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Abstract: We provide a comparison between two schemes for solving equations on Banach space.
A comparison between same convergence order schemes has been given using numerical examples
which can go in favor of either scheme. However, we do not know in advance and under the same
set of conditions which scheme has the largest ball of convergence, tighter error bounds or best
information on the location of the solution. We present a technique that allows us to achieve this
objective. Numerical examples are also given to further justify the theoretical results. Our technique
can be used to compare other schemes of the same convergence order.
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1. Introduction

In this study we compare two third convergence order schemes for solving nonlinear equation

G(x) = 0, (1)

where G : D ⊂ B1 → B2 be a continuously differentiable nonlinear operator and D stands for an
open non empty subset of B1. Here B1 and B2 denote Banach spaces. It is desirable to obtain a unique
solution p of (1). However, this can rarely be achieved. So researchers develop iterative schemes which
converge to p. Some popular schemes are

Chebyshev-Type Scheme:

yn = xn + αG′(xn)
−1G(xn)

xn+1 = xn −
1

2α
G′(xn)

−1 AnG′(xn)
−1G(xn), (2)

Simplified Chebyshev-Type Scheme:

yn = xn − G′(xn)
−1G(xn)

xn+1 = yn +
1
2

G′(xn)
−1(G′(yn)− G′(xn))G′(xn)

−1G(xn), (3)

Two-Step-Newton-Type Scheme:

yn = xn − G′(xn)
−1G(xn)

xn+1 = yn − G′(xn)
−1G(yn), (4)
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where An = (2α− 1)G′(xn) + G′(yn), α ∈ R− {0} or α ∈ C− {0}. Notice that (2) specializes to (3) for
α = −1.

The analysis of these schemes uses assumptions on the fourth order derivatives of G which are
not on these schemes. The assumptions on fourth order derivatives reduce the applicability of these
schemes. For example: Let B1 = B2 = R, D = [− 1

2 , 3
2 ]. Define G on D by

G(t) =

{
t3 log t2 + t5 − t4, t 6= 0

0, t = 0.

Then, we get
G′(t) = 3t2 log t2 + 5t4 − 4t3 + 2t2,

G′′(t) = 6t log t2 + 20t3 − 12t2 + 10t,

G′′′(t) = 6 log t2 + 60t2 − 24t + 22,

where the solution p = 1. Obviously G′′′(t) is not bounded on D. Hence, the convergence of the above
schemes are not guaranteed by the earlier studies. In this study we use only assumptions on the first
derivative to prove our results. The advantages of our approach include: larger radius needed on
scheme of convergence (i.e., more initial points), tighter upper bounds on ‖xk − p‖( i.e., fewer iterates
to achieve a desired error tolerance). It is worth noting that these advantages are obtained without any
additional conditions [1–35].

So far a comparison is given between iterative schemes of the same order using numerical
examples [1–35]. However, not a direct comparison is given theoretically, so we know in advance
under the same set of convergence conditions which scheme has the largest radius, tighter error bounds
and better results on the uniqueness of the solution. The novelty of our paper is that, we introduce a
technique under we can answer that scheme (4) is the best when compared to scheme (3). The same
technique can be used to draw conclusions on other same order schemes.

Notice also that scheme (3) requires two derivative evaluations, one inverse and one operator
evaluation. However, scheme (4) is less expensive requiring two function evaluations and one inverse.
Both schemes have been studied in the literature under assumptions reaching the fourth derivative
which does not appear in these schemes. However, we use only conditions on the first derivative that
does appear on the schemes.

Throughout this paper U(x, r) stand for open ball with center at x and radius r > 0 and Ū(x, r)
denote the closure of U(x, r).

Rest of the paper is structured as follows. The convergence analysis of schemes are given in
Section 2 and examples is given in Section 3.

2. Ball Convergence

We present the ball convergence scheme (2), scheme (3) and scheme (4), respectively in this section.
To achieve this introduce certain functions and parameters. Suppose that there exists a continuous

and increasing function defined on the interval [0, ∞) with values in itself such that equation

ω0(t)− 1 = 0, (5)

has a real positive zero denoted as R0. Suppose that there exists functions ω and ω1 defined on [0, R0)

with values in [0, ∞). Define functions g1
α and h1

α on [0, R0) as

g1
α(s) =

∫ 1
0 ω((1− τ)s)dτ + |1 + α|

∫ 1
0 ω1(τs)dτ

1−ω0(s)
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and
h1

α(s) = g1
α(s)− 1.

Suppose that equation
h1

α(s) = 0 (6)

has a least zero denoted by R1
α in (0, R0). Moreover, define functions g2

α, h2
α on [0, R0) as

g2
α(s) = g1

α(s) +
(ω0(s) + ω0(g1

α(s)s))
∫ 1

0 ω1(τs)dτ

2|α|(1−ω0(s))2

and
h2

α(s) = g2
α(s)− 1.

Suppose equation
h2

α(s) = 0 (7)

has a least zero denoted by R2
α in (0, R0). Define a radius of convergence Rα as

Rα = min{R1
α, R2

α}. (8)

It follows that
0 ≤ ω0(s) < 1, (9)

0 ≤ gi
α(s) < 1, i = 1, 2 (10)

for all s ∈ [0, Rα). Set en = ‖xn − p‖. We introduce a set of conditions (A) under which the ball
convergence for all schemes will be obtained.

(A1) G : D −→ B2 is differentiable; there exists a simple zero p of equation G(x) = 0.
(A2) There exists a continuous and increasing function ω0 defined on [0, ∞) with values in [0, ∞)

such that for all x ∈ D

‖G′(p)−1(G′(x)− G′(p))‖ ≤ ω0(‖x− p‖),

provided R0 exists and is defined in (5). Set D0 = D ∩U(p, R0).
(A3) There exist continuous and increasing functions ω and ω1 on the interval [0, R0) with values

in [0, ∞) such that for all x, y ∈ D0

‖G′(p)−1(G′(y)− G′(x))‖ ≤ ω(‖y− x‖)

and
‖G′(p)−1G′(x)‖ ≤ ω1(‖x− p‖).

(A4) Ū(p, Rα) ⊂ D, and R1
α, R2

α exist and are given by (6) and (7), respectively, where Rα is defined
by (8).

(A5) There exists Sα ≥ Rα such that ∫ 1

0
ω0(τSα)dτ < 1.

Set D1 = D ∩U(p, Sα).

Next, the main ball convergence result for scheme (2) is displayed.

Theorem 1. Under the conditions (A) choose x0 ∈ U(p, Rα)− {p}. Then, the following assertions hold true

{xn} ⊂ U(p, Rα), lim
n−→∞

xn = p, (11)
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‖yn − p‖ ≤ g1
α(en)en ≤ en < Rα, (12)

and
‖xn+1 − p‖ ≤ g2

α(en)en ≤ en, (13)

where functions g1
α, g2

α were introduced earlier and Rα is defined in (8). The vector p is the only zero of Equation (1)
in the set D1 introduced in condition (A5).

Proof. It is based on induction which assists us to show (12) and (13). If z ∈ U(p, Rα)− {p}, we can
use (A1), (A2), (8) and (9) to see that

‖G′(p)−1(G′(z)− G′(p))‖ ≤ ω0(‖z− p‖) < ω0(Rα) ≤ 1,

so by the perturbation Banach result for invertible operators [30] G′(z)−1 ∈ L(B2, B1) with

‖G′(z)−1G′(p)‖ ≤ 1
1−ω0(‖z− p‖) , (14)

so y0 and x1 exist by scheme (2) for n = 0. We use the identity

G(z) = G(z)− G(p) =
∫ 1

0
G′(p + τ(z− p))dτ(z− p)

and the second condition in (A3) to obtain

‖G′(p)−1G′(z)‖ ≤
∫ 1

0
ω1(τ‖z− p‖)dτ‖z− p‖. (15)

Next, in view of (8), (10), (10) (for i = 1), (A1), (A3), (14) (for z = x0), scheme (2) and (16) the
following are obtained in sequence

‖y0 − p‖ = ‖x0 − p− G′(x0)
−1G(x0) + (1 + α)G′(x0)

−1G(x0)‖
= ‖(G′(x0)

−1G′(p))(G′(p)−1
∫ 1

0 (G
′(p + τ(x0 − p))− G′(x0))(x0 − p))dτ

+(1 + α)G′(x0)
−1G(x0)‖

≤
∫ 1

0 ω((1−τ)e0)dτe0+|1+α|
∫ 1

0 ω1(τe0)dτe0
1−ω0e0)

= g1
α(e0)e0 ≤ e0 < Rα,

(16)

leading to y0 ∈ U(p, Rα) and the verification of (12) for n = 0. Moreover, as in (16) the following are
obtained in sequence

‖x1 − p‖ ≤ ‖(x0 − p− G′(x0)
−1G(x0))

+(I − 1
2α G′(x0)

−1 A0)G′(x0)
−1G(x0)‖

≤ ‖(y0 − p + 1
2α (G

′(x0)
−1G′(p))(G′(p)−1(G′(x0)− G′(y0))

×(G′(x0)
−1G′(p))(G′(p)−1G(x0))‖

≤ [g1
α(e0) +

(ω0(e0)+ω0(‖y0−p‖))
∫ 1

0 ω1(τe0)dτ

2|α|(1−ω0(e0))2 ]e0

≤ g2
α(e0)e0 ≤ e0,

(17)

leading to x1 ∈ U(p, Rα) and the verification of (13). Thus, estimates (12) and (13) hold true for n = 0.
Suppose they hold true for all j ≤ n− 1. Then, by exchanging x0, y0, x1 by xj, yj, xj+1 in the preceding
calculations, we terminate the induction for (12) and (13). Next, by the estimate

‖xn+1 − p‖ ≤ be0 < Rα, (18)
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where b = g2
α(e0) ∈ [0, 1), we deduce limn−→∞ xn = p and xn+1 ∈ U(p, Rα). Further, let v ∈ D1 with

G(v) = 0 and set E =
∫ 1

0 G′(v + τ(p− v))dτ. By (A1) and (A5) we get

‖G′(p)−1(E− G′(p))‖ ≤
∫ 1

0
ω0((1− τ)‖p− v‖)dτ ≤

∫ 1

0
ω0(τSα)dτ < 1,

so the invertibility is implied leading together with the estimate 0 = G(p)− G(v) = E(p− v) to the
conclusion that p = v.

Remark 1.

1. In view of (A3) and the estimate

‖G′(p)−1G′(x)‖ = ‖G′(p)−1(G′(x)− G′(p)) + I‖
≤ 1 + ‖G′(p)−1(G′(x)− G′(p))‖ ≤ 1 + ω0(‖x− p‖)

condition (C5) can be dropped and ω1 can be replaced by

ω1(t) = 1 + ω0(t) or ω1(t) = 1 + ω0(R0).

2. The results obtained here can be used for operators F satisfying autonomous differential equations [3] of
the form

G′(x) = P(G(x))

where P is a continuous operator. Then, since G′(p) = P(G(p)) = P(0), we can apply the results
without actually knowing p. For example, let G(x) = ex − 1. Then, we can choose: P(x) = x + 1.

3. If ω0 and ω1 are constant functions, say ω0(t) = L0t, ω(t) = Lt, for some L0 > 0 and L > 0, then the
radius r1 = 2

2L0+L was shown by us to be the convergence radius of Newton’s method [5,6]

xn+1 = xn − G′(xn)
−1G(xn) for each n = 0, 1, 2, · · · (19)

under the conditions (C1)–(C4). It follows from the definition of r that the convergence radius Rα of the
method (2) cannot be larger than the convergence radius r1 of the second order Newton’s method (19).
As already noted in [5,6] r1 is at least as large as the convergence ball given by Rheinboldt [14]

rR =
2

3L1
, (20)

where L1 is the Lipschitz constant on D. In particular, for L0 < L1 we have that

rR < r

and
rR
r1
→ 1

3
as

L0

L1
→ 0.

That is our convergence ball r1 is at most three times larger than Rheinboldt’s. The same value for rR was
given by Traub [15].

4. It is worth noticing that method (2) is not changing when we use simpler methods the conditions of
Theorem 1 instead of the stronger conditions used in [10]. Moreover, we can compute the computational
order of convergence (COC) defined by

ξ = ln
(
‖xn+1 − p‖
‖xn − p‖

)
/ ln

(
‖xn − p‖
‖xn−1 − p‖

)
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or the approximate computational order of convergence

ξ1 = ln
(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence in a way that avoids the bounds involving estimates
using estimates higher than the first Fréchet derivative of operator F.

5. Method (2) can be generalized as

yn = G(xn) (21)

xn+1 = H(yn), (22)

where G : D −→ X, H : X −→ X are continuous operators

(i) For all x ∈ U(x∗, R), we have y = G(x) ∈ U(x∗, R) for R > 0, x∗ ∈ D such that U(x∗, R) ⊂ D
and G(x∗) = 0;

(ii) ‖H(y)− x∗‖ ≤ d‖x− x∗‖ for some d ∈ [0, 1).

Then, it follows limn−→∞ xn = x∗ provided that x0 ∈ U(x∗, R). Indeed, we have

‖xn+1 − x∗‖ = ‖H(yn)− x∗‖ ≤ d‖xn − x∗‖ ≤ dn+1‖x0 − x∗‖ < R

so xn+1 ∈ U(x∗, R) and limn−→∞ xn = x∗. Notice that if G(x) = x− A(x)−1G(x), H(y) =
y− B(x)−1G(y), then (21) specializes to scheme (2).

6. The ball convergence result for scheme (3) clearly is obtained from Theorem 1 for α = −1.
7. In our earlier works with other schemes we assumed ω0(0) = ω1(0) = 0 to show the existence of R1

α and
R2

α using the intermediate value theorem. Bur these initial conditions on ω0 and ω1. This is not necessary
with our approach. This way we further expand the applicability of scheme (2) and (3). The same is true
for scheme (4) whose ball convergence follows.

Theorem 2. Under the conditions of Theorem 1, the conclusions of it hold for scheme (3) for α = −1.

To deal with scheme (4) our real functions and parameters are g1
−1, h1

−1, R1
−1. Moreover,

we suppose that equation
ω0(g1

−1(s)s)− 1 = 0

has a least solution in (0, R0) denoted by R1
0 and set R̄0 = min{R0, R1

0}. Define functions ḡ2 and h̄2 on
(0, R̄0) as

ḡ2(s) = [1 +
ω0(s) + ω0(g1

−1(s)s))
∫ 1

0 ω1(τg1
−1(s)s)dτ

(1−ω0(s))(1−ω0(g1
−1(s)s))

]g1
−1(s)

and
h̄2(s) = ḡ2(s)− 1.

Suppose equation h̄2(s) = 0 has a least positive zero in (0, R̄0) denoted by R̄2. Define a radius of
convergence R̄ by

R̄ = min{R1
−1, R̄2}. (23)

We also use

xn+1 − p = yn − p + (F′(yn)
−1 − F′(xn)

−1)F(yn)

= yn − p + F′(yn)
−1(F′(xn)− F′(yn))F′(xn)

−1F(yn)
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instead of (17) to obtain

‖xn+1 − p‖ ≤ [1 +
ω0(en) + ω0(‖yn − p‖)

∫ 1
0 ω1(τ‖yn − p‖)dτ

(1−ω0(en))(1−ω0(‖yn − p‖)) ]‖yn − p‖

≤ ḡ2(en)en ≤ en < R̄. (24)

Hence, we arrive at:

Theorem 3. Under the conditions (A) but with R̄, R∗, b̄ = ḡ2(e0), replacing R, Sα, b, respectively, the following
hold for method (4), {xn} ∈ U(p, R̄), limn−→∞ xn = p,

‖yn − p‖ ≤ g1
−1(en)en ≤ en < R̄ (25)

and
‖xn+1 − p‖ ≤ ḡ2(en)en ≤ en. (26)

Moreover, p is the unique solution of Equation (1) in the set D1.

Remark 2. We have
ḡ(s) ≤ g1

−1(s) (27)

and
h̄2(s) ≤ h−1(s) (28)

for all s ∈ (0, R0), so
R ≤ R̄ (29)

and
b̄ ≤ b. (30)

Hence, the radius R̄ of scheme (4) is at least as large as that of scheme (3) whereas the ratio of convergence
of scheme (4) is at least as small as that of scheme (3) (see also the numerical examples).

3. Numerical Examples

We compute the radii provided that α = −1.

Example 1. Let us consider a system of differential equations governing the motion of an object and given by

F′1(x) = ex, F′2(y) = (e− 1)y + 1, F′3(z) = 1

with initial conditions F1(0) = F2(0) = F3(0) = 0. Let H = (F1, F2, F3). Let B1 = B2 = R3, D =

Ū(0, 1), p = (0, 0, 0)T . Define function F on D for w = (x, y, z)T by

F(w) = (ex − 1,
e− 1

2
y2 + y, z)T .

We need the Fréchet-derivative defined by

F′(w) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 ,

to compute function ω0 (see (A2)) and functions ω, ω1 (see (A3)). Notice that using the ((A)) conditions,
we get ω0(t) = (e− 1)t, ω(t) = e

1
e−1 t, ω1(t) = e

1
e−1 . The radii are given in Table 1.
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Table 1. Comparison Table of Chebyshev (2) and Simplified Chebyshev (3) method with Two-Step-Newton
method (4).

α = −1 (2) & (3) (4)

R1
α = 0.38269191223238574472986783803208 R1

−1 = 0.38269191223238574472986783803208
R2

α = 0.21292963191331051864274570561975 R̄2 = 1.6195946293252685421748537919484

radius Rα = R2
α R̄ = R1

−1

Example 2. Let B1 = B2 = C[0, 1], the space of continuous functions defined on [0, 1] be equipped with the
max norm. Let D = U(0, 1). Define function F on D by

F(ϕ)(x) = ϕ(x)− 5
∫ 1

0
xθϕ(θ)3dθ. (31)

We have that

F′(ϕ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, so ω0(t) = 7.5t, ω(t) = 15t and ω1(t) = 2. Then the are given in Table 2.

Table 2. Comparison Table of Chebyshev (2) and Simplified Chebyshev (3) method with Two-Step-Newton
method (4).

α = −1 (2) & (3) (4)

R1
α = 0.066666666666666666666666666666667 R1

−1 = 0.066666666666666666666666666666667
R2

α = 0.040057008172481922692043099232251 R̄2 = 0.014407266709891463490889051968225

radius Rα = R2
α R̄ = R̄2

Example 3. The example at the introduction of this study, gives ω0(t) = ω(t) = 96.6629073t and ω1(t) = 2.
The parameters are given in Table 3.

Table 3. Comparison Table of Chebyshev (2) and Simplified Chebyshev (3) with Two-Step-Newton
method (4)

α = −1 (2) & (3) (4)

R1
α = 0.0068968199414654552878434223828208 R1

−1 = 0.0068968199414654552878434223828208
R2

α = 0.00377575830521247697221798311773 R̄2 = 0.000205625336098942375698261919581

radius Rα = R2
α R̄ = R̄2

4. Conclusions

A new technique is introduced allowing to compare schemes of the same convergence order under
the same set of conditions. Hence, we know how to choose in advance among all third convergence
order schemes the one providing larger choice of initial points the least number of iterates for a
predetermined error tolerance and the best location on the solution. This technique can be used on
other schemes along the same lines. In particular, we have shown that scheme (4) is better to use than
scheme (3) under the condition (A).
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