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Abstract: An exact analytical expression for the effective angle is determined for an arbitrary energy
value of a radiating particle. An effective angle of instantaneous power is defined for synchrotron
radiation in the framework of classical electrodynamics. This definition explicitly contains the most
symmetric distribution of half the total of the instantaneous power of synchrotron radiation. Two exact
analytical expressions for the effective angle are considered for the arbitrary energy values of a
radiating particle, and the second expression brings to light the exact asymptotics of the effective
angle in the ultrarelativistic limit.

Keywords: synchrotron radiation; instantaneous angular distribution of radiation; distribution of
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1. Introduction

Theoretical research into the angular distribution of synchrotron radiation power was sufficiently
well developed already in the pioneering works on this subject [1–10]. However, in most of these
works, time-average angular distributions, which are currently being observed in experiment, were
paid the most attention.

In particular, the first works on the classical theory [1–6] for the time-average synchrotron radiation
investigated the issue of an effective angular span of radiation. Since the actual experiment involves
relativistic electrons, it was crucial to understand how their average radiation is distributed in space.
The structure of the radiation diagrams showed unambiguously that the radiation power of relativistic
electrons, on average, in time, is concentrated in the plane of the particles’ orbits. Later on (see, for
instance, [11,12]), precise effective angles were determined for all the polarizations of radiation power.

There are much less publications on theoretical research into the instantaneous angular distribution
of synchrotron radiation power (see, for instance, [7–10]). In classical theory, diagrams of angular
distribution for instantaneous radiation have been constructed; however, the issue of an exact analytical
expression for the effective angle still remains unsolved. There are only a few works (for instance, [7,9,10])
dealing with a qualitative ultrarelativistic approximation.

The present article determines, in the framework of classical theory, the effective angle of
instantaneous power for synchrotron radiation and investigates a precise analytical expression for
this quantity.

2. Spatial Structure of Angular Distribution for Instantaneous Power of Synchrotron Radiation

The spatial structure of angular distribution for instantaneous synchrotron radiation (SR) power
can be specified using the following coordinates (the same coordinates have also been suggested in
other works, see, for instance, [1]). The origin of such a coordinate system is chosen as the location of a
radiating charge. We direct the x-axis along the electron velocity, with the y-axis directed toward the
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center of a circular trajectory, and the z-axis chosen so that the coordinate system is a right-handed one
(when the charge moves in a constant and uniform magnetic field, the z-axis is parallel to the external
magnetic field). The radius of the circular orbit containing the radiating particle is denoted by ρ and
is oriented along the y-axis of the coordinate system. The angle between the x-axis and the vector R
is denoted by α (0 ≤ α ≤ π), whereas the angle between the y-axis and the projection of the vector
R onto the plane yz is denoted by χ (0 ≤ χ < 2π). The vector R is directed from the origin of the
coordinate system to a certain observation point of SR power. The coordinate system is exemplified by
Figure 1.

Figure 1. Coordinate system.

Under these assumptions, the instantaneous angular distribution of SR power in the wave zone
has the following form [6–10]:

dW =
e2ω2

cycβ2(1− β2)

4πc
[(β− cos α)2 + (1− β2) sin2 α sin2 χ]

(1− β cos α)5 sin α dα dχ . (1)

The following notation has been used: e is the radiating charge value; c is the speed of light; v = cβ

is the velocity of the radiating particle (0 ≤ β < 1); ωcyc =
|eH|
m0c is the cyclotron frequency; m0 is the

particle rest mass; H is the magnetic field strength. The orbit radius ρ of the radiating particle depends
on the velocity and the cyclotron frequency via the following relation:

ρ =

√
β2

1− β2
c

ωcyc
.

It is precisely the expression (1) (see also [6–10]) that is responsible for instantaneous angular
distribution in the relativistic case to be mainly concentrated in a narrow cone with a central axis
identical in direction with the instantaneous particle velocity v. The angular span of the cone is
∼ γ−1 =

√
1− β2.

Angular integration in (1),

W =
e2ω2

cycβ2(1− β2)

4πc

∫ π

0
sin α dα

∫ 2π

0
dχ

(β− cos α)2 + (1− β2) sin2 α sin2 χ

(1− β cos α)5 , (2)

produces the following well-known expression [6–10] for the SR total radiated power:

W =
2e2ω2

cycβ2

3c(1− β2)
=

2e2ω2
cyc

3c
(γ2 − 1) . (3)

3. Effective Distribution Angle for Instantaneous Synchrotron Radiation Power

Consider the part W1 of SR instantaneous power that is concentrated inside a cone whose central
axis is directed along the instantaneous velocity of the particle (namely, the x-axis), and whose angular
span is 2α0. From (2), it follows that an expression for W1 can be obtained by integrating over χ in the
limits 0 ≤ χ ≤ 2π and by integrating over α in the limits 0 ≤ α ≤ α0,
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W1 =
e2ω2

cyc

c
P(β, α0) , (4)

where a dimensionless function P(β, α0) has been introduced in (4),

P(β, α0) = β2(1− β2)
∫ α0

0

2(β− cos α)2 + (1− β2) sin2 α

4(1− β cos α)5 sin αdα . (5)

Let us point out an essential feature of the function P(β, α0). Due to integration over χ, the
function P(β, α0) ceases to depend on the details of angular distribution and is determined only by
the total instantaneous SR power, which testifies to a distribution symmetry of the instantaneous SR
power inside the selected cone.

The integral over α in (5) is taken in a manifest form:

P(β, α0) =
2β2

3(1− β2)
− β2(1− β2)(1 + q)Γ(β; q)

48(1 + β)2(1− βq)4 ; q = cos α0, 1 > q ≥ −1, (6)

where the function Γ(β; q) introduced in (6) reads as follows:

Γ(β; q) = 16(1− β)2 − 4(1− q)(1− β)(3β2 − 8β + 1)−
− 2(1− q)2(9β3 − 16β2 − 3β− 2) + (1− q)3(9β3 + 2β2 + β) .

(7)

We define the SR effective angle as such an angle α0 = αe f that meets the condition W1 = 1
2 W.

This condition, with account taken of (3) and (4), implies an equation for the value qe f = cos αe f :

(1− β)2(1 + qe f )Γ(β; qe f ) = 16(1− βqe f )
4, qe f = qe f (β). (8)

By solving this equation (for instance, numerically), we determine the function qe f . The definition
introduced here must conform to the qualitative condition that β→ 1 should make the value αe f tend
to zero: αe f ∼ 1

γ =
√

1− β2.
Equation (8) admits an essential simplification. Let us present the function qe f as follows:

cos αe f = qe f = 1− 2a(β)(1− β) ; 0 < a(β)(1− β) < 1 , (9)

where the function to be determined is the value a(β). Substituting the expression (9) into (8) and
taking (7) into account, we establish a defining equation for a(β):

a4(β)β(3β2 + 1)2 + 2a3(β)(3β2 + 1)2 + 3a2(β)(4β3− β2 + 2β− 1) + a(β)(3β2− 2β+ 3)− 1 = 0 . (10)

With respect to the function a(β), Equation (10) is a forth-degree polynomial, whose coefficients are
certain polynomials of β that do not exceed the fifth degree. Equation (10) differs from (8) by the
domain of solutions; the point β = 1 is not a singular point for (10), whereas it is a singular one for (8).
Consequently, Equation (10) allows one to define the function a(β) in the closed interval 0 ≤ β ≤ 1.
Let us proceed to determine the exact values a(0) and a(1) of this function.

By setting the value β = 0 in (10), we find the following:

1− 3a(0) + 3a2(0)− 2a3(0) = [1− 2a(0)]
[
1− a(0) + a2(0)

]
= 0,⇒ a(0) =

1
2

. (11)

By setting the value β = 1 in (10), we find the following:

16a4(1) + 32a3(1) + 12a2(1) + 4a(1)− 1 = 0. (12)
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It is easy to see that Equation (12) can be presented as follows:[
2a(1) +

3−
√

13
2

] [
2a(1) +

3 +
√

13
2

] [
4a2(1) + 2a(1) + 1

]
= 0.

Thereby, we encounter only one root of (12) that is physically meaningful:

a(1) =
√

13− 3
4

=
1√

13 + 3
≈ 0, 15139 . (13)

The Equation (10) could also be solved for other values of β by using a complex combination of
expressions containing cubic and square roots of polynomials with respect to β; however, it is much
easier to determine a numerical value a(β) for each specific β by using Equation (10) directly.

With account taken of (9), one readily finds the following:

αe f = 2 arcsin
√

a(β)(1− β) . (14)

Thereby, the Equation (14) allows one to use a given value a(β) in order to find the effective angle αe f .
Let us recast the expression (14) in the following form:

αe f =
∆(β)

γ
= ∆(β)

√
1− β2 . (15)

Comparison of (14) and (15) leads to an expression for ∆(β):

∆(β) =
2 arcsin

√
a(β)(1− β)√

1− β2
. (16)

From (16), we find, due to (11) and (13), that the function ∆(β) is limited in the closed interval 0 ≤ β ≤ 1
and takes the following exact values at the endpoints:

∆(0) =
π

2
; ∆(1) =

√
2√

13 + 3
≈ 0, 55025 . (17)

Using the expression (15) at γ → ∞ (which corresponds to β → 1), we find, due to (17),
the following exact asymptotic expression:

αe f ≈
∆(1)

γ
; γ→ ∞ ,

which is in agreement with the known qualitative data.
Non-relativistically (which corresponds to β = 0), one encounters the obvious result

αe f (β = 0) = ∆(0) = π/2.
In conclusion, we present some tables and plots of the functions under consideration (see Table 1

and Figure 2), and we also indicate their common feature of a monotonous decrease in time along with
an increase in the argument β.

We have therefore achieved exact analytical expressions for the effective angle of instantaneous SR.
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Figure 2. Functions a(β), ∆(β), αe f (β).

Table 1. Values of a(β), ∆(β), αe f (β).

β a(β) ∆(β) αe f (β)

0.00 0.5000 1.5708 1.5708
0.05 0.4804 1.4853 1.4834
0.10 0.4593 1.4037 1.3966
0.15 0.4372 1.3261 1.3111
0.20 0.4144 1.2525 1.2272
0.25 0.3916 1.1830 1.1455
0.30 0.3689 1.1176 1.0661
0.35 0.3468 1.0562 0.9894
0.40 0.3255 0.9988 0.9154
0.45 0.3050 0.9451 0.8440
0.50 0.2857 0.8951 0.7752
0.55 0.2675 0.8485 0.7087
0.60 0.2505 0.8052 0.6441
0.65 0.2346 0.7648 0.5812
0.70 0.2198 0.7273 0.5194
0.75 0.2061 0.6923 0.4579
0.80 0.1934 0.6598 0.3959
0.85 0.1816 0.6295 0.3316
0.90 0.1707 0.6013 0.2621
0.95 0.1607 0.5749 0.1795
1.00 0.1514 0.5503 0.0000
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