) states of the SHO. Generally, there is an infinite number of such states of the
SHO—just as was the case for hydrogenic atoms, as was shown in paper [8]. Both the existence of the
classical stationary states of the SHO and the infinite number of such states are consistent with the
corresponding quantum results.

Physically, the existence of the classical stationary states is the manifestation of a non-Einsteinian
time-dilation. Time dilates more and more as the energy of the system becomes closer and closer to the
energy of the classical non-radiating state.

It should be emphasized that we obtained the above new results from first principles. We did not
use any quantization postulates or any input from experiments.

It is worth mentioning that the SHO and hydrogenic atoms are not the only microscopic systems
that can be successfully treated by the GHD. Indeed, all classical systems of N degrees of freedom
have the algebraic symmetries ON+1 and SUN, and this does not depend on the functional form of the
Hamiltonian. In particular, all classical spherically symmetric potentials have algebraic symmetries,
namely tO4 and SU3; they possess an additional vector integral of the motion, while the quantal
counterpart-operator does not exist [20–22]. (This fact was employed in paper [9], where the authors
successfully applied the GHD to a modified Coulomb potential.) This offers possibilities that are absent
in quantum mechanics, as noted in paper [8].

Since there are lots of classical systems possessing an algebraic symmetry and, therefore, having
additional integrals of the motion, as mentioned in the previous paragraph, it should be obvious that
the classical systems studied in papers [8,9] and in the present paper do not constitute a comprehensive
list. For example, another fundamental physical system—an electron in the field of two stationary
nuclei—is a good candidate to be treated by GHD. Indeed, this system has an additional integral of the
motion—the projection of the super-generalized Runge–Lenz vector on the internuclear axis, the latter
vector being derived in paper [23].
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