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Abstract: One of the key performance requirements for different control systems is non-
overshooting step response, so that the controllable value should not overcome the reference value 
within a transient process. The problem of providing a non-overshooting step response was 
examined in this paper. Despite much scientific research being dedicated to the overshoot 
elimination problem, there are little to no results regarding parametric uncertainty for the discussed 
problem. Consideration of parametric uncertainty, particularly in the form of interval-given 
parameters, is essential, since in many physical processes, electronic devices and control systems 
parameter values can be obtained with acceptable error, and they can vary under different 
conditions. The main result of our research is the development of a proportional-integral-derivative 
(PID)-controller tuning approach for systems with interval-given parameters that provides a non-
overshooting step response for such classes of control systems. This paper investigates analytical 
conditions and constraints for linear time invariant (LTI) systems in order to have no overshoot, 
enhances them with respect to parametric uncertainty, and formulates rules for tuning choices of 
parameters. 

Keywords: interval plant; overshoot elimination; PID controller; pole-zero configuration; robust control 

1. Introduction 

Regarding industrial process control, it is essential for control systems to meet the technological 
requirements. One of the key performance indices is overshoot. Particularly, it is essential for 
positioning control systems, machinery, and several thermal and chemistry processes to show no 
overshoot. Considering linear time invariant (LTI) systems, there has been much research worldwide 
that has been dedicated to the problem of overshoot. Papers [1,2] present approaches for achieving 
acceptable overshoot percentages on the poles domination theory basis. Several research papers, such 
as [3–6], have been focused on full overshoot elimination using Vandermonde-like matrices for error 
function representation. Other ways were proposed in [7], where the problem was considered with 
respect to impulse response behavior, and in [8], where minimizing of integrated absolute error (IAE) 
was performed. In the context of industrial process control, it is worth noting different approaches 
based on canonical proportional-integral-derivative (PID)-controller design methods. In particular, 
several results in [9–13] were obtained using the Ziegler–Nichols tuning method. More theoretical 
techniques take place as well, such as [14,15] that state and prove theorems for necessary and 
sufficient pole-zero configuration of the transfer function, providing a non-overshooting step 
response. As opposed to several analytical approaches, numeric optimization for the purpose of PID-
controller tuning was regarded as well in [16,17]. Another option for controller design and tuning is 
the initial choice of a desired stability degree for each pole of a closed-loop control system. 
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Considering real-world practical applications, it is worth mentioning that systems parameters 
tend to be uncertain, due to measurement errors and varying conditions of functioning. Even slight 
parameters variations can lead to significant changes in system dynamics. Parametric uncertainty 
makes controller design significantly more difficult, since the controller has to meet the requirements 
for varying states. In addition, a robust controller tuning procedure is challenging, since many 
existing well-known methods become inapplicable under parametric uncertainty. Despite the high 
level of complexity for a robust controller design, there have been several results presented, such as 
[18,19] that are based on minimization of oscillatory degree for systems with interval-given 
parameters. Regarding systems with interval-given parameters, one of the key techniques for analysis 
and control design is the Kharitonov theorem. For example, the authors of [20–22] address vertex 
polynomial properties for a robust PID-control design, but in many cases, vertex polynomials do not 
indicate all behavior aspects of the system with interval-given parameters. Another example of a 
robust PID-controller design was presented in [23,24] in the context of DC converters on the mixed 
approach that involves Kharitonov polynomials and phase portraits. 

2. Materials and Methods  

The presented research is conducted on the basis of the canonical closed-loop control scheme, 
depicted in Figure 1. 

 
– ( )G s( )C sεu y

 

Figure 1. Typical closed-loop structure. 

In Figure 1, ( )C s  is the controller, ( )G s  is the plant, and u , ε , and y  are the reference 
signal, error signal, and output signal respectively. 

The controller, ( )C s  in this case, is a classic PID controller, which is one of the most distributed 
control solutions. The PID-controller transfer function is  

2
( ) Ds Ks IC s

s
+ += , 

where D , K  and I  are the coefficients of the PID controller. The plant ( )G s is represented with 
the second-order transfer function 

2 2 2( )
2

PKG s
s s

=
+ + +α α ω

, (1) 

with poles s j= α ± ω  and gain PK . In cases of plants with initially real poles, parameter ω  is 
supposed to be complex with a null real part.  

At the first stage of the research, a stationary LTI system was examined. The task was to figure 
out the rule for PID-controller coefficients, providing a non-overshoot step response. In previous 
research [14], one of the necessary conditions for this was that the poles of the transfer function are 
strictly real.  
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2.1. Providing Real Closed-Loop Pole Configuration 

Regarding control systems structure, plant and controller transfer functions, the closed loop 
transfer function is 

( )
( ) ( )

2

3 2 2 2
( )

2

P

P P P

K Ds Ks I
W s

s DK s KK s IK

+ +
=

+ + + + + +α α ω
 (2) 

 
Conducting changing 'PDK K= , 'PKK K= ,and 'PIK I= , a characteristic equation of (2) can 

be represented as:   

( ) ( )3 2 2 22 ' ' 's D s K s I+ + + + + +α α ω  (3) 

According to the theorem in [14], it is necessary for transfer function poles to be exclusively real. 
Since the roots type is defined with a discriminant sign, let us write a discriminant for (3) in the 
following form [25] 

( ) ( ) ( )
( ) ( ) ( )( )

22 2 2 2

33 2 2 2 2

, , ', ', ' 2 ' ' 27 '

4 ' 2 ' 4 ' 18 ' 2 ' '

CE K I D D K I

I D K I D K

Δ = + + + − −

− + − + + + + + +

α ω α α ω

α α ω α α ω
. (4) 

Substituting arbitrary real positive values of α , ω , and 'K  in (4), one can plot the surface of 
( )', 'CE D IΔ . Since only positive values of CEΔ  are of interest, in the same coordinates, let us plot 

plane 0CEΔ =  to visualize constraints of the region of interest.  

Figure 2 illustrates that region where 0CEΔ > , denoted as Ω , is bounded with two curves 
(white dashed lines). Expressing 'I  from (4) yields two functions describing bounding curves for 
Ω : 

( )

( )

32 2 2 2 3 2 2 2

1

32 2 2 2 3 2 2 2

2

18 ' 9 ' ' 18 9 ' 12 ' 15 ' 2 2 ' 2 3 4 ' ' 3 '
' ( , , ', ') ;

27

18 ' 9 ' ' 18 9 ' 12 ' 15 ' 2 2 ' 2 3 4 ' ' 3 '
' ( , , ', ') .

27

K D K D D D D D D K
I K D

K D K D D D D D D K
I K D


+ + + − − + − + − + + −

 =


 + + + − − + − − − + + −

=


α ω α ω α α α α ω α
α ω

α ω α ω α α α α ω α
α ω

 (5) 
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Figure 2. Surface of discriminant values with zero plane. 

For further investigation, let us plot region Ω  in the ' 'D I−  plane as it is shown in Figure 3. 

 

Figure 3. Region Ω  in a plane of controller coefficients ' 'D I− . 

Lines of constraints for region Ω  have an intersection point ( )', 'D Iξ ξξ . Point ( )', 'D Iξ ξξ  

defines peak values for parameters 'I  and 'D .  
For generalization purposes, let us get analytical expressions for 'Iξ  and 'Dξ  using (5) 

( )2 2' 2 3 'D K= − + + +ξ α α ω  (6) 

In the same way, substitution of (6) in (5) gives the expression  

( )32 23 '
'

9

K
I

+ +
=ξ

α ω
. (7) 
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Let us investigate region Ω  in more detail. It is known that for the third-order polynomial, its 
roots can be analytically calculated with the Cardano formula. Regarding the form of (2), the 
dominating pole can be calculated as follows 

3 3
DOMS u v u v a= + + − − , (8) 

where:  

( )( ) ( )32 29 2 ' ' 27 ' 2 2 '
,

54

D K I D
u

+ + + − − +
=

α α ω α
 

( )( ) ( )( ) ( ) ( )( )33 22 2 2 227 27 ' 9 2 ' ' 2 2 ' 4 3 ' 2 '

54

I D K D K D
v

− + + + + + + + + − +
=

α α ω α α ω α
, 

( )2 '
3
D

a
+

=
α

. 

Investigating derivatives 
'

DOMS
I

∂
∂

 and 
'

DOMS
D

∂
∂

 in the field of real values states that (8) is a 

monotone, non-increasing function and thus, the stability degree 
( ) ( )( ), , ', ', ' Re , , ', ', 'DOMK I D S K D Iη α ω = α ω  will increase according to 'I . Regarding the 'I  

range of values, one can assume that the maximum stability degree can be reached in ξ  point. 
Substituting (5) and (7) in (8) gives the following expression  

( )
( )2 23 '

, , '
3MAX

K
K

+ +
=ξ

α ω
η α ω . (9) 

Function (9) defines the maximum stability degree that can be reached for a given plant, with 
the chosen PID-controller proportional coefficient with strictly real poles for a closed-loop transfer 
function. In addition, it should be noticed that in ξ  point, there is a triple pole 1 2 3T T T T= = = . 

2.2. Non-Overshoot Step Response Condition 

Regarding special point ξ , let us check non-overshooting conditions that were formulated in 
[15]. According to [15], it is necessary and sufficient that if at least one of the following conditions 
holds, then system step response has no overshoot.  

2

2

' ' 0,
' '

' 0;
'

K DT T T
I I
DT T
I

  − − ≤   


  − ≤   

 (10) 
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2

2
3 2 2

' ' 0
' '

' 5 '2 2 0
' 2 '

K DT T T
I I

K DT T T T T
I I

  − − ≤   


       − + − ≤             

 (11) 

For a more convenient robust controller synthesis procedure, let us find such a 'K  value that 

guarantees a non-overshoot step response for any ( )* *' , 'p D I ∈Ω . Investigating (10–11), it is clear 

that expression  

( ) 2 ' ', ', ', '
' 'i i i i
K DT D K I T T T
I I

 ϕ = − − 
 

, (12) 

where , , 1,3iT i i∈ ∈ , is a part of each of the conditions (10–11). For generalization purposes, let us 
solve (12) with respect to iT . The solution is an expression that can be written as follows 

2' ' 4 ' '
2 'i

K K D IT
I

− ± −= . (13) 

Regarding the highest coefficient sign and (13), one can infer that 

( )

( )

2 2

2 2

' ' 4 ' ' ' ' 4 ' ', ', ', ' 0, ,
2 ' 2 '

' ' 4 ' ' ' ' 4 ' ', ', ', ' 0, , , , .
2 ' 2 '

i i

i i

K K D I K K D IT D K I T
I I

K K D I K K D IT D K I T
I I

  − − − − + −  ≥ ∈
    


    − − − − + −   < ∈ −∞ +∞
       

ϕ

ϕ

 (14) 

Since 'K , 'D , and 'I  are strictly positive, regarding (14), one can assume that the condition
( ), ', ', ' 0iT D K Iϕ <  will always hold, and it is a monotonic decreasing function of iT . Next, 

substitution of (6, 7, 9) into (11) yields that  

2 2' 2 6 2K ≤ + +α αω ω  (15) 

Regarding the case of real poles of plant transfer function and, thus, complex value of ω  with 
a null real part, the aforementioned substitution and expressing 'K  gives:  

2 2 216 30 5 1' 4 7
7 7 7 7

K  ≤ − + + − 
 

α α α α ω  (16) 

In other words, a proper choice of 'K  provides a non-overshooting step response for a closed-

loop system within every point ( )* *' , 'p D I ∈Ω . 

2.3. Plant with Interval-Given Parameters 

Regarding practical applications, the exact parameters values are unknown and, basically, can 
be represented as a confidence limit. Moreover, parameters tend to vary due to temperature, 
humidity, pressure, and mechanical deterioration. In addition, in the field of outdoor mobile robotics, 
conditions of functioning are highly heterogeneous and demand special approaches regarding 
varying parameters [26–28]. Thus, transfer function parameters basically have to be represented as 
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an interval value. Since further mathematical representation of the plant contains interval-given 
values, the controller synthesis should be conducted accordingly. 

Let us consider second-order transfer function with parametric uncertainty as a plant model 

2( ) PKW s
as bs c

=
+ +

, (17) 

where ,a a a ∈   , ,b b b ∈   , ,c c c ∈   , and ,P P PK K K ∈    are given intervals. 

According to [14,15], a system with interval-given parameters is basically a set of stationary LTI 
systems, and its poles’ location can be represented as a region with borders defined by ranges of 
interval parameters. For the purpose of analysis and control design for systems with interval-given 
parameters, it is sufficient only to consider external borders of poles localization region (see Figure 
4). A typical well-known representation of the poles localization region is multiparametric interval 
root locus (MIRL). Since possible plant pole configurations are real poles or a complex–conjugate 
pair, MIRL is always symmetric with respect to the x-axis. The symmetry property of MIRL allows 
us to simplify further research, i.e., for the second-order transfer function, it is sufficient to investigate 
only one half of the MIRL. In other words, each symmetrical pair of points that belongs to MIRL is a 
poles pair for the same LTI system. In addition, since only half of MIRL is sufficient, computational 
load is reduced. 

 

Figure 4. Multiparametric interval root locus for second-order plant with parametric uncertainties. 

Since every point that belongs to MIRL is a single LTI system that has its own region Ω  with 
ξ  point, the region of poles localization forms a corresponding region of ξ  points on ' 'D I−  plane 

. With accordance to (6) and (7), 'Iξ  and 'Dξ  values are defined by ' PK KK= , and due to the 

interval nature of PK , for every ,P P PK K K ∈    mapping, ( )* *, ,P P P PK K K K Μ ∈   can be 

obtained (see Figure 5). According to (5), regions of positive discriminant values Ω  can be obtained 

for ( )* *, ,P P P PK K K K ∀ ∈Μ ∈ ξ . The main aim of the research is to obtain PID-controller 

coefficient values such that a closed-loop system has a non-overshooting step response for any plant 
parameter value variations within given ranges. Since every point with coordinates ( )', 'D I ∈Ω  
provides strictly real closed-loop poles for (2) for corresponding point ξ , then some pair of controller 

coefficient values ( )* *' , 'D I  gives ( ){ }* *, 0| , ,
p

i
K P P P Ps s K K K K ∈ < ∀ ∈Μ ∈  ξ  in case 

( )* * *' , 'D I ∈ Ω , such that *
p

i
KΩ = Ω  for every 

pi
i
Kξ . 
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Figure 5. Set of mappings ( )iPKΜ  of multiparametric interval root locus (MIRL) with respect to the PK  

range. 

Similarly to each Ω  region, for resultant region *Ω , constraints are defined with (5) for 

particular values of ξ . Thus, in order to choose ( )* *' , 'D I properly, it is sufficient to define points 

1ξ  and 2ξ , for which (5) forms constraints for the desired set *Ω , which contains 'I  and 'D  
values that provide a non-overshooting step response under parameter variation. 

2.4. Constraints Clarification for *Ω   

The next problem in the research is to generalize constraints for *Ω . It can be suggested that 
*Ω  is constrained with (5) for arguments providing the 'I ξ  value to be minimum according to (6) 

maximum 
0

'ID —the value of 'D  that turns 2' ( , , ', ')I K Dα ω  into zero. The value of 
0

'ID  is defined 

as follows: 

( ) ( )0
2 2' , , ' 2 2 'ID K K= − + + +α ω α α ω . (18) 

It should be noted that desired points 1ξ  and 2ξ  can either belong to vertices or edges 
mapping of MIRL. For further convenience, (7) and (18) can be rewritten as functions of plant model 
parameters. Since (1) and (17) are equivalent representations of the plant transfer function, (7) and 
(18) can be represented as follows:  

( )34 2 2
3

1 3 4 4 ' 4
' ( , , , ')

72

a K a ca b
aI a b c K

+ + −
=ξ , 

(19) 

( )0
' , , , ' 2 'I

c bD a b c K K
a a

= + − . (20) 

Regarding the assumption that desired points 1ξ  and 2ξ  belong to edges of MIRL mapping 

( )iPM K , it should be noted that the only possible way of edge location for 1ξ  and 2ξ  is a 

nonmonotonic behavior of (19) or (20). It is known that each edge of MIRL and, consequently, its 
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mapping ( )PKΜ  are formed by the varying of single interval parameters with others fixed in their 
limit values, and it turns (19) and (20) into one-variable functions forming each edge.  

In order to define whether (19) and (20) are monotonic or not along each interval parameter, one 
can find partial derivatives for (19) and (20) with respect to a , b , c  , and 'K  for checking their 
monotonicity property. Partial derivation for (19) yields:  

( )( )
( )

24 2 4 2 2

34 4 2 2

3 4 2 4 4 ' 4' ( , , , ')

24 4 4 ' 4

a ca b a K a ca bI a b c K
a

a a K a ca b

− + + + −∂
=

∂
+ + −

ξ  (21) 

( )
( )

24 2 2

33 4 2 2

3 4 4 ' 4' ( , , , ')

24 4 4 ' 4

b a K a ca bI a b c K
b

a a K a ca b

+ + −∂
= −

∂
+ + −

ξ  (22) 

( )
( )

24 2 2

32 4 2 2

3 4 4 ' 4' ( , , , ')

12 4 4 ' 4

a K a ca bI a b c K
c

a a K a ca b

+ + −∂
=

∂
+ + −

ξ  (23) 

( )
( )

24 2 2

34 2 2

3 4 4 ' 4' ( , , , ')

12 4 4 ' 4

a K a ca bI a b c K
c

a a K a ca b

+ + −∂
=

∂
+ + −

ξ  (24) 

Investigating (21–24), it can be concluded that if 4 2 24 4 ' 4a K a ca b+ + −  and 4 24 2a ca b− +  
possess a non-zero value at any ,a a a ∈   , ,b b b ∈   , ,c c c ∈  , and ' ', 'K K K ∈   , then (19) has a 

monotonic behavior. Alternatively, for solutions for one of (21), (22), (23), or (24) with respect to 
changing variables, one can get the exact investigated parameter value that gives 1ξ . 

Similarly, partial derivation for (20) gives:  

( )0

2

2

'' , , , 'I

cb
c KD a b c K a

a a

−
+∂

=
∂

, 
(25) 

( )0
' , , , ' 1ID a b c K

b a

∂
= −

∂
, (26) 

( )0

2

' , , , ' 1

'

ID a b c K

c ca K
a

∂
=

∂
+

, (27) 

( )0
' , , , ' 1

'
'

ID a b c K

K c K
a

∂
=

∂
+

. 
(28) 
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Functions (26–28) are always non-zero, so that it is sufficient to check the behavior of (25). In 
addition, one has to check (25) only in the case of parameter a  variation. 

Regarding the aforementioned results, if (21–28) are monotonic functions within interval 
parameters bounds, in special points ( )1 ,L Lξ α ω  and ( )2 ,U Uξ α ω  that define regions in which 

intersection gives *Ω , only two members of interval family form the set containing 'I  and 'D  
values that satisfies non-overshoot conditions for all the interval family. The two special members of 
the family are defined as follows: 

( )1 2
PKW s

as bs c
ξ =

+ +
, (29) 

( )2 2
PKW s

as bs c
ξ =

+ +
. (30) 

In case some of (21–28) are non-monotonic, one has to find the exact solution with respect to 
varying parameters and substitute it to (29) or (30), instead of limiting the value of the parameter. 

2.5. PID-Controller Coefficient Choice 

The final problem within the present research is to find the exact values for the PID-controller 
coefficients D  and I . One has to note that ' PD K D=  and ' PI K I=  are interval values, since 

PK  is a given interval. Thus, it is essential to find D  and I  values such that: 

{ }* *' , ' | [ ; ]P P PD I K K K∈Ω ∈Ω ∀ ∈ . (31) 

In order to satisfy (31), one can check two points denoted as ( ),U P PP DK IK  and 

( ),L P PP DK IK , since any point ( )* *, , [ ; ]P P P P PDK IK K K K∈  belongs to the linear interval LUP . 

Let us investigate the generalized condition for LUP  to lay within the *Ω  region. In other words, 

the following problem is to choose D  and I  in such a way that *
LUP ∈Ω  is as depicted in Figure 

6. 

 

Figure 6. LP  and UP  localization within *Ω  and corresponding 'D  and 'I  ranges. 
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According to Figure 6, one can observe that with a known range of gain PK  and known 

expression for constraints (5), D  and I  values providing *
LUP ∈Ω  can be found from inequality 

of the form: 

( ) ( )' , , ' , ' ' , , ' , 'U U U U U L L L L L

PP

I K D I K D
KK

≥
α ω α ω

. 

Regarding the limit case, i.e., 2 'LP I∈  and 1 'UP I∈ , the aforementioned inequality can be 
represented as the following equality: 

( ) ( )' , , ' , ' ' , , ' , 'U U U U U L L L L L

PP

I K D I K D
KK

=
α ω α ω

. (32) 

3. Example 

In order to verify the obtained results, let us consider arbitrary second-order transfer functions 
with interval-given parameters that are described with the expression: 

[ ]
[ ] [ ] [ ]2

16,18
( )

1.2,1.4 8.3,9.7 28,36
W s

s s
=

+ +
 (33) 

Using MATLAB, let us plot the MIRL of (33). The MIRL for (33) is shown in Figure 7.  

 

Figure 7. Interval root locus for (33). 

Regarding the results obtained in [19], one can obtain the external border of the MIRL presented 
in Figure 7 by vertices numbered as 3, 4, 2, 6, 5, 7 , and corresponding edges that connect external 
vertices. The candidate transfer functions according to (29–30) for the plant are:  

( )1 2
16

1.4 8.3 36
W s

s s
=

+ +
ξ  
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( )1 2
18

1.2 8.3 36
W s

s s
=

+ +
ξ  

The investigation according to (21–28) yields that candidate functions are satisfied in the 
aforementioned conditions and, thus, define *Ω . 1Wξ  and 2Wξ  parameters are: 3.4643L =α , 

2.8282L =ω , 3.4526U =α , and 4.2461U =ω . With respect to 1Wξ  and 2Wξ  as proportional 

coefficients for PID controllers, the lowest values should be chosen, and according to (14), one can 
obtain 6.5808K = , and thus, [ ]' 75.2091,98.712PK KK= = . 

For the investigated plant, regarding the external border presented in Figure 7, mapping 
( )PM K  for different PK  values within its range was calculated and plotted (see Figure 8). 

 

Figure 8. Set of experimental mappings ( )iPKΜ  of the MIRL external border for (33) and obtained 1ξ  and 

2ξ . 

Substituting 3.4643L =α , 2.8282L =ω , 3.4526U =α , and 4.2461U =ω  into (5), one can obtain 

analytical expression for *Ω  constraints and that gives: 

( )
( )32

2 3
2 ' 13.8104 ' 338.3036

' ' 32.2913 ' 1.54 ' 0.074 ' 271.756
27U

D D
I D D D D

+ −
= − − − +  

( )
( )32

2 3
2 ' 13.8527 ' 237.6221

' ' 21.0685 ' 1.53 ' 0.074 ' 195.251
27L

D D
I D D D D

+ −
= + − − +  

Next, solving (32) with respect to variable 'D  yields ( )19.9695,90.8278UP  and 

( )17.1167,77.8524LP , calculation of the PID-controller coefficients gives the following results:

1.331D = , 6.5808K = , and 6.055I = . For the obtained values, the condition *
LUP ∈Ω  holds and 

provides a non-overshooting closed-loop step response for (2). The obtained closed-loop transfer 
function has the following form  

[ ] ( )
[ ] [ ]

2

3 2

11.43;15 1.331 6.581 6.055
( )

21.1379;28.049 95.2234;128.712 [69.1985;90.8226]
CL

s s
W s

s s s

+ +
=

+ + +
. 
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For confirmation results, let us obtain step responses for ( )CLW s  in different realizations, i.e., 
with different parameters value combinations. In Figure 9, fifty different members of the interval 
family are presented.  

 

Figure 9. Experimental set of step responses for obtained closed-loop transfer function. 

In Figure 9, there are a set of step responses for ( )CLW s  that are obtained with regular steps of 
each parameter combination, and the overshoot value is zero for each of the responses. 

4. Conclusion 

This paper presents the approach for PID-controller tuning providing a non-overshoot step 
response for a second-order transfer function with interval-given parameters. Designed for a 
stationary LTI-system approach based on necessary conditions of closed-loop poles, a real 
configuration with further application is necessary, and sufficient conditions within the region Ω  of 
PID-controller parameters guarantees strictly real closed-loop poles. Next, the rule for proportional 
coefficient calculation was introduced while holding necessary and sufficient conditions in every 
point that belong to region Ω . In addition, another key performance index in many control 
applications is the stability degree [29,30]. In this paper, (9) defines the maximum stability with 
respect to plant parameters and chosen proportional PID-controller coefficients and thus allows us 
to tune the PID controller according to desired stability degree.  

Considering parametric uncertainty and its interval representation, the approach was enhanced 
and applied to this class of systems. Since in systems with interval-given parameters, poles move and 
form regions of localization, the approach has to regard a certain set of cases. Using (5) and (6), one 
can get mapping of poles’ localization regions into a PID-controller parameter plane. The next step 
was getting the region of PID-controller coefficients that allows maintaining the aforementioned 
conditions for each member of interval family. Finally, regarding all constraints and conditions, the 
equation whose solution gives the exact PID-controller coefficient was formulated.  

One of the key disadvantages is difficulty of enhancing of the presented results for higher-order 
systems due to lack of analytical methods for a higher-order equation solution. Using the Ferrari 
method for a fourth-order equation, plant model objects can probably be third-order. On the other 
hand, a wide class of typical industrial plants can be described with second- or third-order transfer 
function [31] that makes the presented approach applicable for many problems.  

One of the main advantages of the approach is a high degree of generality, since all basic 
functions and expression are presented in general form, and one can investigate how exactly the 
parameters of the controller or plant affect the design procedure and, thus, the final result. The 
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generalization of design techniques allows us to eliminate so-called “loss of insight”, in which [32] 
corresponded to a numerical calculation. As a direction of further research, generalizing results for 
transfer functions of higher order with zeros should be examined. Another topic of further research 
can be PID-controller design with consideration of settling time, energy, and more complex kinds of 
uncertainties as well. Moreover, regarding future directions of research, one thought is to enhance it 
to linear time-varying (LTV) systems, since despite being in the class of LTV systems, its parameters 
are not just regular intervals, but functions of time. Due to fundamental physical constraints, ranges 
of definition for such kind of functions are constrained as well. The presented research forms the 
minimal necessary basis for providing a required performance index within the given interval, and 
the possible next step is to advance control quality with respect to law of parameters variation and 
other conditions [33].  
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