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Abstract: In this manuscript, we focus on the brief study of finding the solution to and analyzingthe
homogeneous linear difference equation in a neutrosophic environment, i.e., we interpreted the
solution of the homogeneous difference equation with initial information, coefficient and both as
a neutrosophic number. The idea for solving and analyzing the above using the characterization
theorem is demonstrated. The whole theoretical work is followed by numerical examples and
an application in actuarial science, which shows the great impact of neutrosophic set theory in
mathematical modeling in a discrete system for better understanding the behavior of the system in an
elegant manner. It is worthy to mention that symmetry measure of the systems is employed here,
which shows important results in neutrosophic arena application in a discrete system.

Keywords: fuzzy set theory; difference equation; neutrosophic number; simplified neutrosophic
symmetry measure

1. Introduction

1.1. Uncertainty Theory and Neutrosophic Sets

The uncertainty theory becomes a very helpful tool for real life modeling in discrete and continuous
systems. The different theories of the fuzzy uncertainty theory have been given a new direction
since the setting of the fuzzy set, invented by Professor Zadeh [1]. This is generalized representation
of [1] is established as an intuitionistic fuzzy set theory by Atanassov [2]. Atarasov gave a novel
designusing the intuitionistic fuzzy theory, where he demonstrated the idea of a membership function
and non-membership function by which degree of belongingness and non-belongingness, respectively,
can be measured in a set. Liu and Yuan [3] ignited the perception of a triangular intuionistic fuzzy
set, which is the affable blend of a triangular fuzzy number and a intuionistic fuzzy set theory. Ye [4]
set up the idea for a trapezoidal intuionistic fuzzy set. Smarandache [5] found his more generalized
idea as a neutrosophic set, considering terms of the truth membership function, the indeterminacy
membership function, and the falsity membership function. This theory become more beneficial and
germane, rather than the common fuzzy and intuitionistic fuzzy theory settings.
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Several researchershave already worked in the neutrosophic field, some of which have developed
the theory [6,7], while some have applied the related theories in an applied field [8,9]. Various kinds of
forms and extensions of the Neutrosophic set, such as the triangular neutrosophic set [10], the bipolar
neutrosophic sets [11–14], and the multi-valued neutrosophic sets [15], were also found.

1.2. Difference Equation in an Uncertain Environment

There exist some works associated with difference equation and uncertainty. Mostly, researchers
have worked on the difference equation allied with fuzzy and intuitionistic fuzzy environments. We are
now giving details descriptions of some related published work. In the literature [16], Deebaet al. found
a strategy for solving the fuzzy difference equation with an interesting application. The model involving
CO2 levels in blood streamflow is thinkingin the view ofthe fuzzy difference equation by Deebaet
al. [17]. Lakshmikantham and Vatsala [18] talk abou tdifferent basic theories and properties of fuzzy
difference equations. Papaschinopoulos et al. [19,20] and PapaschinopoulosandSchinas [21] discuss
more findings in a similar context. Papaschinopoulos and Stefanidou [22] provide an explanation
on boundedness with asymptotic behavior of a fuzzy difference equation. Umekkanet al. [23] give
a finance application based on discrete system modeling in a fuzzy environment. Stefanidou et
al. [24] treat the exponential-type fuzzy difference equation. The asymptotic behavior of a second
order fuzzy difference equation is considered by Din [25]. The fuzzy non-linear difference equation is
considered by Zhang et al. [26], where Memarbashi and Ghasemabadi [27] corporate with a volterra
type rational form by Stefanidou and Papaschinopoulos [28]. The economics application is considered
by Konstantinos et al. [29]. Mondal et al. [30] solve the second-order intuitionistic difference equation.
Non-linear interval-valued fuzzy numbers and their relevance to difference equations are shown in [31].
National income determination models with fuzzy stability analysis in a discrete system are elaborately
discussed by Sarkar et al. [32]. The fuzzy discrete logistic equation is taken and stability situations are
found in the literature [33]. Zhang et al. [34] show the asymptotic performance of a discrete time fuzzy
single species population model. On discrete time, a Beverton–Holt population replica with fuzzy
environment is illustrated in [35]. Additionally, a different view of the fuzzy discrete logistic equation
is taken under uncertainty in [36]. The existence and stability situation of the difference equation with
a fuzzy setting is found by Mondal et al. [37]. Important results are also found for fuzzy difference
equations by Khastan and Alijani [38] and Khastan [39].

1.3. Novelties of the Work

In this connection of the above idea, few advances can still be prepared, which include:

(1) The homogeneous difference equation, solved and analyzed with a neutrosophic initial condition,
neutrosophic coefficient, and neutrosophic coefficient and initial together as a different section,
which was not done earlier.

(2) Establishment of the corresponding characterization theorem for the neutrosophic set with a
difference equation.

(3) Different theorems, lemmas, and corollary drawn for the purpose of the study.
(4) Numerical examples of the difference equation with a neutrosophic number, solved and illustrated

for better understanding of our observations.
(5) An application in actuarial science, illustrated in a neutrosophic environment for better

understanding of the practical application of the proposed theoretical results.

1.4. Structure of the Paper

In Section 1, we recall the related work and write the novelties of our study. The preliminary
concepts are addressed in Section 2. The difference equation with a neutrosophic variable is defined
and corresponds with a necessary theory, for which a lemma is prepared for the study in Section 3.
Section 4 shows the solution of the neutrosophic homogeneous difference equation. Two numerical
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examples are shown in Section 5. In Section 6, we take an appliance of an actuarial science problem in
the neutrosophic data and solve it. The conclusion and future research scope are written in Section 7.

2. PreliminaryIdea

Definition 1. Neutrosophicset: [6] Let X be a universe set. A single-valued neutrosophic set A on X is
distinct as A =

{
(TA(x), IA(x), FA(x)) : x ∈ X

}
, where TA(x), IA(x), FA(x) : X→ [0, 1] is the degree of

membership, degree of indeterministic, and degree of non-membership, respectively, of the element x ∈ X,
such that 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2. Neutrosophicfunction: If we take the set of all real numbers as notation R and real valued
fuzzy numbers as notation RF , then the function W : R → [0, 1] is called a fuzzy number valued function if w
satisfies the subsequent properties.

(1) W is the upper semi continuous.
(2) W is the fuzzy convex, i.e., W(λs1 + (1− λ)s2) ≥ min

{
W(s1), W(s2)

}
for all s1, s2 ∈ R and λ ∈ [0, 1].

(3) W is normal, i.e., ∃ a s0 ∈ R, such that W(s0) = 1

(4) Closure of supp(W) is compact, where supp(W) =
{
s ∈ R

∣∣∣ W(s) >0
}
.

Definition 3. Triangular neutrosophic number: [40] If we consider the measure of the truth, for
which indeterminacy and falsity are not dependent, then a Triangular Neutrosophic number is taken as
Ñ = (r0, r1, r2; s0, s1, s2; w0, w1, w2), where the truth membership, falsity, and indeterminacy membership
function is treated as follows:

T Ñ(y) =


y−r0
r1−r0

when r0 ≤ y < r1

1 when y = r1
r2−y
r2−r1

when r1 < y ≤ r2

0 otherwise

and

F Ñ(y) =


s1−y
s1−s0

when s0 ≤ y < s1

0 when y = s1
y−s1
s2−s2

when s1 < y ≤ s2

1 otherwise

I Ñ(y) =


w1−y

w1−w0
when w0 ≤ y < w1

0 when y = w1
y−w1

w2−w1
when w1 < y ≤ w2

1 otherwise

where 0 ≤ T Ñ(y) + F Ñ(y) + I Ñ(y) ≤ 1, y ∈ Ñ.

The parametric setting of the above number is
(
Ñ

)
α,β,γ

=

[TNeu1(α), TNeu2(α); INeu1(β), INeu2(β); FNeu1(γ), FNeu2(γ)],
where

N1
L(α) = r0 + α(r1 − r0)

N1
R(α) = r2 − α(r2 − r1)

N2
L(β) = s1 − β(s1 − s0)

N2
R(β) = s1 + β(s2 − s1)
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N3
L(γ) = w1 − γ(w1 −w0)

N3
R(γ) = w1 + γ(w2 −w1)

Here, 0 < α, β,γ ≤ 1 and 0 < α+ β+ γ ≤ 3
The verbal phrase with the number can be written as in Table 1:

Table 1. The verbal phrase of different uncertain settings and neutrosophic numbers.

Type of Uncertain Parameter Verbal Phrase Used Functionsand Their Roles

Triangular Fuzzy Number [Low, Medium, High] Membership function for measuring
degree of belongingness

Triangular Intuitionistic
Fuzzy Number

[Low, Medium, High; Very Low,
Medium, Very High]

Membership and non-membership
function for measuring degree of

belongingness and non-belongingness

Triangular NeutrosophicNumber

[Low, Medium, High; Very Low,
Medium, Very High; Between low
and very low; Medium; Between

high and very high]

Truthiness, falsity, and indeterminacy
function for measuring

the degree of truth belongingness, strictly
non-belongingness and indeterminacy

Definition 4. Hukuhara difference on neutrosophic function: Let E∗ be the set of all neutrosophicfunctions,
s̃, t̃ ∈ E∗. If ∃ is a neutrosophic number, w̃ ∈ E∗ and w̃ suit the relation s̃ = w̃ + t̃, then w̃ is assumed to be the
Hukuhara difference of s̃ and t̃, denoted by w̃ = s̃	 t̃.

3. Difference Equation with a Neutrosophic Variable

Definition 5. A difference equation (sometime named as a recurrence relation) is an equation that relates the
consecutive terms of a sequence of numbers.

A qth order difference equation in the linear form can be articulated:

xn+q = d1xn+q−1 + d2xn+q−2 + · · ·+ dqxn + bn (1)

where d1, d2, . . . , dq and bn are constants, which are known.
If bn = 0 for all n, then Equation (1) is the homogeneous difference equation. On the other hand,

it will be the non-homogeneous difference equation if bn , 0, where bn is treated as the forcing factor.
We consider an autonomous linear homogeneous difference equation of the form:

xn+1 = σxn , (σ , 0) (2)

with the initial condition xn=0 = x0. The solution of Equation (2) can then be written as:

xn = σnx0 (3)

Theorem 1. [41] Let m ∈ N, m ≥ 2. A linear homogeneous system of them first order difference equation is
given in matrix form as:

Xn+1 = AXn (4)

where, Xn =
(
X1

n, X2
n, . . . , Xm

n

)T
and A =

(
ai j

)
m×m

, i, j = 1, 2, . . . , m

The solution of Equation (3) can then be written as:

Xn = AnX0, n ∈ N (5)

The difference Equation (1) is considered as the neutrosophic difference equation if any one of the
following conditions are added:
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(i) The initial condition or conditions are the neutrosophic number (Type I);
(ii) The coefficient or coefficients are the neutrosophic number (Type II);
(iii) The initial conditions and coefficient or the coefficients are both neutrosophic numbers (Type III).

Theorem 2. Characterization theorem: Let us consider the neutrosophic difference equation problem:

x̃n+1 = f̃ (xn, n), (6)

with initial value x̃n=0 = x̃0 as a neutrospohic number, where f : E∗ ×Z≥0 → E∗ , such that

(1) The parametric form of the function is:

[
f̃ ((xn, n))

]
(α, β,γ)

=


f 1
L,n

(
x1

L,n(α), x1
R,n(α), n,α

)
, f 1

R,n

(
x1

L,n(α), x1
R,n(α), n,α

)
;

f 2
L,n

(
x2

L,n(β), x2
R,n(β), n, β

)
, f 2

R,n

(
x2

L,n(β), x2
R,n(β), n, β

)
;

f 3
L,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)
, f 3

R,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)


(2) The functions f 1
L,n

(
x1

L,n(α), x1
R,n(α), n,α

)
, f 1

R,n

(
x1

L,n(α), x1
R,n(α), n,α

)
, f 2

L,n

(
x2

L,n(β), x2
R,n(β), n, β

)
,

f 2
R,n

(
x2

L,n(β), x2
R,n(β), n, β

)
, f 3

L,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)
and f 3

R,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)
are taken as

continuous functions, i.e., for any ∈1> 0 ∃ a δ1 > 0, such that:∣∣∣∣ f 1
L,n

(
x1

L,n(α), x1
R,n(α), n,α

)
− f 1

L,n1

(
x1

L,n1
(α), x1

R,n1
(α), n1,α

)∣∣∣∣ <∈1

for all α ∈ [0, 1] with ‖
(
x1

L,n(α), x1
R,n(α), n,α

)
−

(
x1

L,n1
(α), x1

R,n1
(α), n1,α

)
‖ < δ1 and for any ∈2> 0 ∃

an δ2 > 0, such that:∣∣∣∣ f 1
R,n

(
x1

L,n(α), x1
R,n(α), n,α

)
− f 1

R,n2

(
x1

L,n2
(α), x1

R,n2
(α), n2,α

)∣∣∣∣ <∈2 for all α ∈ [0, 1]

with ‖
(
x1

L,n(α), x1
R,n(α), n,α

)
−

(
x1

L,n2
(α), x1

R,n2
(α), n2,α

)
‖ < δ2, where n, n1 and n2 ∈ Z≥0.

In a similar way, the continuity of the remaining four functions, f 2
L,n

(
x2

L,n(β), x2
R,n(β), n, β

)
,

f 2
R,n

(
x2

L,n(β), x2
R,n(β), n, β

)
, f 3

L,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)
and f 3

R,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)
, can be defined.

The difference Equation (6) then reduces to the system of six difference equations, as follows:

x1
L,n+1(α) = f 1

L,n

(
x1

L,n(α), x1
R,n(α), n,α

)
x1

R,n+1(α) = f 1
R,n

(
x1

L,n(α), x1
R,n(α), n,α

)
x2

L,n+1(β) = f 2
L,n

(
x2

L,n(β), x2
R,n(β), n, β

)
x2

R,n+1(β) = f 2
R,n

(
x2

L,n(β), x2
R,n(β), n, β

)
x3

L,n+1(γ) = f 3
L,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)
x3

R,n+1(γ) = f 3
R,n

(
x3

L,n(γ), x3
R,n(γ), n,γ

)
with the initial conditions:

x1
L,n=0(α) = x1

L,0(α)

x1
R,n=0(α) = x1

R,0(α)

x1
L,n=0(β) = x1

L,0(β)

x1
R,n=0(β) = x1

R,0(β)
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x1
L,n=0(γ) = x1

L,0(γ)

x1
R,n=0(γ) = x1

R,0(γ)

Note 1. By the characterization theorem, we can see that a neutrosopic difference equation is transformed into
a system of six difference equations in crisp form. In this article, we have taken only a single neutrosophic
difference equation in a neutrosophic environment. Hence, the difference equation converted into six crisp
difference equations.

Definition 6. Strong and weak solutions of a neutrosophic difference equation: The solutions of difference
Equation (6), with initial condition (3.7) to be regarded as:

(1) A strong solution if
x1

L,n(α) ≤ x1
R,n(α)

x1
L,n(β) ≤ x1

R,n(β)

x1
L,n(γ) ≤ x1

R,n(γ)

and
∂
∂α

[
x1

L,n(α)
]
> 0,

∂
∂α

[
x1

R,n(α)
]
< 0

∂
∂β

[
x1

L,n(β)
]
< 0,

∂
∂β

[
x1

R,n(β)
]
> 0

∂
∂γ

[
x1

L,n(γ)
]
< 0,

∂
∂γ

[
x1

R,n(γ)
]
> 0

for every α, β,γ ∈ [0, 1].
(2) A weak solution if

x1
L,n(α) ≥ x1

R,n(α)

x1
L,n(β) ≥ x1

R,n(β)

x1
L,n(γ) ≥ x1

R,n(γ)

and
∂
∂α

[
x1

L,n(α)
]
< 0,

∂
∂α

[
x1

R,n(α)
]
> 0

∂
∂β

[
x1

L,n(β)
]
> 0,

∂
∂β

[
x1

R,n(β)
]
< 0

∂
∂γ

[
x1

L,n(γ)
]
> 0,

∂
∂γ

[
x1

R,n(γ)
]
< 0

for every α, β,γ ∈ [0, 1].

Definition 7. Let p and q be neutrosophic numbers, where [p̃](α,β,γ) =[
p1

L(α), p1
R(α); p2

L(β), p2
R(β); p3

L(γ), p3
R(γ)

]
, [̃q](α,β,γ) =

[
q1

L(α), q1
R(α); q2

L(β), q2
R(β); q3

L(γ), q3
R(γ)

]
, for all

α, β,γ ∈ [0, 1]. The metric on the neutrosophic number space is then defined as:

d(p, q) = sup max
α,β,γ∈[0,1]

{∣∣∣p1
L(α) − q1

L(α)
∣∣∣, ∣∣∣p1

R(α) − q1
R(α)

∣∣∣, ∣∣∣p2
L(β) − q2

L(β)
∣∣∣, ∣∣∣p2

R(β) − q2
R(β)

∣∣∣, ∣∣∣p3
L(γ) − q3

L(γ)
∣∣∣, ∣∣∣p3

R(γ) − q3
R(γ)

∣∣∣}.
Note 2. For some cases, the solution may not become strictly strong or weak solution type. In this scenario, a
specific time interval or specific interval of α,β, or γ becomes the strong or weak solution. The main objective is
to find the strong solutions. For scenariosin which neitherthe strong nor weak solutions occur, we call them
non-recommended neutrosophic solutions. We strongly recommended taking strong solutions.
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4. Solution of Neutrosophic Homogeneous Difference Equation

Considering linear homogeneous difference equations:

un+1 = aun (7)

In a neutrosophic sense, another inequivalent form of is (7) taken as:

un+1 − aun = 0 (8)

Remarks 1. Equations (7) and (8) are equivalent in a crisp sense, but in fuzzy sense they are not equivalent.

Proof 1. If we take the fuzzy difference Equation (7), it becomes Theorem 1.

[un+1](α,β,γ) = [aun](α,β,γ)

or [
u1

L,n+1(α), u1
R,n+1(α); u2

L,n+1(β), u2
R,n+1(β); u3

L,n+1(γ), u3
R,n+1(γ)

]
= a

[[
u1

L,n(α), u1
R,n(α); u2

L,n(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]]
,

i.e., 

u1
L,n+1(α) = au1

L,n(α)

u1
R,n+1(α) = au1

R,n(α)

u2
L,n+1(β) = au2

L,n(β)

u2
R,n+1(β) = au2

R,n(β)

u3
L,n+1(γ) = au3

L,n(γ)

u3
R,n+1(γ) = au3

R,n(γ)

(9)

but when we take (8), it becomes Theorem 1.

[un+1](α,β,γ) − [aun](α,β,γ) = 0

or [
u1

L,n+1(α), u1
R,n+1(α); u2

L,n+1(β), u2
R,n+1(β); u3

L,n+1(γ), u3
R,n+1(γ)

]
−a

[[
u1

L,n(α), u1
R,n(α); u2

L,n(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]]
= 0,

i.e., 

u1
L,n+1(α) − au1

R,n(α) = 0
u1

R,n+1(α) − au1
L,n(α) = 0

u2
L,n+1(β) − au2

R,n(β) = 0
u2

R,n+1(β) − au2
L,n(β) = 0

u3
L,n+1(γ) − au3

R,n(γ) = 0
u3

R,n+1(γ) − au3
L,n(γ) = 0

or 

u1
L,n+1(α) = au1

R,n(α)

u1
R,n+1(α) = au1

L,n(α)

u2
L,n+1(β) = au2

R,n(β)

u2
R,n+1(β) = au2

L,n(β)

u3
L,n+1(γ) = au3

R,n(γ)

u3
R,n+1(γ) = au3

L,n(γ)

(10)

Clearly, from (9) and (10), we conclude that they are different.
Therefore, in a crisp sense, (7) and (8) are the same, but not in a neutrosophic sense. �
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Theorem 3. Supposea and u0 are positive neutrosophic numbers, then ∃ is a unique positive solution for
Equation (7).

Proof 2. Let the (α, β, γ)-cut of the positive neutrosophic number ũ0 be defined
as [ũ0](α, β, γ) =

[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]
and [̃a](α, β, γ) =[

a1
L(α), a1

R(α); a2
L(β), a2

R(β); a3
L(γ), a3

R(γ)
]
,∀α,β,γ ∈ [0, 1], and 0 ≤ α + β + γ ≤ 1, and if ũ0 =

[ξ1, ξ2, ξ3; η1,η2,η3; ζ1, ζ2, ζ3] then,

u1
L,0(α) = ξ1 + α(ξ2 − ξ1)

u1
R,0(α) = ξ3 − α(ξ3 − ξ2)

u2
L,0(β) = η2 − β(η2 − η1)

u2
L,0(β) = η2 + β(η3 − η2)

u3
L,0(γ) = ζ2 − γ(ζ2 − ζ1)

u3
L,0(γ) = ζ2 + γ(ζ3 − ζ2)

Suppose there exists a sequence of netrosophic numbers un of Equation (7), with the positive
netrosophic number u0. Taking the (α, β, γ)-cut of Equation (7), we have:

[un+1](α,β,γ) = [aun](α,β,γ)= [a](α,β,γ)[un](α,β,γ)

or [
u1

L,n+1(α), u1
R,n+1(α); u2

L,n+1(β), u2
R,n+1(β); u3

L,n+1(γ), u3
R,n+1(γ)

]
=

[
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

][
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

] (11)

Equation (11) then forwards the following system of the crisp homogeneous linear difference
equation for all α, β, and γ ∈ [0, 1], as follows:

u1
L,n+1(α) = a1

L(α)u
1
L,n(α)

u1
R,n+1(α) = a1

R(α)u
1
R,n(α)

u2
L,n+1(β) = a2

L(β)u
2
L,n(β)

u2
R,n+1(β) = a2

R(β)u
2
R,n(β)

u3
L,n+1(γ) = a3

L(γ)u
3
L,n(γ)

u3
R,n+1(γ) = a3

R(γ)u
3
R,n(γ)

(12)

and Equation (12) has unique solutions
[
u1

L,n(α), u1
R,n(α); u2

L,n+1(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]
with an

initial condition
[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]
.

(The unique solution concept of a difference equation is taken from [42])
Therefore, using Equation (3), solutions are as follows:

u1
L,n(α) =

(
a1

L(α)
)n

u1
L,0(α)

u1
R,n(α) =

(
a1

R(α)
)n

u1
R,0(α)

u2
L,n(β) =

(
a2

L(β)
)n

u2
L,0(β)

u2
R,n(β) =

(
a2

R(β)
)n

u2
R,0(β)

u3
L,n(γ) =

(
a3

L(γ)
)n

u3
L,0(γ)

u3
R,n(γ) =

(
a3

R(γ)
)n

u3
R,0(γ)

(13)
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We show that
[
u1

L,n(α), u1
R,n(α); u2

L,n(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]
, where each components

are given (by 4.5) with the initial condition
[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]
,

which indicates the (α, β, γ)-cut of solution ũn of (7) with initial condition ũ0, so that:

[un](α,β,γ) =
[
u1

L,n(α), u1
R,n(α); u2

L,n(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]
(14)

Now, [
u1

L,n(α), u1
R,n(α); u2

L,n(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]
=


(
a1

L(α)
)n

u1
L,0(α),

(
a1

R(α)
)n

u1
R,0(α);(

a2
L(β)

)n
u2

L,0(β),
(
a2

R(β)
)n

u2
R,0(β);(

a3
L(γ)

)n
u3

L,0(γ),
(
a3

R(γ)
)n

u3
R,0(γ)


= [aun](α,β,γ)

Therefore,
[
u1

L,n(α), u1
R,n(α); u2

L,n(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]
represents a positive neutrosophic

number, such that un = anu0 is the solution of (7).
To prove the uniqueness of the solution, let us assume that there exists an alternative solution ûn

for Equation (4.1). Proceeding in asimilar way, we then have:

[ûn](α,β,γ) =
[
u1

L,n(α), u1
R,n(α); u2

L,n(β), u2
R,n(β); u3

L,n(γ), u3
R,n(γ)

]
for all (α, β,γ) ∈ [0, 1]. (15)

Therefore, from Equations (14) and (15), we obtain [ûn](α,β,γ) = [un](α,β,γ) for all (α, β,γ) ∈ [0, 1],
i.e., ûn = un. Thus, the theorem is proved. �

Theorem 4. Let a and u0 are positive neutrosophic numbers. There also exists a unique positive solution for
Equation (8).

Proof 3. The proof of this theorem is almost similar to Theorem (3). �

Theorem 5. Let a and u0b epositive neutrosophic numbers,
and max

{
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

}
< 1, ∀ α , β,γ ∈ [0, 1] and supp(u0) ⊂ [M1, N1],

where M1, N1 are finite positive real numbers. All the sequences of positive neutrosophic solution of Equation (7)
are then bounded and persist.

Proof 4. Let un be a sequence of positive neutrosophic solutions of Equation (7).
Since max

{
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

}
< 1, ∀α,β,γ ∈ [0, 1] and supp(u0) ⊂ [M1, N1],

where M1, N1 are finite positive real numbers, it is evident from Equation (9) that all the component
solutions of neutrosophic positive solution un converge to 0 as n→∞ i.e., un → 0netro as n→∞ ,
where (0neutro)(α,β,γ) = [0, 0; 0, 0; 0, 0]. Since every convergent sequence is bounded, the sequence of
positive neutrosophic solutions un of Equation (7) is bounded. �

Theorem 6. Let a and u0 bepositive neutrosophic numbers and
max

{
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

}
< 1, ∀ α , β,γ ∈ [0, 1] and supp(u0) ⊂ [M1, N1],

where M1, N1 are finite positive real numbers. All the sequences of positive neutrosophic solutions of Equation
(8) are then bounded and persist.

4.1. Solution of Homogeneous Difference Equation of Type I

Consider Equation (4.1) with the fuzzy initial condition ũn=0 = ũ0 as a neutrosophic number.
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Let [ũ0](α, β, γ) =
[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]
, ∀ α,β,γ ∈ [0, 1],

and 0 < α + β + γ < 3, where, [ũ0](α, β, γ) is the (α, β, γ)-cut of ũ0 and, if ũ0 =

[ξ1, ξ2, ξ3; η1, η2, η3; ζ1, ζ2, ζ3], then

u1
L,0(α) = ξ1 + α(ξ2 − ξ1)

u1
R,0(α) = ξ3 − α(ξ3 − ξ2)

u2
L,0(β) = η2 − β(η2 − η1)

u2
L,0(β) = η2 + β(η3 − η2)

u3
L,0(γ) = ζ2 − γ(ζ2 − ζ1)

u3
L,0(γ) = ζ2 + γ(ζ3 − ζ2)

(16)

4.1.1. The Solution When a > 0 Is a Crisp Number and u0 Is a Neutrosophic Number

Taking the (α, β, γ)-cut of Equation (7), we have the following equations:

u1
L,n+1(α) = au1

L,n(α)

u1
R,n+1(α) = au1

R,n(α)

u2
L,n+1(β) = au2

L,n(β)

u2
R,n+1(β) = au2

R,n(β)

u3
L,n+1(γ) = au3

L,n(γ)

u3
R,n+1(γ) = au3

R,n(γ)

(17)

Solutions of the above equations are:

u1
L,n(α) = anu1

L,0(α)

u1
R,n(α) = anu1

R,0(α)

u2
L,n(β) = anu2

L,0(β)

u2
R,n(β) = anu2

R,0(β)

u3
L,n(γ) = anu3

L,0(γ)

u3
R,n(γ) = anu3

R,0(γ)

(18)

4.1.2. The Solution When a = 1 and the Initial Value u0 is a Neutrosophic Number

In this case, a sequence of solutions is given by

u1
L,n(α) = u1

L,0(α)

u1
R,n(α) = u1

R,0(α)

u2
L,n(β) = u2

L,0(β)

u2
R,n(β) = u2

R,0(β)

u3
L,n(γ) = u3

L,0(γ)

u3
R,n(γ) = u3

R,0(γ)

(19)

which lead to convergent solutions.

4.1.3. The Solution When a < 0 and the Initial Value u0 Is a Neutrosophic Number

Let a = −µ, µ > 0, the real valued number.
From Equation (7), we then have[

un+1(α), un+1(α)
]
= −µ

[
un(α), un(α)

]
(20)
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Therefore, we obtain the following:

u1
L,n+1(α) = −µu1

R,n(α)

u1
R,n+1(α) = −µu1

L,n(α)

u2
L,n+1(β) = −µu2

R,n(β)

u2
R,n+1(β) = −µu2

L,n(β)

u3
L,n+1(γ) = −µu3

R,n(γ)

u3
R,n+1(γ) = −µu3

L,n(γ)

(21)

The first pairs of equations can be written in the matrix form as: u1
L,n+1(α)

u1
R,n+1(α)

 = (
0 −µ
−µ 0

) u1
L,n(α)

u1
R,n(α)

 (22)

From Equation (22), let the co-efficient matrix be A1 =

(
0 −µ
−µ 0

)
Therefore,

A1
n =


(
µn 0
0 µn

)
when n is an even natural number(

0 −µn

−µn 0

)
when n is an odd natural number

Therefore, the solution of (4.1.6), using Theorem (3.1), is given by: u1
L,n(α)

u1
R,n(α)

 = An
1

 u1
L,0(α)

u1
R,0(α)

 (23)

When n is an even natural number, the general solutions are:

u1
L,n(α) = µnu1

L,0(α)

u1
R,n(α) = µnu1

R,0(α)

u2
L,n(β) = µnu2

L,0(β)

u2
R,n(β) = µnu2

R,0(β)

u3
L,n(γ) = µnu3

L,0(γ)

u3
R,n(γ) = µnu3

R,0(γ)

(24)

When n is odd natural number, the general solutions are:

u1
L,n(α) = −µ

nu1
R,0(α)

u1
R,n(α) = −µ

nu1
L,0(α)

u2
L,n(β) = −µ

nu2
R,0(β)

u2
R,n(β) = −µ

nu2
L,0(β)

u3
L,n(γ) = −µ

nu3
R,0(γ)

u3
R,n(γ) = −µ

nu3
L,0(γ)

(25)

4.1.4. The Solution When a > 0 Is Aneutrosophic Number and the Initial Value u0 Is a Crisp Number

Let [̃a](α, β, γ) =
[
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

]
, ∀ α ,β,γ ∈ [0, 1], and 0 ≤ α+β+ γ ≤ 3.
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Taking the (α, β, γ)-cut of Equation (7), we have the following equation:

u1
L,n+1(α) = a1

L(α)u
1
L,n(α)

u1
R,n+1(α) = a1

R(α)u
1
R,n(α)

u2
L,n+1(β) = a2

L(β)u
2
L,n(β)

u2
R,n+1(β) = a2

R(β)u
2
R,n(β)

u3
L,n+1(γ) = a3

L(γ)u
3
L,n(γ)

u3
R,n+1(γ) = a3

R(γ)u
3
R,n(γ)

(26)

where u0 is the initial value. The solutions are as follows:

u1
L,n(α) =

(
a1

L(α)
)n

u0

u1
R,n(α) =

(
a1

R(α)
)n

u0

u2
L,n(β) =

(
a2

L(β)
)n

u0

u2
R,n(β) =

(
a2

R(β)
)n

u0

u3
L,n(γ) =

(
a3

L(γ)
)n

u0

u3
R,n(γ) =

(
a3

R(γ)
)n

u0

(27)

4.1.5. The Solution When a < 0 Is a Neutrosophic Number and the Initial Value u0 Is a Crisp Number

Let a = −µ, where µ is a positive fuzzy number. [µ̃](α, β,γ) =[
µ1

L(α),µ
1
R(α); µ

2
L(β),µ

2
R(β); µ

3
L(γ),µ

3
R(γ)

]
, ∀ α ,β,γ ∈ [0, 1], and 0 ≤ α+ β+ γ ≤ 3.

Equation (7) then splits into the following equations:

u1
L,n+1(α) = −µ

1
R(α)u

1
R,n(α)

u1
R,n+1(α) = −µ

1
L(α)u

1
L,n(α)

u2
L,n+1(β) = −µ

2
R(β)u

2
R,n(β)

u2
R,n+1(β) = −µ

2
L(β)u

2
L,n(β)

u3
L,n+1(γ) = −µ

3
R(γ)u

3
R,n(γ)

u3
R,n+1(γ) = −µ

3
L(γ)u

3
L,n(γ)

(28)

In the matrix form, the first pairs of equations of Equation (28) can be written as: u1
L,n+1(α)

u1
R,n+1(α)

 = (
0 −µ1

R(α)

−µ1
L(α) 0

) u1
L,n(α)

u1
R,n(α)

 (29)

The solution of (29) is given by:  u1
L,n(α)

u1
R,n(α)

 = An
2

(
u0

u0

)
(30)

where,

A2 =

(
0 −µ1

R(α)

−µ1
L(α) 0

)
and

An
2 =




(
µ1

L(α)µ
1
R(α)

) n
2 0

0
(
µ1

L(α)µ
1
R(α)

) n
2

 when n is even 0 −

(
µ1

L(α)
) n−1

2

−

(
µ1

L(α)
) n+1

2
(
µ1

R(α)
) n−1

2 0

(
µ1

R(α)
) n+1

2

 when n is odd
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The solution of Equation (30) when n is even is:

u1
L,n(α) =

(
µ1

L(α) µ
1
R(α)

) n
2 u0

u1
R,n(α) =

(
µ1

L(α)
(
µ1

Rα
)) n

2 u0

u2
L,n(β) =

(
µ2

L(β) µ
2
R(β)

) n
2 u0

u2
R,n(β) =

(
µ2

L(β) µ
2
R(β)

) n
2 u0

u3
L,n(γ) =

(
µ3

L(γ) µ
3
R(γ)

) n
2 u0

u3
R,n(γ) =

(
µ3

L(γ) µ
3
R(γ)

) n
2 u0

(31)

In this case, solutions become crisp numbers, i.e., un(α) =
(
µ(α) µ(α)

) n
2 u0.

The solution of Equation (30) when n is odd:

u1
L,n(α) = −

(
µ1

L(α)
) n−1

2
(
µ1

R(α)
) n+1

2 u0

u1
R,n(α) = −

(
µ1

L(α) )
) n+1

2
(
µ1

R(α)
) n−1

2 u0

u2
L,n(β) = −

(
µ2

L(β)
) n−1

2
(
µ2

R(β)
) n+1

2 u0

u2
R,n(β) = −

(
µ2

L(β) )
) n+1

2
(
µ2

R(β)
) n−1

2 u0

u3
L,n(γ) = −

(
µ3

L(γ)
) n−1

2
(
µ3

R(γ)
) n+1

2 u0

u3
R,n(γ) = −

(
µ3

L(γ) )
) n+1

2
(
µ3

R(γ)
) n−1

2 u0

(32)

4.1.6. The Solution When a > 0 and u0 Are Bothneutrosophic Numbers

Let
[̃a](α, β, γ) =

[
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

]
[ũ0](α, β, γ) =

[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]
∀ α ,β,γ ∈ [0, 1] and 0 ≤ α+ β+ γ ≤ 3.
The solution of Equation (16), which follows from Equation (26), is thengiven by:

u1
L,n(α) =

(
a1

L(α)
)n

u1
L,0(α)

u1
R,n(α) =

(
a1

R(α)
)n

u1
R,0(α)

u2
L,n(β) =

(
a2

L(β)
)n

u2
L,0(β)

u2
R,n(β) =

(
a2

R(β)
)n

u2
R,0(β)

u3
L,n(γ) =

(
a3

L(γ)
)n

u3
L,0(γ)

u3
R,n(γ) =

(
a3

R(γ)
)n

u3
R,0(γ)

(33)

4.1.7. The Solution When a < 0 and u0 Are Both Neutrosophic Numbers

Let a = −µ , µ > 0. Let [µ̃](α, β, γ) =
[
µ1

L(α),µ
1
R(α); µ

2
L(β),µ

2
R(β); µ

3
L(γ),µ

3
R(γ)

]
and [ũ0](α, β, γ) =[

u1
L,0(α), u1

R,0(α); u2
L,0(β), u2

R,0(β); u3
L,0(γ), u3

R,0(γ)
]

∀ α ,β,γ ∈ [0, 1] and 0 ≤ α+ β+ γ ≤ 3.
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The solution of Equation (16), which is follows from Equation (31), is then given by:

u1
L,n(α) =

(
µ1

L(α) µ
1
R(α)

) n
2 u1

L,0(α)

u1
R,n(α) =

(
µ1

L(α) µ
1
R(α)

) n
2 u1

R,0(α)

u2
L,n(β) =

(
µ2

L(β) µ
2
R(β)

) n
2 u2

L,0(β)

u2
R,n(β) =

(
µ2

L(β) µ
2
R(β)

) n
2 u2

R,0(β)

u3
L,n(γ) =

(
µ3

L(γ) µ
3
R(γ)

) n
2 u3

L,0(γ)

u3
R,n(γ) =

(
µ3

L(γ) µ
3
R(γ)

) n
2 u3

R,0(γ)

(34)

The above equations show that the solution for n is even only. When n is odd, the solutions,
which follow from Equation (32), are as follows:

u1
L,n(α) = −

(
µ1

L(α)
) n−1

2
(
µ1

R(α)
) n+1

2 u1
L,0(α)

u1
R,n(α) = −

(
µ1

L(α)
) n+1

2
(
µ1

R(α)
) n−1

2 u1
R,0(α)

u2
L,n(β) = −

(
µ2

L(β)
) n−1

2
(
µ2

R(β)
) n+1

2 u2
L,0(β)

u2
R,n(β) = −

(
µ2

L(β)
) n+1

2
(
µ2

R(β)
) n−1

2 u2
R,0(β)

u3
L,n(γ) = −

(
µ3

L(γ)
) n−1

2
(
µ3

R(γ)
) n+1

2 u3
L,0(γ)

u3
R,n(γ) = −

(
µ3

L(γ)
) n+1

2
(
µ3

R(γ)
) n−1

2 u3
R,0(γ)

(35)

4.2. Solution of Homogeneous Difference Equation of Type II

4.2.1. The Solution When a = 1 and the Initial Condition u0 Is a Neutrosophic Number

Taking the (α, β, γ)-cut of Equation (8), we have the following:

u1
L,n+1(α) = u1

R,n(α)

u1
R,n+1(α) = u1

L,n(α)

u2
L,n+1(β) = u2

R,n(β)

u2
R,n+1(β) = u2

L,n(β)

u3
L,n+1(α) = u3

R,n(α)

u3
R,n+1(α) = u3

L,n(α)

(36)

In the matrix form, the first pairs of Equation (36) can be written as: u1
L,n+1(α)

u1
R,n+1(α)

 = (
0 1
1 0

) u1
L,n(α)

u1
R,n(α)

 (37)

The solution of Equation (37) is, when n is even: u1
L,n(α) = u1

L,0(α)

u1
R,n(α) = u1

R,0(α)
(38)

When n is odd, the solutions are:  u1
L,n(α) = u1

R,0(α)

u1
R,n(α) = u1

L,0(α)
(39)

For both cases, when either n is even or odd, u1
L,n(α) and u1

R,n(α) leads to a convergent solution.
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In a similar way, solutions of remaining equations are as follows:
when n is even: 

u1
L,n(β) = u1

L,0(β)

u1
R,n(β) = u1

R,0(β)

u1
L,n(γ) = u1

L,0(γ)

u1
R,n(γ) = u1

R,0(γ)

(40)

When n is odd: 
u1

L,n(β) = u1
R,0(β)

u1
R,n(β) = u1

L,0(β)

u1
L,n(γ) = u1

R,0(γ)

u1
R,n(γ) = u1

L,0(γ)

(41)

4.2.2. The Solution When a > 0, a Real Valued Number, and the Initial Condition u0 Is a
Neutrosophic Number

Taking the (α, β,γ)-cut of (8), we get the following equations:

u1
L,n+1(α) − au1

R,n(α) = 0
u1

R,n+1(α) − au1
L,n(α) = 0

u1
L,n+1(β) − au1

R,n(β) = 0
u1

R,n+1(β) − au1
L,n(β) = 0

u1
L,n+1(γ) − au1

R,n(γ) = 0
u1

R,n+1(γ) − au1
L,n(γ) = 0

(42)

In the matrix form, the first pair of Equation (42) can be written as: u1
L,n+1(α)

u1
R,n+1(α)

 = (
0 a
a 0

) u1
L,n(α)

u1
R,n(α)

 (43)

The solutions of (43) are, when n is even: u1
L,n(α) = anu1

L,0(α)

u1
R,n(α) = anu1

R,0(α)
(44)

The solutions of (44) and (45) are, when n is odd: u1
L,n(α) = anu1

R,0(α)

u1
R,n(α) = anu1

L,0(α)
(45)

In a similar way, the solutions of the remaining Equation (42) are as follows:
When n is even: 

u1
L,n(β) = anu1

L,0(β)

u1
R,n(β) = anu1

R,0(β)

u1
L,n(γ) = anu1

L,0(γ)

u1
R,n(γ) = anu1

R,0(γ)

(46)

When n is odd: 
u1

L,n(β) = anu1
R,0(β)

u1
R,n(β) = anu1

L,0(β)

u1
L,n(γ) = anu1

R,0(γ)

u1
R,n(γ) = anu1

L,0(γ)

(47)
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4.2.3. The Solution When a < 0 and When the Initial Condition u0 Is a Neutrosophic Number

Let a = −m , m > 0, a real valued number.
From Equation (8), after taking the (α, β, γ)-cut, we have the following sets of equations:

u1
L,n+1(α) + mu1

L,n(α) = 0
u1

R,n+1(α) + mu1
R,n(α) = 0

u1
L,n+1(β) + mu1

L,n(β) = 0
u1

R,n+1(β) + mu1
R,n(β) = 0

u1
L,n+1(γ) + mu1

L,n(γ) = 0
u1

R,n+1(γ) + mu1
R,n(γ) = 0

(48)

Solving the above equations, we get:

u1
L,n(α) = (−m)nu1

L,0(α)

u1
R,n(α) = (−m)nu1

R,0(α)

u2
L,n(β) = (−m)nu2

L,0(β)

u2
R,n(β) = (−m)nu2

R,0(β)

u3
L,n(γ) = (−m)nu3

L,0(γ)

u3
R,n(γ) = (−m)nu3

R,0(γ)

(49)

4.2.4. The Solution When a > 0 Is a Positive Neutrosophic Number and the Initial Condition u0 Is Nota
Neutrosophic Number

Let [̃a](α, β, γ) =
[
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

]
,∀ α ,β,γ ∈ [0, 1], and 0 ≤ α+ β+ γ ≤ 3.

Taking the (α, β, γ)-cut of Equation (8), we have the following equation:

u1
L,n+1(α) = a1

L(α)u
1
R,n(α)

u1
R,n+1(α) = a1

R(α)u
1
L,n(α)

u2
L,n+1(β) = a2

L(β)u
2
R,n(β)

u2
R,n+1(β) = a2

R(β)u
2
L,n(β)

u3
L,n+1(γ) = a3

L(γ)u
3
R,n(γ)

u3
R,n+1(γ) = a3

R(γ)u
3
L,n(γ)

(50)

In the matrix form, among the above equations, the first pair of Equation (50) can be written as: u1
L,n+1(α)

u1
R,n+1(α)

 = (
0 a1

R(α)

a1
L(α) 0

) u1
L,n(α)

u1
R,n(α)

 (51)

The solution of Equation (51), when n is even:

u1
L,n(α) =

(
a1

L(α) a1
R(α)

) n
2 u0

u1
R,n(α) =

(
a1

L(α) a1
R(α)

) n
2 u0

u2
L,n(β) =

(
a2

L(β) a2
R(β)

) n
2 u0

u2
R,n(β) =

(
a2

L(β) a2
R(β)

) n
2 u0

u3
L,n(γ) =

(
a3

L(γ) a3
R(γ)

) n
2 u0

u3
R,n(γ) =

(
a3

L(γ) a3
R(γ)

) n
2 u0

(52)
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When n is odd: 

u1
L,n(α) =

(
a1

L(α)
) n−1

2
(
a1

R(α)
) n+1

2 u0

u1
R,n(α) =

(
a1

L(α)
) n+1

2
(
a1

R(α)
) n−1

2 u0

u2
L,n(β) =

(
a2

L(β)
) n−1

2
(
a2

R(β)
) n+1

2 u0

u2
R,n(β) =

(
a2

L(β)
) n+1

2
(
a2

R(β)
) n−1

2 u0

u3
L,n(γ) =

(
a3

L(γ)
) n−1

2
(
a3

R(γ)
) n+1

2 u0

u3
R,n(γ) =

(
a3

L(γ)
) n+1

2
(
a3

R(γ)
) n−1

2 u0

(53)

4.2.5. The Solution When a < 0 Is a Neutrosophic Number and when the Initial Condition u0 Is a
Crisp Number

Let a = −m , m > 0. Let [m̃](α, β, γ) =
[
m1

L(α), m1
R(α); m2

L(β), m2
R(β); m3

L(γ), m3
R(γ)

]
and

[ũ0](α, β, γ) =
[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]
∀ α ,β,γ ∈ [0, 1] and 0 ≤ α+ β+ γ ≤ 3.
Taking the (α, β, γ)-cut of Equation (8), we have the following equations:

u1
L,n+1(α) = −m1

L(α)u
1
L,n(α)

u1
R,n+1(α) = −m1

R,n(α)u
1
R,n(α)

u2
L,n+1(β) = −m2

L(β)u
2
L,n(β)

u2
R,n+1(β) = −m2

R,n(β)u
2
R,n(β)

u3
L,n+1(γ) = −m3

L(γ)u
3
L,n(γ)

u3
R,n+1(γ) = −m3

R,n(γ)u
3
R,n(γ)

(54)

The general solutions of the above equations are as follows:

uL,n(α) = (−mL(α))
nu0

uR,n(α) = (−mR(α))
nu0

uL,n(β) = (−mL(β))
nu0

uR,n(β) = (−mR(β))
nu0

uL,n(γ) = (−mL(γ))
nu0

uR,n(γ) = (−mR(γ))
nu0

(55)

4.2.6. The Solution When the Initial Condition u0 and a > 0 Are Both Neutrosophic Numbers

Let [̃a](α, β, γ) =
[
a1

L(α), a1
R(α); a2

L(β), a2
R(β); a3

L(γ), a3
R(γ)

]
and [ũ0](α, β, γ) =[

u1
L,0(α), u1

R,0(α); u2
L,0(β), u2

R,0(β); u3
L,0(γ), u3

R,0(γ)
]

∀ α ,β,γ ∈ [0, 1] and 0 ≤ α+ β+ γ ≤ 3.
In this case, the solutions are given, following from Equation (50):
when n is even: 

u1
L,n(α) =

(
a1

L(α) a1
R(α)

) n
2 u1

L,0(α)

u1
R,n(α) =

(
a1

L(α) a1
R(α)

) n
2 u1

R,0(α)

u2
L,n(β) =

(
a2

L(β) a2
R(β)

) n
2 u2

L,0(β)

u2
R,n(β) =

(
a2

L(β) a2
R(β)

) n
2 u2

R,0(β)

u3
L,n(γ) =

(
a3

L(γ) a3
R(γ)

) n
2 u3

L,0(γ)

u3
R,n(γ) =

(
a3

L(γ) a3
R(γ)

) n
2 u3

R,0(γ)

(56)
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when n is odd: 

u1
L,n(α) =

(
a1

L(α)
) n−1

2
(
a1

R(α)
) n+1

2 u1
R,0(α)

u1
R,n(α) =

(
a1

L(α)
) n+1

2
(
a1

R(α)
) n−1

2 u1
L,0(α)

u2
L,n(β) =

(
a2

L(β)
) n−1

2
(
a2

R(β)
) n+1

2 u2
R,0(β)

u2
R,n(β) =

(
a2

L(β)
) n+1

2
(
a2

R(β)
) n−1

2 u2
L,0(β)

u3
L,n(γ) =

(
a3

L(γ)
) n−1

2
(
a3

R(γ)
) n+1

2 u3
R,0(γ)

u3
R,n(γ) =

(
a3

L(γ)
) n+1

2
(
a3

R(γ)
) n−1

2 u3
L,0(γ)

(57)

4.2.7. The Solution When the Initial Condition u0 and a < 0 Are Both Neutrosophic Numbers

Let a = −m , m > 0. Let [m̃](α, β, γ) =
[
m1

L(α), m1
R(α); m2

L(β), m2
R(β); m3

L(γ), m3
R(γ)

]
and

[ũ0](α, β, γ) =
[
u1

L,0(α), u1
R,0(α); u2

L,0(β), u2
R,0(β); u3

L,0(γ), u3
R,0(γ)

]
∀ α ,β,γ ∈ [0, 1] and 0 ≤ α+ β+ γ ≤ 3.
In a similar way, as seen in Equation (54), we have the following solutions.
The general solutions of the above equations are as follows:

u1
L,n(α) = (−mL(α))

nu1
L,0(α)

u1
R,n(α) = (−mR(α))

nu1
R,0(α)

u2
L,n(β) = (−mL(β))

nu2
L,0(β)

u2
R,n(β) = (−mR(β))

nu2
R,0(β)

u3
L,n(γ) = (−mL(γ))

nu3
L,0(γ)

u3
R,n(γ) = (−mR(γ))

nu3
R,0(γ)

(58)

5. Numerical Example

Example 1. Solve the difference equation:

un+1 = (2, 4, 6; 1, 4, 5; 2, 4, 5)un (59)

with the initial condition ũn=0 = (50, 60, 70; 55, 60, 75; 50, 60, 80)

Solution 1. If the [ũn](α, β, γ) is the (α, β, γ)-cut of a sequence of neutrosophic numbers, then its components
are as follows: 

u1
L,n(α) = (2 + 2α)n(50 + 10α)

u1
R,n(α) = (6− 2α)n(70− 10α)
u2

L,n(β) = (4− 3β)n(60− 5β)
u2

R,n(β) = (4 + β)n(60 + 15β)
u3

L,n(γ) = (4− 2γ)n(60− 10γ)
u3

R,n(γ) = (4 + γ)n(60 + 20γ)

(60)

Remarks 2. We plot the solution for n = 2. From the above Table 2 and Figure 1, we see that u1
L,n(α) is

an increasing function and u1
R,n(α) is a decreasing function, with respect to α. On the other hand, u2

L,n(β)

is a decreasing function and u2
R,n(β) is an increasing function, with respect to β. Additionally, u3

L,n(γ) is a
decreasing function and u3

R,n(γ) is an increasing function, with respect to γ. Therefore, using the concept of
Definition 3.2, we call the solution a strong solution.



Symmetry 2020, 12, 1091 19 of 25

Table 2. Solution for n = 2.

α,β,γ u1
L,n(α) u1

R,n(α) u2
L,n(β) u2

R,n(β) u3
L,n(γ) u3

R,n(γ)

0 200.00 2520.00 960.00 960.00 960.00 960.00
0.1 246.84 2321.16 814.55 1033.81 851.96 1042.22
0.2 299.52 2132.48 682.04 1111.32 751.68 1128.96
0.3 358.28 1953.72 562.18 1192.60 658.92 1220.34
0.4 423.36 1784.64 454.72 1277.76 573.44 1316.48
0.5 495.00 1625.00 359.37 1366.87 495.00 1417.50
0.6 573.44 1474.56 275.88 1460.04 423.36 1523.52
0.7 658.92 1333.08 203.96 1557.34 358.28 1634.66
0.8 751.68 1200.32 143.36 1658.88 299.52 1751.04
0.9 851.96 1076.04 93.79 1764.73 246.84 1872.78
1 960.00 960.00 55.00 1875.00 200.00 2000.00
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Remarks 3. We plotted the solution for n = 5. From the above Table 3 and Figure 2, we see that u1
L,n(α) is

an increasing function and u1
R,n(α) is a decreasing function, with respect to α. On the other hand, u2

L,n(β)

is a decreasing function and u2
R,n(β) is an increasing function, with respect to β. Additionally, u3

L,n(γ) is a
decreasing function and u3

R,n(γ) is an increasing function, with respect to γ. Therefore, using the concept of
Definition 6, we call the solution a strong solution.

Table 3. Solution for n = 5.

α,β,γ u1
L,n(α) u1

R,n(α) u2
L,n(β) u2

R,n(β) u3
L,n(γ) u3

R,n(γ)

0 1600.00 544,320.00 61,440.00 61,440.00 61,440.00 61,440.00
0.1 2628.35 452,886.16 41,259.65 71,251.56 46,748.74 71,830.84
0.2 4140.56 374,497.60 26,806.90 82,335.47 35,070.38 83,642.38
0.3 6297.12 307,640.56 16,748.05 94,820.44 25,898.19 97,025.57
0.4 9293.59 250,934.66 9982.01 108,844.70 18,790.48 112,143.03
0.5 13,365.00 203,125.00 5615.23 124,556.48 13,365.00 129,169.68
0.6 18,790.48 163,074.53 2937.57 142,114.45 9293.59 148,293.34
0.7 25,898.19 129,756.67 1398.99 161,688.22 6297.12 169,715.30
0.8 35,070.38 102,248.05 587.20 183,458.85 4140.56 193,651.01
0.9 46,748.74 79,721.65 206.06 207,619.30 2628.35 220,330.69
1 61,440.00 61,440.00 55.00 234,375.00 1600.00 250,000.00
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Figure 2. Graph for n = 5.

We interpret the solution for fixed α, β,γ = 0.4 and different n in Table 4 and Figure 3.

Table 4. Solution for α, β,γ = 0.4 and different n.

n u1
L,n(α) u1

R,n(α) u2
L,n(β) u2

R,n(β) u3
L,n(γ) u3

R,n(γ)

1 151.20 343.20 162.40 290.40 179.20 299.20
2 381.93 1513.38 410.23 1101.80 510.47 1135.19
3 964.79 6673.49 1036.26 4180.33 1454.14 4307.01
4 2437.12 29,427.69 2617.65 15,860.57 4142.31 16,341.19
5 6156.31 129,765.52 6612.33 60,176.40 11,799.88 61,999.93
6 15,551.16 572,219.06 16,703.10 228,314.58 33,613.43 235,233.20
7 39,283.04 2,523,279.35 42,192.90 866,245.64 95,752.00 892,495.51
8 99,231.00 11,126,750.35 106,581.44 3,286,612.28 272,761.37 3,386,206.59
9 250,662.64 49,064,949.17 269,230.24 12,469,696.48 776,994.32 12,847,566.07

10 633,186.78 216,358,699.65 680,089.51 47,311,126.78 2,213,363.93 48,744,797.29
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Example 2. Solve the difference equation:

un+1 − 4un = 0 (61)

with initial condition ũn=0 = (50, 60, 70; 55, 60, 75; 50, 60, 80)

Solution 2. If [ũn](α, β, γ) is the (α, β, γ)-cut of a sequence of neutrosophic numbers, then it’s components are
as follows:

when n is even: 

u1
L,n(α) = 4n(50 + 10α)

u1
R,n(α) = 4n(70− 10α)
u1

L,n(β) = 4n(60− 5β)
u1

R,n(β) = 4n(60 + 15β)
u1

L,n(γ) = 4n(60− 10γ)
u1

R,n(γ) = 4n(60 + 20γ)

(62)

when n is odd: 

u1
L,n(α) = 4n(70− 10α)

u1
R,n(α) = 4n(50 + 10α)

u1
L,n(β) = 4n(60 + 15β)

u1
R,n(β) = 4n(60− 5β)

u1
L,n(γ) = 4n(60 + 20γ)

u1
R,n(γ) = 4n(60− 10γ)

(63)

As previous examples, we easily interpret the solutions in a different manner.

6. Application of the Method in Actuarial Science

Let us consider that a sum S0 is invested at a compound interest of i per unit amount and per unit
of time and St is the amount at the end of time t. We then get the difference equation associated with
the problem, which is:

St+1 = St + iSt = (1 + i)St (64)

If, for some reason, i may vary, we are interested to find the possible amount after a certain
time interval.

For this problem, let us consider hypothetical data and solve it. Suppose a person has initially
invested St=0 = 10000$ in a firm, where they get about 4% interest (which may be considered a
neutrosophic value).

As per Table 1, if we take the verbal phrase for a triangular neutrosophic number, we then set the
interest rate as follows:

For the truth part: low as 3%, medium as 4%, high as 5%;
For the falsity portion: very low as 2%, medium as 4%, very high as 6%;
For the indeterminacy part: between low and very low 2.5%, medium 4%, between high and very
high 5.5%,

i.e., we can take ĩ = (3, 4, 5; 2, 4, 6; 2.5, 4, 5.5)% per annum rate. We wish to predict the amount of
money after 10 years.
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Therefore, we get the fuzzy difference equation

St+1 = St + iSt =
(
1 + ĩ

)
St (65)

With the initial conditions St=0 = 10000$ and ĩ = (3, 4, 5; 2, 4, 6; 2.5, 4, 5.5)%.

Solution 3. Equation (65) is equivalent to

St+1 = St + iSt = (1 + (0.03, 0.04, 0.05; 0.02, 0.04, 0.06; 0.025, 0.04, 0.055))St

or
St+1 = (1.03, 1.04, 1.05; 1.02, 1.04, 1.06; 1.025, 1.04, 1.055)St (66)

with the initial condition St=0 = 10000$.
The solution of (66) can be written using the concept of (19), as follows:

S1
L,t(α) = 10000(1.03 + 0.01α)t

S1
R,t(α) = 10000(1.05− 0.01α)t

S2
L,t(β) = 10000(1.04− 0.02β)t

S2
R,t(β) = 10000(1.04 + 0.02β)t

S3
L,t(γ) = 10000(1.04− 0.015γ)t

S3
R,t(γ) = 10000(1.04 + 0.015γ)t

(67)

Remarks 4. (1) We plot the solution for t = 10. From the above Table 5 and Figure 4, we see that S1
L,n(α) is

an increasing function and S1
R,n(α) is a decreasing function, with respect to α. On the other hand, S2

L,n(β)

is a decreasing function and S2
R,n(β) is an increasing function, with respect to β. Additionally, S3

L,n(γ) is a
decreasing function and S3

R,n(γ) is an increasing function, with respect to γ. Therefore, using the concept of
Definition 3.2, we call the solution a strong solution. (2) From Table 5, we can see that we find the crisp solution
at α = 1, β,γ = 0 (since, at α = 1, β,γ = 0, the neutrosophic number becomes a crisp number) and for
t = 10 is equal to 14802.4428. Therefore, we can say that after 10 years, the most probable chance to get the
money is 14802.4428$.(3) If we consider α = 0 and β,γ = 1, i.e., in the case that we get the most uncertain
solution interval, we observe that the truthiness of the solution belongs to the interval [13439.1638, 16288.9463],
the falsity belongs to the interval [12189.9442, 17908.4770], and the indeterminacy belongs to the interval
[12800.8454, 17081.4446].

Table 5. Solution for t = 10.

α,β,γ S1
L,t(α) S1

R,t(α) S2
L,t(β) S2

R,t(β) S3
L,t(γ) S3

R,t(γ)

0 13,439.1638 16,288.9463 14,802.4428 14,802.4428 14,802.4428 14,802.4428
0.1 13,570.2126 16,134.4766 14,520.2313 15,089.5813 14,590.3264 15,017.3306
0.2 13,702.4105 15,981.3266 14,242.8714 15,381.7230 14,380.9496 15,235.0219
0.3 13,835.7662 15,829.4861 13,970.2889 15,678.9453 14,174.2808 15,455.5492
0.4 13,970.2889 15,678.9453 13,702.4105 15,981.3266 13,970.2889 15,678.9453
0.5 14,105.9876 15,529.6942 13,439.1638 16,288.9463 13,768.9430 15,905.2433
0.6 14,242.8714 15,381.7230 13,180.4776 16,601.8849 13,570.2126 16,134.4766
0.7 14,380.9496 15,235.0219 12,926.2814 16,920.2240 13,374.0675 16,366.6791
0.8 14,520.2313 15,089.5813 12,676.5060 17,244.0464 13,180.4776 16,601.8849
0.9 14,660.7259 14,945.3915 12,431.0828 17,573.4357 12,989.4133 16,840.1284
1 14,802.4428 14,802.4428 12,189.9442 17,908.4770 12,800.8454 17,081.4446
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7. Conclusions and Future Research Scope

In this paper, we find the solution strategy for solving and analyzing homogeneous linear difference
equations with neutrosophic numbers, i.e., we found the solutions of the homogeneous difference
equations with initial conditions and coefficients, both as neutrosophic numbers. We demonstrate the
solution of different cases using the neutrosophic characterization theorem, which is established in this
paper. The strong and weak solution concepts are also applied to different results.

Moreover, the outcomes of the study are as follows:

(1) The difference type of the homogeneous difference equation is solved in a neutrosophic
environment and the symmetric behavior between them is discussed.

(2) The characterization theorem for the neutrosophic difference equations are established.
(3) The strong and weak solution concept is applied for the neutrosophic difference equation.
(4) Different examples and real-life applications in actuarial science are illustrated for better

understanding of neutrosophic difference equations.

For some limitations, we did not study the different perspectives of related research in the theory
of difference equations with uncertainty in this present work. From this work, anyone can take
motivation and find a new theory and results in the following field, as follows:

(1) The solution of difference equation can be found with different types of uncertainty, such as Type
2 fuzzy, interval valued fuzzy, hesitant fuzzy, rough fuzzy environment.

(2) Finding several methods (analytical and numerical) for solving non-linear first and higher order
difference equations or system of difference equations with uncertainty.

(3) Solving the real-life model associated with the discrete system modeling with uncertain data.

As a final argument, we can surely say that this research is very helpful to the research community
who deals with discrete system modeling with uncertainty.
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