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Abstract: We estimate the impact of the fixation of the total number of sources (quark–gluon
strings) on the long-range rapidity correlations between different observables. In our approach
this condition models the fixation of the collision centrality class, what is the usual practice in
modern collider experiments, like Relativistic Heavy Ion Collider (RHIC), Large Hadron Collider
(LHC) and so on. The estimates are obtained under the assumption of the translational invariance
in rapidity, which is usually assumed in mid-rapidity region at high energies. Based on these
assumptions, we are developing a technique for the analytical calculation of various average values
of extensive and intense variables at high string densities on the transverse lattice, taking into account
the effects of string fusion, leading to the formation of string clusters. Using this technique we
calculate the asymptotes of the correlations coefficients both between the multiplicities and between
the multiplicity and the event-mean transverse momentum of particles in two separated rapidity
intervals. As a result, we found that fixing the total number of strings has a significant effect on the
behavior of both types of correlations, especially in the case of a uniform distribution of strings in the
transverse plane.

Keywords: strong interaction; high energy; multiparticle production; multiplicity; transverse
momentum; forward-backward correlations; long-range rapidity correlations; translation invariance
in rapidity; quark-gluon strings; string fusion

1. Introduction

In modern particle physics, one of the urgent tasks is to extract information about the initial stage
of high-energy hadronic interactions. The valuable source of such information can be the experimental
and theoretical studies of the long-range correlations (LRCs) between observables in two separated
rapidity windows usually refereed as forward (F) and backward (B) [1]. In this approach one suggests
that at the initial stage of the strong interaction at high energy the formation of boost invariant flux
tubes of color fields take place between colliding hadrons. It is important that the long-range rapidity
correlations originating to the formation of the color flux tubes persist during the evolution of the
Quark Gluon Plasma formed later in the collision and hence can be observed experimentally as the
LRC between produced particles.

In the framework of the similar approach, rather long ago, in paper [2] the study of the long-range
forward–backward correlations between multiplicities (n) in two separated rapidity intervals has been
proposed with the aim to find signatures of the string fusion and percolation phenomenon [3–6] in
ultrarelativistic heavy ion collisions. It was found later that the investigations of the FB correlations
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involving along with extensive, n, also intense observables e.g., such as the event-mean transverse
momentum [7–18],

pt =
1
n

n

∑
i=1
|pi

t| , (1)

or going to more sophisticated correlation variables, e.g., to the so-called strongly intensive
quantities [19–23], enable us to obtain a clearer signal about the initial stage of hadronic interaction,
including the process of string fusion, compared to usual FB multiplicity correlations. In the present
paper we estimate the impact of the fixing of the total number of sources (quark-gluon strings) on the
value of LRC both between the multiplicities in the forward (nF) and backward (nB) rapidity windows
and between the multiplicity (nF) in the forward window and the event-mean transverse momentum
(ptB) in the backward one. In our approach the fixing of the total number of strings models the fixation
of the event centrality class, what is currently a widespread practice in analyzing experimental data in
modern collider experiments (Relativistic Heavy Ion Collider—RHIC, Large Hadron Collider—LHC
and so on).

The estimates are obtained under the assumption of validity of the translational (boost) invariance
in rapidity, which is usually assumed in the central rapidity region for symmetric reactions at high
energies. This assumption implies the uniform rapidity distribution of multiplicity and the dependence
of the two-particle correlation function C2(y1, y2) only on the difference ∆y = y1−y2 of the particle
rapidities y1 and y2 [24].

For symmetric reactions the uniformity of the rapidity distribution of multiplicity is approximately
fulfilled at |y| < 1 and |y| < 2 for the RHIC and LHC energies correspondingly (see e.g., [25–27]).
Referring to the ALICE data, [26,27]), one must to take into account that in these papers the distributions
are presented in pseudorapidity not in rapidity, what leads to the characteristic kinematical drop of
the spectra in the vicinity of y = 0, which is absent in the rapidity distributions. The dependence
of the two-particle correlation function C2(y1, y2) only on the difference ∆y = y1−y2 of the particle
rapidities in the central region is also commonly used when extracting this correlation function from
experimental data both at RHIC and LHC energies (see e.g., [28–30]).

Note that for asymmetric reactions, like the proton-nucleus and deuteron-nucleus interactions,
the boost invariance in rapidity is absent even in the central region. The rapidity distribution of
multiplicity is not uniform at mid-rapidities [31,32] and basically one must to take into account the
dependence of the two-particle correlation function C2(y1, y2) both on y1 and y2 in this case (see
e.g., discussion in paper [33]).

Calculations of the asymptotes of the correlation coefficients are carried out by introducing a
lattice (grid) in the impact parameter plane, which enables effectively to take into account the influence
of the color string fusion processes, leading to the formation of string clusters in ultra relativistic heavy
ion collisions. We present in details the developed methods for the analytical calculation of various
average values of extensive and intensive variables at high string densities on the transverse lattice,
what was announced in our short note [34], published as the proceedings of the WPCF Conference.

Basing on the averages found with high accuracy we calculate the strength of the LRC between
the multiplicities (nB-nF) and between the multiplicity and the event-mean transverse momentum
(ptB-nF) in the FB observation windows. It turns out that the fixation of the total number of strings,
has a significant impact on the behavior of the both type of the correlations.

The paper organized as follows. In Section 2 we introduce the definitions of the n-n and
pt-n FB correlation coefficients and briefly describe our model with a lattice in transverse plane,
which enables to take into account the string fusion effects on the correlation strength. Section 3
presents the developed method for the analytical calculation of various averages at high string densities
on a transverse lattice. In Section 4 basing on the calculated averages we found the covariances
cov(nB, nF) and cov(ptB, nF) determining the LRC coefficients, bnn and bptn, for the cases of uniform
and non-uniform distribution of strings in the transverse plane. In Section 5 we summarize the
influence of the fixation of the total number of strings (imitating in our approach the fixation of the
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collision centrality) on the behavior of the asymptotes of the LRC n-n and pt-n coefficients at high
string density.

2. The Model with the String Fusion on a Transverse Lattice

To quantify the strength of the FB correlations between observables measured in two separated
rapidity intervals δyF and δyB it is convenient to use the correlation coefficients defined between
the so-called relative variables n/〈n〉 and pt/〈pt〉 (see [24,35]). Therefore for the n-n correlation
between multiplicities nF and nB in forward and backward rapidity intervals we will use the
following definition:

bnn ≡
〈nF〉
〈nB〉

cov(nB, nF)

DnF

=
〈nF〉
〈nB〉

〈nBnF〉 − 〈nB〉〈nF〉
〈n2

F〉 − 〈nF〉2
, (2)

where DnF
is the variance of the nF. Correspondingly, for the pt-n correlation between the multiplicity,

nF, in the forward window and the event-mean transverse momentum of the particles observed and in
the backward window, ptB, we will use the similar definition:

bptn ≡
〈nF〉
〈ptB〉

cov(ptB, nF)

DnF

=
〈nF〉
〈ptB〉

〈ptBnF〉 − 〈ptB〉〈nF〉
〈n2

F〉 − 〈nF〉2
. (3)

One can find the value of these correlations considering the effects from the interaction between
strings in the framework of the models with string fusion and percolation [3–6]. In the present paper
we will take these effects into account in simplified form, by introducing the finite lattice (the grid) in
the transverse plane of the collision. This approach was suggested in paper [8]. Later, it was used for a
description of various phenomena in ultra relativistic nuclear collisions (azimuthal flows, correlations,
the ridge) [9–18,36–40].

In this approach we split the transverse plane into M cells. The area of each cell is equal to
the transverse area of a single string. Then we consider that all initial strings, which centers occur
in a given cell, merge into one string cluster. In this simplified model each string configuration is
completely specified by the set of integers: Cη = {η1, ..., ηM}, where ηi is a number of initial strings
merged in a given i-th cell.

In fact, in this approach, the transverse plane is divided into cells with different, fluctuating values
of the color field inside them. That is similar to the considering the color field density variation in the
impact parameter plane in models based on the Color Glass Condensate (CGC) approach [1,41].

So we will suppose that in each cell the ηi fluctuates around some average, ηi, with a scaled
variance ω. Physically the ηi are determined by the geometry of a hadronic collision at given value of
the impact parameter. Then in accordance with the string fusion prescriptions [5,6] the mean number
of charged particles in given observation rapidity window δy, produced from the fragmentation of a
string cluster in the i-th cell, and their mean transverse momentum are given by the expressions:

ni = µ
√

ηi , pi
t = p0 4

√
ηi , (4)

where µ and p0 is the average multiplicity and the average transverse momentum for particles formed
in the decay of a single string.

Note that we assume the translational invariance of the string picture in rapidity, originating from
the locality of the strong interaction in the rapidity space, which is usually assumed in the central
rapidity region at LHC energies. This translational invariance in rapidity corresponds to the boost
invariance of the flux tubes in CGC models [1]. It leads to the independence of the ni and pi

t on a
rapidity for a given string configuration Cη in our model.

We will also assume independent fragmentation of each string cluster into acceptances of the
forward and backward windows, because in the present work we are only interested in studying
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long-range correlations, i.e., we will suppose that the nF
i and nB

i fluctuates independently around their
mean values with some scaled variance ωµ. One can find a more detailed description of the model
in [8,14,16].

In the present paper for simplicity we will restrict ourselves to the case of a symmetric reaction
and symmetric windows, δyF = δyB ≡ δy. For this case in definitions (2) and (3) of the FB correlation
coefficients we have µF = µB ≡ µ, 〈nF〉 = 〈nB〉 ≡ 〈n〉, DnF

= DnB
≡ Dn, 〈ptF〉 = 〈ptB〉 ≡ 〈pt〉, and so

on. Due to mentioned translation invariance in rapidity these quantities do not depend on rapidity.
In this case one can also show, [16], that for the LRC:

〈n2
F〉 = 〈n2

B〉 = 〈n2〉 =
M

∑
i=1

dni + 〈nFnB〉 = ωµ〈n〉+ 〈nFnB〉 . (5)

In the last transition we have used the assumption that the variance dni ≡ 〈n2
i 〉 − 〈ni〉2 of the

number of particles, ni, produced in any rapidity window from string cluster decay in i-th lattice cell,
is proportional to their mean multiplicity, dni = ωµ〈ni〉, with the same factor ωµ. Then

DnF
= DnB

= Dn = 〈n2〉 − 〈n〉2 = ωµ〈n〉+ cov(nF, nB) . (6)

Hence we can find the LRC coefficients using the formula

bnn =
cov(nB, nF)

ωµ〈n〉+ cov(nB, nF)
, bptn =

〈n〉
〈pt〉

cov(ptB, nF)

ωµ〈n〉+ cov(nB, nF)
. (7)

instead of the general definitions (2) and (3). So to find these correlation coefficients we need to
calculate only the following averages: 〈n〉, 〈pt〉, 〈nBnF〉 and 〈ptBnF〉.

As was shown in [8,9,11,12,14,16] in this model with Gaussian distributions one can find the
asymptotes of the long-range FB correlation coefficients at large string density in an explicit analytical
form. In all these papers we supposed that the number of strings, ηi, in each cell fluctuates around
their mean values ηi independently. In the present work we impose the additional condition fixing
the total number of initial strings, N, in each event and study its impact on the LRC coefficients in the
asymptotic regime of high string density.

For this purpose in present analysis we use the following event-by-event string distribution:

P(η1, ..., ηM) =
√

2πωN δ(N − N)
M

∏
i=1

1√
2πωηi

e−
(ηi−ηi)

2

2ωηi , (8)

where N = ∑M
i=1ηi and N = ∑M

i=1ηi. At high string density we can consider ηi, as continuous
variables [8,14,16]. So the distribution (8) is normalized as follows∫

P(η1, ..., ηM) dη1...dηM = 1 .

Below we will denote by 〈...〉 the averages over string configurations, calculated with this
distribution. One can easy check that the mean number of strings in each cell 〈ηi〉 is equal to the
parameter ηi, 〈ηi〉=ηi. In the following consideration the important role will play the variables

νi = ηi − ηi , (9)

characterizing the deviation of ηi from ηi. One can easily verify that for the string distribution (8) we
have the following exact relations:

〈1〉 = 1 , 〈νk〉 = 0 , 〈ν2
k 〉 = ηkω

(
1−

ηk
N

)
, 〈ν4

k 〉 = 3η2
kω2

(
1−

ηk
N

)2
, (10)
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〈νkνm〉 = −ηkηm
ω

N
, 〈νkν3

m〉 = −3ηkη2
m

ω2

N

(
1− ηm

N

)
, 〈νiνkν2

m〉 = −ηiηkηm
ω2

N

(
1− 3

ηm
N

)
,

〈ν2
k ν2

m〉 = ηkηmω2
(

1− ηk
N
− ηm

N
+ 3

ηkηm

N2

)
, 〈νiνjνkνm〉 = 3ηiη jηkηm

ω2

N2 .

If α ≡ ∑n
i=1 αi is odd, then we have

〈να1
i να2

j να3
k ...〉 = 0 , at α ≡

n

∑
i=1

αi = 2l + 1 . (11)

We note that the relations (10) are valid only if i 6= j 6= k 6=m. Really, we see that 〈νkνm〉|k=m 6=〈ν2
k 〉,

〈νkν3
m〉
∣∣
k=m 6=〈ν

4
k 〉 and so on. That is a consequence of the correlations between fluctuations of the ηi in

different cells arising due to the conservation of the total number of strings (see [34]).
Use of the relations (10) and (11) enables drastically simplify the calculation of various averages

in this model, because all integrations over the ηi come down to using these simple rules.
We will calculate the asymptotes of the LRC coefficients (7) at high string density supposing that

all ηi � 1. We will also suppose that M � 1, because as it was discussed in [15,16] with a realistic
string radius rstr = 0.2÷ 0.3 fm we need lattices with a large number of cells M ∼ 102 and 104 for a
description of pp and AA collisions correspondingly.

3. Averaging over String Configurations

We will demonstrate the technique of the analytical calculation of the different lattice averages
with the distribution (8) by using as example the most complicated calculation of the mean value of
the intensive variable—the mean transverse momentum of the produced particles, 〈pt〉.

Regarding the accuracy of the calculation, we need to take into account the terms of the order
1/η, 1/η2, 1/(Mη) and 1/(Mη2). Because, as we will see later, the terms of the leading order in
M (the 1/η and 1/η2 in the case of 〈pt〉 calculation) are cancelled when calculating the covariances
entering expressions (7) for the LRC coefficients bnn and bptn. Moreover, in the case of homogeneous
string spreading in transverse plane, when all ηi = η, we have additional mutual cancellation of
the contributions of the order of 1/(Mη) to the LRC coefficients calculated with the distribution (8)
corresponding to a fixed total number of initial strings. In last case the only contribution to the LRC
coefficient originates from the terms of the order of 1/(Mη2).

As was shown in [16] with the prescriptions (4) we can find 〈pt〉 by calculating the following
average over string configurations:

〈ptB〉
p0

=

〈
∑M

i=1η
3
4
i

∑M
k=1η

1
2
i

〉
≡ 〈YZ〉 . (12)

Here we introduce the following notations

Y ≡
M

∑
i=1

η
3
4
i , Z ≡

(
M

∑
i=1

η
1
2
i

)−1

. (13)

Taking into account the definition (9) we can present the Y with the accuracy up to ν4
i as follows

Y = M S3/4

[
1 +

1
MS3/4

M

∑
i=1

η
3
4
i

(
3νi
4ηi
−

3ν2
i

32η2
i
+

15ν3
i

384η3
i
−

45ν4
i

2048η4
i

)]
, (14)
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where we have introduced the following convenient notation

Sβ ≡
1
M

M

∑
i=1

η
β
i . (15)

To calculate the Z with the same accuracy we at first have to use the expansion

M

∑
i=1

η
1
2
i = M S1/2

[
1 +

1
MS1/2

M

∑
i=1

η
1
2
i

(
νi

2ηi
−

ν2
i

8η2
i
+

ν3
i

16η3
i
−

5ν4
i

128η4
i

)]
≡ MS1/2[1 + a] , (16)

where

a =
1

MS1/2

M

∑
i=1

η
1
2
i

(
νi

2ηi
−

ν2
i

8η2
i
+

ν3
i

16η3
i
−

5ν4
i

128η4
i

)
. (17)

Then we can write

Z ≡ 1
MS1/2[1 + a]

=
1

MS1/2
[1− a + a2 − a3 + a4] (18)

Multiplying Y by Z and taking into account only the terms να1
i να2

j να3
k να4

m , satisfying the conditions
α = ∑i αi = 2 or 4 (see Formulas (10) and (11)), we find

YZ =
S3/4

S1/2
[1 + A1 + A2 + B1 + B2 + C] . (19)

Here the A1 and A2 collects four terms with α = 2:

A1 =
1

8MS1/2

M

∑
i=1

ν2
i

η3/2
i

− 3
32MS3/4

M

∑
i=1

ν2
i

η5/4
i

, (20)

A2 =
1

4M2S 2
1/2

M

∑
i,j

νiνj

η1/2
i η1/2

j

− 3
8M2S1/2S3/4

M

∑
i,j

νiνj

η1/2
i η1/4

j

(21)

and the B1, B2 and the C collect12 terms with α = 4:

B1 =
5

128MS1/2

M

∑
i=1

ν4
i

η7/2
i

− 45
2048MS3/4

M

∑
i=1

ν4
i

η13/4
i

(22)

+
1

64M2S 2
1/2

M

∑
i,j

ν2
i ν2

j

η3/2
i η3/2

j

− 3
256M2S1/2S3/4

M

∑
i,j

ν2
i ν2

j

η3/2
i η5/4

j

,

B2 =
1

16M2S 2
1/2

M

∑
i,j

νiν
3
j

η1/2
i η5/2

j

− 5
256M2S1/2S3/4

M

∑
i,j

νiν
3
j

η1/2
i η9/4

j

− 3
64M2S1/2S3/4

M

∑
i,j

νiν
3
j

η1/4
i η5/2

j

(23)

− 3
32M3S 3

1/2

M

∑
i,j,k

νiνjν
2
k

η1/2
i η1/2

j η3/2
k

− 3
128M3S 2

1/2S3/4

M

∑
i,j,k

νiνjν
2
k

η1/2
i η1/2

j η5/4
k

− 3
32M3S 2

1/2S3/4

M

∑
i,j,k

νiνjν
2
k

η1/2
i η1/4

j η3/2
k

,

C =
1

16M4S 4
1/2

M

∑
i,j,k,m

νiνjνkνm

η1/2
i η1/2

j η1/2
k η1/2

m

− 3
32M4S 3

1/2S3/4

M

∑
i,j,k,m

νiνjνkνm

η1/2
i η1/2

j η1/2
k η1/4

m

. (24)
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We will see below that the leading contributions to 〈pt〉 originating from the terms A1, A2, B1, B2

and C are of the following order:

A1 ∼
1
η

, A2 ∼
1

Mη
, B1 ∼

1
η2 , B2 ∼

1
Mη2 , C ∼ 1

M2η2 . (25)

So, taking into account the remark in the beginning of the present Section in the leading
approximation we can do not take the C contribution into consideration.

Now to calculate the 〈pt〉 by (12) we need to average the expression (19) over string fluctuations,
given by the distribution (8):

〈pt〉
p0

= 〈YZ〉 = S3/4

S1/2
[1 + 〈A1〉+ 〈A2〉+ 〈B1〉+ 〈B2〉+ 〈C〉] . (26)

We can do this using the rules (10) and (11) obtained above. At that we have to take into account
that these rules are valid only for non coinciding arguments (see the remark after the Formula (11)).
So, at first we must express all sums entering the Formulas (20)–(24) through the sums with non
coinciding arguments. We can do it easily using the following obvious relations:

∑
i,j

= ∑
i 6=j

+∑
i=j

, ∑
i,j,k

= ∑
i 6=j 6=k

+ ∑
i=j 6=k

+ ∑
i 6=j=k

+ ∑
i=k 6=j

+ ∑
i=j=k

, (27)

and so on. Then for terms of the general form we have

∑
i,j

〈να1
i να2

j 〉

η
β1
i η

β2
j

= ∑
i 6=j

〈να1
i να2

j 〉

η
β1
i η

β2
j

+ ∑
i

〈να1+α2
i 〉

η
β1+β2
i

, ∑
i,j,k

〈να1
i να2

j να3
k 〉

η
β1
i η

β2
j η

β3
k

(28)

= ∑
i 6=j 6=k

〈να1
i να2

j να3
k 〉

η
β1
i η

β2
j η

β3
k

+ ∑
i 6=k

〈να1+α2
i να3

k 〉
η

β1+β2
i η

β3
k

+ ∑
i 6=j

〈να1
i να2+α3

j 〉

η
β1
i η

β2+β3
j

+ ∑
i 6=j

〈να1+α3
i να2

j 〉

η
β1+β3
i η

β2
j

+ ∑
i

〈να1+α2+α3
i 〉

η
β1+β2+β3
i

.

After that, using the rules (10) and (11) and taking also into account that N = M S1, we find the
answer for 〈pt〉 as the linear combination of the sums of the following type:

∑
i

η
β
i = M Sβ , ∑

i 6=j
η

β
i η

γ
j , ∑

i 6=j 6=k
η

β
i η

γ
j ηδ

k , (29)

and so on. Now to express all these sums through the Sβ, defined by (15), we have to use the relations
inverse to (27):

∑
i 6=j

η
β
i η

γ
j = ∑

i,j
η

β
i η

γ
j −∑

i=j
η

β
i η

γ
j =

(
∑

i
η

β
i

)∑
j

η
γ
j

−∑
i

η
β+γ
i = M2SβSγ −M Sβ+γ , (30)

∑
i 6=j 6=k

η
β
i η

γ
j ηδ

k = ∑
i,j,k

η
β
i η

γ
j ηδ

k − ∑
i=j,k

η
β
i η

γ
j ηδ

k − ∑
i,j=k

η
β
i η

γ
j ηδ

k − ∑
i=k,j

η
β
i η

γ
j ηδ

k + 2 ∑
i=j=k

η
β
i η

γ
j ηδ

k

= M3SβSγSδ −M2SβSγ+δ −M2SγSβ+δ −M2SδSβ+γ + 2M Sβ+γ+δ .

Using this technique we can easily check that the leading orders of the terms in the A1, A2, B1, B2

and the C are given by (25). Then, applying this approach and taking into account only the terms of
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the order 1/η, 1/η2, 1/(Mη) and 1/(Mη2) in the contributions A1, A2, B1, B2 (see the remark in the
beginning of the present Section) we find

〈pt〉
p0

= 〈YZ〉 = S3/4

S1/2

{
1 + ω

(
S−1/2

8 S1/2
− 3 S−1/4

32 S3/4

)
+ ω2

(
S 2
−1/2

64 S 2
1/2
− 3 S−1/2S−1/4

256 S1/2S3/4
(31)

+
15 S−3/2

128 S1/2
− 135 S−5/4

2048 S3/4

)
+

1
M

[
ω

(
3

32 S1
+

1
4 S 2

1/2
− 3 S1/4

8 S1/2S3/4

)
+ ω2

(
7 S−1

32 S 2
1/2
− 3 S−1/2

32 S 3
1/2

− 29 S−1/2

256 S1S1/2
− 3 S1/4S−1/2

32 S 2
1/2S3/4

+
231 S−1/4

1024 S1S3/4
− 3 S−1/4

128 S 2
1/2S3/4

− 57 S−3/4

256 S1/2S3/4

)]}

4. Calculation of the Long-Range Correlation Coefficients

Using the methods developed in Section 3 with the example of the 〈pt〉 calculation, we can now
easily find all other averages entering the correlation coefficients bnn and bptn defined by (7) with
necessary accuracy.

In accordance with the prescriptions (4), taking into account (16) and applying the developed
technique we find

〈n〉
µ

= 〈
M

∑
i=1

η
1
2
i 〉 = M S1/2

{
1−ω

S−1/2

8 S1/2
−ω2 15 S−3/2

128 S1/2
+

1
M

[
ω

1
8 S1

+ ω2 15 S−1/2

64 S1S1/2

]}
. (32)

Using the general expression for 〈ptBnF〉:

〈ptBnF〉
p0µ

= 〈
M

∑
i=1

η
3
4
i 〉 , (33)

obtained in [16] for the LRC, and the Formula (14) we also find that in the framework of the
developed approach:

〈ptBnF〉
p0µ

= M S3/4

{
1−ω

3 S−1/4

32 S3/4
−ω2 135 S−5/4

2048 S3/4
+

1
M

[
ω

3
32 S1

+ ω2 135 S−1/4

1024 S1S3/4

]}
. (34)

Finally by this technique taking into account the Formula (16) we find for the contribution of the
LRC to 〈nBnF〉 the following expression:

〈nBnF〉
µ2 = 〈

M

∑
i=1

η
1
2
i

M

∑
j=1

η
1
2
j 〉 = M2S 2

1/2

{
1− ω S−1/2

4 S1/2
− ω2

64 S1/2

(
S 2
−1/2

S1/2
− 15 S−3/2

)
(35)

+
1
M

[
ω

4 S 2
1/2

+
ω2

4 S1/2

(
7 S−1
8 S1/2

+
S−1/2

S1

)]}
.

Now we can calculate the covariances (the correlators) entering the correlation coefficients bnn
and bptn (see the Formula (7)):

cov(nB, nF)

µ2 =
〈nBnF〉 − 〈n〉2

µ2 = M

[
ω

4

(
1−

S 2
1/2

S1

)
+

ω2

32

(
7S−1 − 6

S1/2S−1/2

S1

)]
, (36)

cov(ptB, nF)

p0µ
=
〈ptBnF〉 − 〈pt〉〈n〉

p0µ
=

ω

4

(
3S1/4

2S1/2
− S3/4

S 2
1/2
− S3/4

2S1

)
(37)
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+
ω2

8

(
57 S−3/4

32 S1/2
− 21 S−1/4

32 S1
+

3 S−1/4

16 S 2
1/2
− 7 S3/4S−1

4 S 2
1/2

+
3 S1/4S−1/2

8 S 2
1/2

+
S3/4S−1/2

S 3
1/2

− S3/4S−1/2

S1S1/2

)
.

We really see that all terms proportional M2 in Formula (35) for 〈nBnF〉 are cancelled by the terms
of this order in 〈n〉2. similarly, all terms proportional M in Formula (34) for 〈ptBnF〉 are cancelled by
the terms of this order in the product 〈pt〉〈n〉, given by the Formulas (31) and (32).

Moreover if we will go to the case with a homogenous string distribution in the transverse plane
with some mean string density, corresponding to the same mean number, η, of initial strings in a lattice
(grid) cell, when all ηi = η, then we will have

Sβ ≡
1
M

M

∑
i=1

η
β
i = η β . (38)

In this case all contributions proportional to ω in Formulas (35) and (34) for the correlators
(covariances) cov(nB, nF) and cov(ptB, nF) are also mutually cancelled and only the contributions of
the terms of the order ω2 survive. In this simple case the formula for the correlators (covariances)
reduce to

cov(nB, nF)

µ2 = M
ω2

32 η
, (39)

cov(ptB, nF)

p0 µ
= − ω2

128 η2 . (40)

This leads to the proportionality of the the bnn and bptn correlation coefficients (7) at large string
density to 1/η3/2 in this case, instead of 1/

√
η that took place in the case without the fixation of the

total string number [8,9,11,14].
At that by (39) and (40) we see that in this case the bptn correlation coefficient is negative,

whereas the bnn correlation coefficient is positive. Note that without imposing this additional condition,
fixing the total number of strings, both bnn and bptn correlation coefficients were always positive for a
homogeneous string distribution in the transverse plane [8,9,11,14].

5. Summary

We present the developed technique for the analytical calculation of various average values of
extensive and intensive variables at high string densities on the transverse lattice with taking into
account the string fusion effects leading to the formation of string clusters. Using this technique
we calculate the asymptotes of the LRC coefficients between the multiplicities, bnn, and between the
multiplicity and the event-mean transverse momentum, bptn, in two separated rapidity intervals at
high string density and with the fixation of the total number of initial strings. This last condition
models in our approach the fixation of the collision centrality class, which is the usual practice of
analyzing experimental data in modern collider experiments, like RHIC, LHC and so on.

As a result we found that the fixation of the total number of strings has a significant impact on
the behavior of the both type of the correlations, especially in the case of uniform string distribution
in transverse plane. In this case at large string density the bnn and bptn LRC coefficients become
proportional to 1/η3/2 instead of 1/

√
η that took place without the fixation of the total number of

strings [8,9,11,14].
We also found that in this case the correlation coefficient bptn always has a negative value,

while the correlation coefficient bnn is positive. Whereas without fixing the total number of strings
both correlation coefficients bnn and bptn were always positive for a homogeneous distribution of the
strings in the transverse plane [8,9,11,14].

In general, the proposed lattice approach to the analysis of correlations between various extensive
and intense observables can be useful for modeling the magnitude of these correlations under
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developing of various detecting systems aimed to study these effects, in particular, in the design
and construction of vertex detectors for the NICA accelerator complex.
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