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Abstract: The metric function generalizes the concept of distance between two points and hence
includes the symmetric property. The aim of this article is to introduce a new and proper extension
of Kannan’s fixed point theorem to the case of multivalued maps using Wardowski’s F-contraction.
We show that our result is applicable to a class of mappings where neither the multivalued version of
Kannan’s theorem nor that of Wardowski’s can be applied to determine the existence of fixed points.
Application of our result to the solution of integral equations has been provided. A multivalued
Reich type generalized version of the result is also established.
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1. Introduction and Preliminaries

Kannan [1] generalized the Banach contraction principle in the following manner which assured
that even certain discontinuous functions might possess fixed points.

Theorem 1. [1] Let (=, ζ) be a complete metric space. The self-map Υ : = → = is called a Kannan map if
there is a constant a ∈ [0, 1) such that

ζ(Υθ, Υϑ) ≤ a
2
[ζ(θ, Υθ) + ζ(ϑ, Υϑ)]

for all θ, ϑ ∈ =. Then Υ has a unique fixed point, where the element θ ∈ = satisfying Υθ = θ is called a fixed
point of Υ.

Subrahmanyam [2] showed that Kannan’s theorem could be used to characterize metric
completeness. Reich [3] further generalized Banach’s Contraction Principle and observed that Kannan’s
theorem is a particular case of it with suitable choice of the constants.

Theorem 2. [3] Consider the complete metric space (=, ζ). Suppose the self-map Υ : = → = satisfies
the following:

ζ(Υθ, Υϑ) ≤ lζ(θ, Υθ) + mζ(ϑ, Υϑ) + nζ(θ, ϑ), for all θ, ϑ ∈ =,

where l, m, n ∈ R+ satisfy l + m + n < 1. Then Υ admits a unique fixed point.
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l = m = 0 provides Banach contraction principle while l = m, n = 0 produces Kannan’s theorem.

Wardowski [4] defined the concept of F-contraction as given next.

Definition 1. Let F denote the class of all such functions F : (0,+∞) → (−∞,+∞) satisfying the
following assumptions:

(F1) F is strictly increasing, i.e., for all u, v ∈ (0,+∞) , u < v implies F (u) < F (v) ;
(F2) For each sequence {un}n∈N ⊂ (0,+∞), limn→+∞ un = 0 if and only if limn→+∞ F (un) = −∞;
(F3) There exists t ∈ (0, 1) such that limu→0+ utF (u) = 0.
If (=, ζ) is a metric space, then a mapping Υ : = → = is said to be an F−contraction if there exist τ > 0,

F ∈ F , such that for all θ, ϑ ∈ =,

ζ(Υθ, Υϑ) > 0⇒ τ + F(ζ(Υθ, Υϑ)) ≤ F(ζ(θ, ϑ)).

Nadler [5] started the research on fixed points for multivalued maps with the help of Hausdorff
concept, i.e., by considering the distance between two arbitrary sets in the following manner.

Let (=, ζ) be a complete metric space (in short, MS) and let CB(=) denote the class of all nonempty
closed and bounded subsets of the nonempty set =. Then for A,B ∈ CB(=), define the map H :
CB(=)× CB(=)→ [0, ∞) by

H(A,B) = max{sup
ξ∈B

∆(ξ,A), sup
δ∈A

∆(δ,B)},

where ∆(δ,B) = infξ∈B ζ(δ, ξ). (CB(=),H) is called the Pompeiu-Hausdorff metric space generated
by the metric ζ.

Definition 2. [5] υ ∈ = is said to be a fixed point of the multivalued map Γ : = → CB(=) if υ ∈ Γυ. The set
of all fixed points of Γ is denoted by Fix(Γ).

Remark 1. 1. In the MS (CB(=),H), θ ∈ = is a fixed point of Υ if and only if ∆(θ, Υθ) = 0.
2. The metric function ζ : =×= → [0, ∞) is continuous in the sense that if {θn}, {ϑn} are two sequences

in = with (θn, ϑn) → (θ, ϑ) for some θ, ϑ ∈ =, as n → ∞, then ζ(θn, ϑn) → ζ(θ, ϑ) as n → ∞.
Similarly, the function ∆ is continuous because if θn → θ as n → ∞, then ∆(θn,A) → ∆(θ,A) as
n→ ∞ for any A ⊆ =.

We list the following results to be used in the sequel.

Lemma 1. [6,7] Let (=, ζ) be a MS and A,B ∈ CB(=). Then

1. ∆(µ,B) ≤ ζ(µ, γ) if γ ∈ B and µ ∈ =;
2. ∆(µ,B) ≤ H(A,B) if µ ∈ A.

Lemma 2. [5] Suppose that A,B ∈ CB(=) and υ ∈ A. If p > 0, then there exists ξ ∈ A satisfying

ζ(υ, ξ) ≤ H(A,B) + p.

But there may not exist a point ξ ∈ B satisfying

ζ(υ, ξ) ≤ H(A,B).

However, if B is compact, then a point ξ exists satisfying ζ(υ, ξ) ≤ H(A,B).

Reich provided a multivalued version of his famous result as follows.
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Definition 3. [8] A multivalued map Γ : = → Cl(=) (where Cl(=) is the family of nonempty closed subsets
of =) is called a Reich-type multivalued (l, m, n)-contraction if there are constants l, m, n ∈ R+ satisfying
l + m + n < 1 such that

H(Γθ, Γϑ) ≤ l∆(θ, Γθ) + m∆(ϑ, Γϑ) + nζ(θ, ϑ),

for each θ, ϑ ∈ =.

Remark 2. It was proved in [8] that a Reich-type multivalued (l, m, n)-contraction in a complete MS
possesses a fixed point. When n = 0 and l = m, the above definition reduces to the multivalued version
of Kannan-type contraction.

Multivalued version of Wardowski’s theorem was given by Altun et al. [9] as follows.

Definition 4. [9] Let (=, ζ) be a MS. A multivalued map Γ : = → CB(=) is called a multivalued F-contraction
(MVFC, in short) if there is a constant τ > 0 and F ∈ F such that

τ + F(H(Γµ, Γν)) ≤ F(η(µ, ν)) (1)

for all µ, ν ∈ = with Γµ 6= Γν.

Remark 3. In a complete MS, an MVFC possesses a fixed point.

Recently, Kannan’s and Reich’s fixed point theorems have been studied and extended in several
directions. Particularly we refer to the research of Aydi et al. [10,11], Bojor [12,13], Choudhury and
Kundu [14], Debnath and de La Sen [15,16], Debnath et al. [17,18], Gornicki [19], Karapinar et al. [20],
Mohammadi et al. [21]. Some important work on the application of multivalued F-contractions were
recently carried out by Sgroi and Vetro [22] and Ali and Kamran [23].

In this article, first we introduce a proper generalization of Kannan’s theorem for multivalued
maps via F-contraction and further introduce a Reich-type generalization of the same. We present an
application of our multivalued Kannan-type F-contraction to the solution of integral equations.

2. Multivalued Kannan Type F-contraction

In this section, we provide a proper extension of Kannan’s theorem for multivalued maps using
Wardowski’s technique.

Definition 5. Let (=, ζ) be a MS. The map Γ : = → CB(=) is called a generalized multivalued Kannan-type
F-contraction (GMKFC, in short) if there are constants a, b ∈ (0, 1) satisfying a + b < 1, τ > 0 and F ∈ F
such that

τ + F(H(Γθ, Γϑ)) ≤ aF(∆(θ, Γθ)) + bF(∆(ϑ, Γϑ)) (2)

for all θ, ϑ ∈ = \ Fix(Γ) with Γθ 6= Γϑ, where Fix(Γ) is the collection of all fixed points of Γ.

Theorem 3. Let (=, ζ) be a complete MS. A GMKFC, Γ : = → CB(=) such that Γθ is compact for each θ ∈ =
possesses a fixed point.

Proof. Fix θ0 ∈ = and choose θ1 ∈ Γθ0. Since Γθ0 is compact, by Lemma 2, we can select θ2 ∈ Γθ1 such
that ζ(θ2, θ1) ≤ H(Γθ1, Γθ0). Similarly we may consider θ3 ∈ Γθ2 such that ζ(θ3, θ2) ≤ H(Γθ2, Γθ1) and
so on. Continuing this way we generate a sequence {θn} satisfying θn+1 ∈ Γθn such that ζ(θn+1, θn) ≤
H(Γθn, Γθn−1).

Assume that θn /∈ Γθn for all n ≥ 0, because otherwise we obtain a fixed point. Thus ∆(θn, Γθn) >

0, for all n ≥ 0.
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Taking θ = θn and ϑ = ϑn−1 in (2), we have

τ + F(ζ(θn+1, θn)) ≤ τ + F(H(Γθn, Γθn−1))

≤ aF(∆(θn, Γθn)) + bF(∆(θn−1, Γθn−1))

< aF(ζ(θn, θn+1)) + (1− a)F(ζ(θn−1, θn)), (since b < 1− a). (3)

Let ζ(θn, θn−1) ≤ ζ(θn+1, θn). Then from (3), we have

τ + F(ζ(θn+1, θn)) ≤ τ + F(H(Γθn, Γθn−1)))

< aF(ζ(θn, θn+1)) + (1− a)F(ζ(θn+1, θn))

= F(ζ(θn+1, θn)),

which is a contradiction.
Therefore, η(θn+1, θn) < ζ(θn, θn−1) for all n ≥ 1. Thus from (3), we have

τ + F(ζ(θn+1, θn) < F(ζ(θn, θn−1).

Consequently, we obtain

F(ζ(θn, θn+1)) < F(zη(θn−1, θn))− τ < . . . < F(ζ(θ0, θ1))− nτ, (4)

for all n ≥ 1.
Taking limit in (4) as n→ ∞, we have that

lim
n→∞

F(ζ(θn, θn+1)) = −∞. (5)

Hence by condition (F2), we have limn→∞ ζ(θn, θn+1) = 0.
Let cn = ζ(θn, θn+1). So, limn→∞ cn = 0. Thus, for any n ∈ N, we have

ck
n(F(cn)− F(c0)) ≤ −ck

nnτ < 0. (6)

Taking limit in (6) as n→ ∞ and using (F3), we have limn→∞ ck
nn = 0. Thus there exists n0 ∈ N

such that ck
nn ≤ 1 for all n ≥ n0, i.e., cn ≤ 1

n
1
k

for all n ≥ n0.

Let m, n ∈ N with m > n ≥ n0. Then

ζ(θn, θm) ≤
m−1

∑
i=n

ζ(θi, θi+1) =
m−1

∑
i=n

ci

≤
∞

∑
i=n

ci ≤
∞

∑
i=n

1

i
1
k

.

Since the series ∑∞
i=n

1

i
1
k

is convergent for k ∈ (0, 1), we have ζ(θn, θm)→ 0 as m, n→ ∞. Hence

{θn} is Cauchy and (=, ζ) being complete, we have θn → θ for some θ ∈ =.
We claim that θ is a fixed point of Γ. We consider the two cases.

Case I: There exists a subsequence {θnk} of {θn} such that Γθnk = Γθ for all k ∈ N.
Then ∆(θ, Γθ) = limk→∞ ∆(θnk+1 , Γθ) ≤ limk→∞H(Γθnk , Γθ) = 0.
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Case II: There exists n1 ∈ N such that Γθn 6= Γθ for all n ≥ n1. Then

τ + F(∆(θn+1, Γθ)) = τ + F(H(Γθn, Γθ))

≤ aF(∆(θn, Γθn)) + bF(∆(θ, Γθ))

= aF(ζ(θn, θn+1)) + bF(∆(θ, Γθ)). (7)

Taking limit in (7) as n→ ∞, we have F(∆(θn+1, Γθ))→ −∞. Hence limn→∞ ∆(θn+1, Γθ) = 0. Thus
∆(θ, Γθ) = 0.

Remark 4. In [21], Mohammadi et al. studied interpolative multivalued Ćirić-Reich-Rus type F-contraction
which is an extension of Reich’s [3] theorem. It is to be noted that our new result, i.e, Theorem 3 is not a
particular case of Theorem 2.7 in [21]. Because in [21], the condition α = 0 is not permissible.

Next, we provide an example which shows that Theorem 3 can be used to prove existence of fixed
point results for such mappings where neither Kannan’s nor Wardowski’s theorem is applicable.

Example 1. Consider Λ = {0, 1, 2} with the metric

ζ(θ, ϑ) =


0, if θ = ϑ,
5
4 , if (θ, ϑ) = (1, 2) or (θ, ϑ) = (2, 1),
1, otherwise.

Clearly (Λ, ζ) is a complete MS. Define the multivalued map Γ : Λ→ CB(Λ) by

Γθ =

{
{0}, if θ = 0, 1
{1, 2}, if θ = 2.

Let θ = 0, ϑ = 2. Then F(H(Γθ, Γϑ)) = F(H({0}, {1, 2})) = F(1) and F(ζ(θ, ϑ)) = F(ζ(0, 2)) =
F(1). Thus in this case we can not find any τ > 0 such that τ + F(H(Γθ, Γϑ)) ≤ F(ζ(θ, ϑ)), i.e., the
multivalued version of Wardowski’s theorem (see Remark 3) is not applicable.

Further, with θ = 0, ϑ = 2, if the condition H(Γθ, Γϑ) ≤ λ{∆(θ, Γθ) + ∆(ϑ, Γϑ)} is to be satisfied,
then we should have H({0}, {1, 2}) ≤ λ{∆(0, Γ0) + ∆(2, Γ2)}, i.e., 1 ≤ λ{∆(0, {0}) + ∆(2, {1, 2})}, i.e.,
1 ≤ λ · 0 = 0, which is not satisfied by any λ > 0. Hence multivalued Kannan’s theorem (see, Remark 2) is also
not applicable either.

Finally, if we assume that θ, ϑ ∈ Λ \ Fix(Γ) with Γθ 6= Γϑ, then it is easy to see that the condition
F(H(Γθ, Γϑ)) ≤ aF(∆(θ, Γθ)) + bF(∆(ϑ, Γϑ)) is trivially satisfied for any a, b ∈ (0, 1) with a + b < 1,
τ > 0 and F ∈ F . We observe that Fix(Γ) = {0, 2}.

We present another example to illustrate Theorem 3 as follows.

Example 2. Consider the set = = [0, ∞) endowed with the usual metric ζ(θ, ϑ) = |θ − ϑ| for all θ, ϑ ∈ =.
Define the multivalued map Γ : = → CB(=) by

Γθ =

{
{0}, if θ ∈ [0, 5)
{θ, θ + 1}, if θ ≥ 5.

Let θ, ϑ /∈ Fix(Γ), then clearly θ, ϑ ∈ (0, 5). In that case, H(Γθ, Γϑ) = H({0}, {0}) = 0. Thus, we
observe that Γ is a GMKFC with τ = ln 2, F(t) = t, t > 0 and any a, b ∈ (0, 1) with a + b < 1. Therefore, all
conditions of Theorem 3 are satisfied and Γ has a fixed point. In fact, Γ has infinitely many fixed points.
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3. Multivalued Reich Type F-Contraction

Here we introduce generalized multivalued Reich-type F-contraction (GMRFC, in short) by
increasing the degrees of freedom of the constants in GMKFC. We show that GMKFC introduced in
the previous section is a particular case of GMRFC for suitable choice of the constants.

Definition 6. Let (=, ζ) be a complete MS. A map Γ : = → CB(=) is said to be a GMRFC if there exist
a, b, c ∈ (0, 1) with a + b + c < 1, τ > 0 and F ∈ F such that

τ + F(H(Γθ, Γϑ)) ≤ aF(∆(θ, Γθ)) + bF(∆(ϑ, Γϑ)) + cF(ζ(θ, ϑ)) (8)

for all θ, ϑ ∈ = \ Fix(Γ) with Γθ 6= Γϑ.

Theorem 4. Let (=, ζ) be a complete MS. A GMRFC, Γ : = → = such that Γθ is compact for each θ ∈ =
admits a fixed point.

Proof. Similar to the proof of Theorem 3, we construct a sequence {θn}.
Putting θ = θn and ϑ = θn−1 in (8), we have

τ + F(ζ(θn+1, θn)) ≤ τ + F(H(Γθn, Γθn−1))

≤ aF(∆(θn, Γθn)) + bF(∆(θn−1, Γθn−1)) + cF(ζ(θn, θn−1))

≤ aF(ζ(θn, θn+1)) + bF(ζ(θn−1, θn)) + cF(ζ(θn, θn−1))

< aF(ζ(θn, θn+1)) + bF(ζ(θn−1, θn)) + (1− a− b)F(ζ(θn, θn−1)), (9)

(since c < 1− a− b).

Rest of the proof may be obtained in a similar manner as the proof of Theorem 3 and
hence omitted.

Remark 5. 1. In Theorem 4, if we take c = 0, then Theorem 3 is obtained. Thus GMKFC introduced in this
paper is a particular case of GMRFC when c = 0.

2. Theorem 4 is more general than Theorem 2.7 in [21] in terms of relaxation of degrees of freedom of the
constants involved.

4. An Application to Integral Equations

In this section we present an application of Theorem 3 to the solution of a particular Volterra type
integral equation.

Let C([0, λ],R) be the space of all real valued continuous functions defined on [0, λ]. For any
ϕ ∈ C([0, λ],R) and fixed arbitrary τ > 0, define ‖ϕ‖ = supr∈[0,λ]{

∣∣ϕ(r)∣∣e−τr}. It is easy to see that
the norm ‖ · ‖ is equivalent to the supremum norm. The metric ζ on C([0, λ],R) is defined by

ζ(ϕ, ψ) = sup
r∈[0,λ]

{
∣∣ϕ(r)− ψ(r)

∣∣e−τr}

for all ϕ, ψ ∈ C([0, λ],R).
Consider the following integral equation

ϕ(r) = q(r) +
∫ r

0
K(u, v, ϕ(v))dv, r ∈ [0, λ], (10)

where
(A) q : [0, λ]→ R and K : [0, λ]× [0, λ]×R→ R are continuous;
(B) K(u, v, ·) : R→ R is increasing for all u, v ∈ [0, λ];
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(C) there is ϕ0 ∈ C([0, λ],R) such that for all r ∈ [0, λ], the following is true:

ϕ0(r) ≤ q(r) +
∫ r

0
K(u, v, ϕ0(v))dv.

Theorem 5. Suppose that conditions (A)− (C) hold. Further, suppose there exist τ ∈ [1, ∞) and a, b ∈ (0, 1)
with a + b < 1 satisfying∣∣∣K(u, v, ϕ)−K(u, v, ψ)

∣∣∣
≤ τe−τ

(∥∥∥∥ϕ−
∫ r

0
K(u, v, ϕ)dv

∥∥∥∥)a

·
(∥∥∥∥ψ−

∫ r

0
K(u, v, ψ)dv

∥∥∥∥)b

· eτv(1−(a+b)), (11)

for all u, v ∈ [0, λ] and ϕ, ψ ∈ R. Then the integral Equation (10) has a solution.

Proof. Define a map Γ : C([0, λ],R)→ C([0, λ],R) by

Γ(ϕ)(r) = q(r) +
∫ r

0
K(u, v, ϕ(v))dv, r ∈ [0, λ].

For each r ∈ [0, λ], we have∣∣∣Γ(ϕ)(r)− Γ(ψ)(r)
∣∣∣ ≤ ∫ r

0

∣∣∣K(u, v, ϕ(v))− K(u, v, ψ(v))
∣∣∣dv

≤
∫ r

0
τe−τ

∣∣∣ϕ(v)− Γ(ϕ)(v)
∣∣∣a · ∣∣∣ψ(v)− Γ(ψ)(v)

∣∣∣beτv(1−(a+b))dv

≤
∫ r

0
eτvτe−τ

∣∣∣ϕ(v)− Γ(ϕ)(v)
∣∣∣ae−τva ·

∣∣∣ψ(v)− Γ(ψ)(v)
∣∣∣be−τvbdv

≤ τe−τ‖ϕ− Γϕ‖a · ‖ψ− Γψ‖b
∫ r

0
eτvdv

≤ τe−τ‖ϕ− Γϕ‖a · ‖ψ− Γψ‖b · eτr

τ

≤ e−τ‖ϕ− Γϕ‖a · ‖ψ− Γψ‖b · eτr

=⇒
∣∣∣Γ(ϕ)(r)− Γ(ψ)(r)

∣∣∣e−τr ≤ e−τ‖ϕ− Γϕ‖a · ‖ψ− Γψ‖b

=⇒ ζ(Γϕ, Γψ) ≤ e−τ(ζ(ϕ, Γϕ))a · (ζ(ψ, Γψ))b

=⇒ ln[ζ(Γϕ, Γψ)] ≤ ln[e−τ(ζ(ϕ, Γϕ))a · (ζ(ψ, Γψ))b]. (12)

After some routine calculation we have that

τ + ln[ζ(Γϕ, Γψ)] ≤ a ln[ζ(ϕ, Γϕ)] + b ln[ζ(ψ, Γψ)]. (13)

Taking F(δ) = ln(δ), δ > 0, we have form (13) that

τ + F(ζ(Γϕ, Γψ)) ≤ aF(ζ(ϕ, Γϕ)) + bF(ζ(ψ, Γψ)),

for all ϕ, ψ ∈ C([0, λ],R) \ Fix(Γ) with Γϕ 6= ψh.
Hence Theorem 3 is applicable to Γ and we conclude that Γ has a fixed point. Therefore, the

integral Equation (10) has a solution.

5. Conclusions

We have introduced new and proper extensions of multivalued Kannan type F-contraction
and found its application to the solution of integral equations. It has been shown that our result is
applicable to certain class of mappings where neither the multivalued version of Kannnan nor that
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of Wardowski can be used. Finding metric completeness characterization in terms of GMKFC is a
suggested future work.
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b-metric spaces and rectangular b-metric spaces. Math. Vesnik 2019, in Press.
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