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Abstract: Symmetry plays the central role in the structure of quantum states of bipartite
(or many-body) fermionic systems. Typically, symmetry leads to the phenomenon of quantum
coherence and correlations (entanglement) inherent to quantum systems only. In the present work,
we study the role of symmetry (i.e., quantum correlations) in invasive quantum measurements.
We consider the influence of a direct or indirect measurement process on a composite quantum
system. We derive explicit analytical expressions for the case of two quantum spins positioned
on both sides of the quantum cantilever. The spins are coupled indirectly to each others via their
interaction with a magnetic tip deposited on the cantilever. Two types of quantum witnesses can
be considered, which quantify the invasiveness of a measurement on the systems’ quantum states:
(i) A local quantum witness stands for the consequence on the quantum spin states of a measurement
done on the cantilever, meaning we first perform a measurement on the cantilever, and subsequently
a measurement on a spin. (ii) The non-local quantum witness signifies the response of one spin
if a measurement is done on the other spin. In both cases the disturbance must involve the cantilever.
However, in the first case, the spin-cantilever interaction is linear in the coupling constant Ω, where as
in the second case, the spin-spin interaction is quadratic in Ω. For both cases, we find and discuss
analytical results for the witness.

Keywords: cavity quantum electrodynamics; quantum metrology; NV center; quantum entanglement

1. Introduction

Since the foundational development of quantum mechanics, the measurement process
and the wave function collapse have been under discussion [1–15]. One aspect is how to quantify
and possibly modify the destructive effect of a certain measurement on a quantum state, an issue
that is clearly of importance for quantum information transfer and processing. Here, we consider
the “quantum witness” as the measure invasiveness in a combined quantum system. Our system
described by the density operator ρ̂AB consists of two parties A and B that interact with each other

either directly A⇐⇒ B or indirectly through the third quantum system f , i.e., A Ω⇐⇒ f Ω⇐⇒ B. Here,
Ω is the coupling constant between f and A or B. Let us consider two types of measurements: (i) We
perform a measurement on f , and then on A, in contrast to measuring A directly. (ii) We conduct
a measurement on A and then on B. For Case (i), A interacts with f directly. Measurements done on f
have a direct influence on the outcome of measurements done on A; this case is referred to as the local
quantum witness. In Case (ii), A and B are interrelated via f ; a measurement performed on A affects B
through the quantum channel f , a case called the non-local quantum witness. One may wonder about
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the outcome when the character of the channel f changes from inherently quantum to purely classical
( fq → fcl); the latter situation is relevant to local operations and classical communication. As discussed
below, in our system, we find that the non-local quantum witness mediated through the classical
channel is not zero. Specifically, we consider two nitrogen vacancy (NV) centers described by the
density operator ≡ ρ̂AB interacting via quantum modes of a nanomechanical oscillator f (see [16–53]
and the references therein) with a magnetic tip attached to its end.

Wave-particle duality is a fundamental principle of quantum mechanics postulating that even
macroscopic objects have wave features. However, the manifestation of quantum behavior is inversely
proportional to the mass of the particle λ = 2πh̄

mv , where λ is the de Broglie wavelength, m and v
are the mass and velocity of the particle, and h̄ is the Planck constant. Hence, mechanical motion,
in general, should be viewed as classical unless the system is not cooled down to the temperature
below T � 2πh̄ω/kB. For example, for mode frequency ω = 1kHz, the temperature should be lower
than T � 50nK. Fortunately, the resonant frequency scales inversely with the size of the system.
Thus, by considering nanosized cantilevers and cooling the systems to low temperature, mechanical
motion switches its character and crosses the threshold boundary between the classical and quantum
world. The viable technological progress of the last two decades allowed the fabrication of hybrid
spin nanomechanical systems. Nanoelectromechanical resonators (NAMR) are essential for both the
understanding of fundamental questions and technological applications as well. The paradigmatic
model of NAMR consists of the spin of the NV center interacting with a magnetic tip. The magnetic
tip is attached to the end of the nano-cantilever (i.e., cavity field). The oscillation of the cantilever
modulates the spin-tip interaction and activates the spin dynamics or vice versa; the highly sensitive
cantilever can detect the spin dynamics. The magnetic force between a ferromagnetic tip and NV spin
implemented in magnetic resonance imaging experiments allows achieving a single-spin sensitivity
and is an essential experimental scheme for NAMR [52,53]

For observing quantum behavior, the cantilever must be cooled to low temperatures to avoid
thermally excited vibrations. MRFM provides tools needed to read out the cantilever and determine
and possibly control its quantum state. The read out procedure on the formal mathematical language
can be interpreted in terms of the phonon number projective operators (i.e., phonons are particles
characterizing the quantized motion of the cantilever). We note that our model corresponds to the zero
temperature case and closed quantum systems. Therefore, phenomena typical for open quantum
systems, i.e., dissipation and decoherence, are beyond our project’s scope. Concerning these issues,
we refer to the works of Melkikh [54,55].

The spins of the NV centers are affected by a tip magnetization. In turn, the tip magnetization
is strongly stabilized by intrinsic magnetic interactions (magnetic anisotropy) and hence remains
basically static during the NV spin dynamics (cf. Figure 1. The quantized elastic modes of the cantilever
are however decisive in that the cantilever oscillation modulates the spin-magnetic tip interaction.
The modes of the cantilever are in turn modified by the coupling to the NV centers, which allows
sensing the NV’s spin dynamics [52,53]. The goal is to study the invasiveness of a measurement done
on the quantum cantilever f (see Figure 1) for the NV spin A. In particular, we monitor the invasiveness
as a function of mean “phonon number” u2 in the coherent state and as we vary the detuning between
frequencies of the NV center and cantilever mode. The paper is organized as follows: In Section 2,
we specify the model. In Section 3, we present the analytical solution of the model. In Section 4,
we study the invasiveness of quantum measurements done on the cantilever and NV centers.
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Figure 1. A schematic for the model studied in the text. The spin states of two nitrogen vacancy (NV)
centers A and B interact through a magnetic tip positioned at the end of nanomechanical oscillators
(cantilever). The strength of the interaction between the cantilever and NV spins is proportional to
the constant Ω. The interaction between the NV center spins A and B is not direct and is proportional
to Ω2.

2. Model

We consider two NV spins embedded in a cavity at an equal distance from the cantilever.
In the general case, the Hamiltonian of the system reads [51]:

Ĥ = Ĥ0 + V̂,

Ĥ0 =ω0
(
Ŝz

1 + Ŝz
2
)
+ ωf â† â,

V̂ =Ω
{

â† (Ŝ−1 + Ŝ−2
)
+ â

(
Ŝ+

1 + Ŝ+
2
)}

.

(1)

Here, Ω is the coupling constant of the NV spin with the magnetic tip, â†, â are the phononic
creation and annihilation operators describing the cantilever oscillations with the frequency ωf, and ω0

is the frequency of the NV spin. For a more detailed discussion of the parameters, we refer to [51] and
the references therein.

The spins’ interaction with the magnetic tip V̂ leads to an effective indirect interaction between
NV spins mediated by phonons. The experimental relevance of the model relies on the fabrication of
cantilevers with frequencies comparable with the NVs’ spin transition frequencies. We consider the
analytical solution in the resonant and highly off-resonant cases. These two situations are distinguished
by the detuning of the cantilever’s oscillation with regard to the frequency of the NV spins. For strong
detuning, we employ Fröhlich’s method [56] to infer the effective interaction Ĥ(1)

eff and then the effective
Hamiltonian Ĥeff:

Ĥ(1)
eff =

i
2

0∫
−∞

dτ
[
V̂(τ), V̂(0)

]
,

V̂(t) = exp
(
−iĤ0t

)
V̂ exp

(
iĤ0t

)
,

(2)

or explicitly [57]:

Ĥeff = H0 +
Ω2

ω0 −ωf

{
1 + Ŝ+

1 Ŝ−2 + Ŝ−1 Ŝ+
2 +

(
Ŝz

1 + Ŝz
2
) (

2â† â + 1
)}

. (3)

In what follows, we present analytic solutions for the model Equations (1) and (3).
Our description of the problem is quite general. However, without loss of generality, we specify

the values of the parameters relevant to the NV centers: Cantilever of mass m = 6× 10−17 kg performs
oscillations of the frequency ωr

2π = 0.1− 10 MHz. The cavity mode ωf
2π = 5 MHz, and the coupling

between cantilever and NV centers Ω
2π = 100 kHz. The amplitude of the zero point fluctuations
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a0 =
√

h̄/2mωr ≈ 5× 10−3 m defines the characteristic energy scale of the problem mω2
r a2

0 ≈ 10−9 J,
and the time scale is of the order of microseconds.

3. The Analytical Solution

The model Equations (1) and (3) admit an exact analytical solution through the following ansatz:

|φ(t)〉 =
∞

∑
n=0
{Γn+1,eg(t)|n + 1, eg〉+ Γn+1,ge(t)|n + 1, ge〉+ Γn+2,gg(t)|n + 2, gg〉+ Γn,ee(t)|n, ee〉}. (4)

Here, |n〉 is the state of the field with n phonons [49], and |e〉 ≡ |1〉, |g〉 ≡ |0〉 corresponds
to the excited (ground) spin states of the NV centers. The explicit values of the coefficients
Γn+1,eg(t), Γn+1,ge(t), Γn+2,gg(t), Γn,ee(t) are presented in theAppendix A. In what follows, we utilize
these coefficients and construct the density matrix $̂ = |φ(t)〉 〈φ(t)| corresponding to the model
Equations (1) and (3).

4. The Invasive Measurement

In a magnetic resonance force microscopy experiment, the information about the state of the NV
spin is read out through the magnetic tip. A measurement done on the spin A may perturb the state of
the spin A directly and simultaneously may alter the state of the spin B indirectly through the quantized
cantilever field. This is a case of non-local invasiveness and the non-local quantum witness. On the
other hand, a measurement conducted directly on the phonon (cantilever) subsystem may influence
the state of the NV spins directly (local witness). We start with studying the local witness.

4.1. Local Invasive Measurement

Suppose the measured phonon number is n. The measurement done on the subsystem f projects
the wave function |φ(t)〉 (see Equation (4)) to the post-measurement state:

|Φ(t)
〉
=

(
Πf

n
⊗

Is) |φ(t)〉√〈
φ(t)

∣∣∣Πf
n
⊗

Is
∣∣∣φ(t)〉 . (5)

The post-measurement density matrix is given by:

$̂post = |Φ(t)〉 〈Φ(t)| = Πf
m$̂Πf

m
Tr
(
Πf

m$̂Πf
m
) . (6)

Here, Is is the identity operator acting on the spin subsystem, and Πf
n = |n〉〈n| is the phonon

projection operator.
To quantify the quantum witness W , we note that the system evolution is describable by

an arbitrary positive, trace-preserving map F̂ . The projector measurement operators for the spins
we define as follows: Πs

jα = |α〉〈α|. Here, j = 1, 2 enumerates the spins, and α = g, e stands for
the ground and excited states. Then, for the (in the above sense) direct spin measurement probability,
we deduce:

P jα
$̂ = Tr{Πs

jαF̂ [$̂]}. (7)

The indirect measurements probability reads:

Qjα
$̂ = Tr{Πs

jαF̂ [$̂post]}. (8)
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We note that in Equation (8), the first measurement (blind measurement) is done on the field
subsystem. The trace preserving positive maps F̂ [$̂] = ∑

α
L̂α$̂L̂†

α and F̂ [$̂post] = ∑
α

L̂α$̂post L̂†
α

are defined in terms of the Kraus operators L1 =
√

µ1|e〉〈g|1 ⊗ |g〉〈e|2 and L2 =
√

µ2|g〉〈e|1 ⊗ |e〉〈g|2,
µ1 + µ2 = 1, see Appendix B.

For the system Equations (7) and (8), the quantum witness [11] is defined as follows:

W$̂(j, α) =
∣∣∣P jα

$̂ −Q
jα
$̂

∣∣∣ . (9)

Let the measured phonon number be m, then the post-measurement density matrix Equation (6)
takes the form:

$̂post = Z−1
{
|Γm,gg(t)|2 |m, gg〉 〈m, gg|+ |Γm,eg(t)|2 |m, eg〉 〈m, eg|+ |Γm,ge(t)|2 |m, ge〉 〈m, ge|

+ |Γm,ee(t)|2 |m, ee〉 〈m, ee|+ Γm,ge(t)Γ∗m,eg(t) |m, ge〉 〈m, eg|+ Γm,ge(t)Γ∗m,gg(t) |m, ge〉 〈m, gg|

+ Γm,ge(t)Γ∗m,ee(t) |m, ge〉 〈m, ee|+ Γm,eg(t)Γ∗m,gg(t) |m, eg〉 〈m, gg|

+ Γm,eg(t)Γ∗m,ee(t) |m, eg〉 〈m, ee|+ Γm,gg(t)Γ∗m,ee(t) |m, gg〉 〈m, ee|+ h.c.
}

,

Zm = |Γm,gg(t)|2 + |Γm,eg(t)|2 + |Γm,ge(t)|2 + |Γm,ee(t)|2. (10)

The explicit analytical expressions of P jα
$̂ , Qjα

$̂ are presented in theAppendix C.
After some calculations, for the measured phonon number m, we derive the analytical expression

for the local quantum witness:

W L
$̂ (1, e) =

∣∣∣P1,e
$̂ −Q

1,e
$̂

∣∣∣ = µ1

∣∣∣∣∣ ∞

∑
n=0
|Γn,ge(t)|2 −

|Γm,ge(t)|2

Zm

∣∣∣∣∣ . (11)

Here, Zm = 2
(
|Γm,ge(t)|2 + |Γm,gg(t)|2

)
.

For u � 1 (meaning the large mean phonon number), we use the saddle-point method
and perform summation over the field states to get an analytical expression for the quantum witness
in resonant case ω0 = ωf:

W L
$̂ (1, e) ≈ µ1u2

∣∣∣∣∣∣
[
1 + erf

(
u/
√

2
)]

4(2u2 + 1)
sin2

(√
4u2 + 2Ωt

)

−
sin2 (√4m + 2Ωt

)
2u2 sin2 (√4m + 2Ωt

)
+ 4 1+2m

(1−2m)2

[
m− 1 + m cos

(√
4m− 2Ωt

)]2
∣∣∣∣∣∣ (12)

For the off-resonant Hamiltonian Equation (3), the |n, gg〉 state is decoupled. Therefore, one has
to start from an excited state for the NV spins. Starting from the |ge〉 and a coherent phonon state,
we obtain:

W L
$̂ (1, e) =

µ1

2

∣∣∣∣cos
(

2Ω2

ω0 −ωf
t
)∣∣∣∣ . (13)

A plot of the quantum witness is presented in Figure 2. From Figure 2, we see that the saddle-point
method smears out slow modulation of the amplitude of the quantum witness that we observe in
the exact solution. The modulation of the witness strength amplitude is inherently a quantum effect
related to the entanglement between the cavity field and NV centers. The saddle-point, which is
valid for u2 � 1, partially eliminates the entanglement effect. The witness is finite, but smaller
than the maximum witness observed for the entangled states. The limit u2 → ∞ for the first term
in Equation (12) leads to a fast oscillation between zero and 1/4, while the second term results in 1/2.
In this case, the resonant Equation (12) and non-resonant Equation (13) results are of the same order.
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Figure 2. The quantum witness Equation (11) for the exact treatment (black) and the saddle-point
approximation (red) for the initial condition Γn,gg(0) = wn with wn = un√

n!
exp(−u2/2) and u2 = 20

being the mean phonon number. The measured phonon number m = 20 and µ1 = 0.5.

4.2. Non-Local Invasive Measurement

The protocol of non-local invasive measurement is as follows: At the moment of time t = τ,
quantum measurement is done on the spin A through the positive operator valued measure (POVM)
projection operator ΠA

m = |m〉〈m|. Thus, the post-measurement density matrix has the form:

$̂
post
S =

ΠA
m$̂(t)ΠA

m
Tr (ΠA

m$̂(t)ΠA
m)

. (14)

Combining pre- and post-measurement density matrices, we find the density matrix at an arbitrary
moment of time:

$̂1(t) = Θ[τ − t]$̂ + Θ[t− τ]$̂
post
S . (15)

Here, the explicit form of the post-measurement density matrix reads:

$̂
post,e
S = Z−1

e

∞

∑
n,m=0

{
Γn+1,eg(t)Γ∗m+1,eg(t) |n + 1, eg〉 〈m + 1, eg|+ Γn+1,eg(t)Γ∗m,ee(t) |n + 1, eg〉 〈m, ee|

+ Γn,ee(t)Γ∗m+1,eg(t) |n, ee〉 〈m + 1, eg|+ Γn,ee(t)Γ∗m,ee(t) |n, ee〉 〈m, ee|
}

, (16)

Ze =
∞

∑
n=0

(
|Γn,ee(t)|2 + |Γn,eg(t)|2

)
,

$̂
post,g
S = Z−1

g

∞

∑
n,m=0

{
Γn+1,ge(t)Γ∗m+1,ge(t) |n + 1, ge〉 〈m + 1, ge|

+ Γn+1,ge(t)Γ∗m+2,gg(t) |n + 1, eg〉 〈m + 2, gg|

+ Γn+2,gg(t)Γ∗m+1,ge(t) |n + 2, gg〉 〈m + 1, ge|

+ Γn+2,gg(t)Γ∗m+2,gg(t) |n + 2, gg〉 〈m + 2, gg|
}

, (17)

Zg =
∞

∑
n=0

(
|Γn,gg(t)|2 + |Γn,ge(t)|2

)
.

Θ[...] is the Heaviside step function.
The non-local quantum witness is defined as:

WNL
$̂ (1, e)g =

∣∣P1,e
$̂post,g

−Q1,e
$̂post,g

∣∣. (18)
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Using the saddle-point approximation for Equation (18) and taking into account Equation (12),
we conclude that for the case m ≈ u2, WNL ≈ W L follows. Therefore, the invasiveness of
the measurement is not enhanced in the case of indirect measurements.

5. Conclusions

The issue of the influence of a direct or indirect measurement on a composite quantum system can
be quantified by the local and nonlocal quantum witness. For two effective quantum spins coupled to
each other indirectly via the quantum oscillations of a cantilever, we derived an explicit expression for
the local quantum witnessW L that measures the invasiveness of a measurement done on the cantilever
on the quantum states and hence on a subsequent measurement done on spins. The non-local quantum
witnessWNL delivers information on the reaction of the states of one spin when a measurement is
performed on the other spin. Both spins are coupled only via the cantilever whose states can be steered
into the classical regime. In both cases, invasiveness is the sameW L = WNL. The obtained result
confirms that the quantum channel mediates in both cases disturbances from the first to the second
quantum spins. We analyzed the resonant solution comparing the exact result with the saddle-point
method (Figure 2). We saw that the saddle-point method smeared out the slow modulation of the
amplitude of the quantum witness that we observed in the exact solution. The modulation of the
witness strength amplitude is inherently a quantum effect related to the entanglement between the
cavity field and NV centers. The saddle-point, which is valid for u2 � 1, partially eliminates the
entanglement effect. The witness is finite, but smaller than the maximum witness observed for the
entangled states.
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Appendix A

The time-dependent coefficients from ansatz Equation (4) in the resonant case of Hamiltonian
Equation (1) follow the set of equations:

i
dΓgg,n+2(t)

dt
= (n + 1)ωf Γgg,n+2(t) + Ω

√
n + 2

{
Γeg,n+1(t) + Γge,n+1(t)

}
,

i
dΓeg,n+1(t)

dt
= (n + 1)ωf Γeg,n+1(t) + Ω

{√
n + 1 Γee,n(t) +

√
n + 2 Γgg,n+2(t)

}
,

i
dΓge,n+1(t)

dt
= (n + 1)ωf Γge,n+1(t) + Ω

{√
n + 1 Γee,n(t) +

√
n + 2 Γgg,n+2(t)

}
,

i
dΓee,n(t)

dt
= (n + 1)ωf Γee,n(t) + Ω

√
n + 1

{
Γge,n(t) + Γeg,n+2(t)

}
. (A1)

For Equation (A1), we adopt the initial conditions Γgg,n+2(0) = wn+2 and Γeg,n+1(0) =

Γge,n+1(0) = Γee,n(0) = 0 and obtain the solution:
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Γgg,n+2(t) = e−i(n+1)ωf t (n + 2) cos
(√

4n + 6Ωt
)
+ n + 1

2n + 3
wn+2,

Γee,n(t) = e−i(n+1)ωf t

√
(n + 1)(n + 2)

[
cos

(√
4n + 6Ωt

)
− 1
]

2n + 3
wn+2,

Γeg,n+1(t) = Γge,n+1(t) = e−i(n+1)ωf t i
√

n + 2 sin
(√

4n + 6Ωt
)

√
4n + 6

wn+2. (A2)

For the initial state of the phonon subsystem, we take wn = un
√

n!
exp(−u2/2) where u2 is the mean

phonon number.
We note that an effective interaction between NV spins is obtained through perturbation theory.

The relation we use in what follows |ω0 −ωf| = Ω defines the lower bounds of detuning allowed
by perturbation theory (the maximal interaction strength). For smaller detuning |ω0 −ωf| < Ω,
the approximation is not valid. In the non-resonant case |ω0 −ωf| > Ω, the solution is different from
Equation (A2). For the Hamiltonian Equation (3), we utilize the ansatz Equation (4) and deduce the set
of equations:

i
dΓgg,n+2(t)

dt
= ((n + 2)ωf −ω0 − (2n + 4)J) Γgg,n+2(t),

i
dΓeg,n+1(t)

dt
= ((n + 1)ωf + J) Γeg,n+1(t) + JΓge,n+1(t),

i
dΓge,n+1(t)

dt
= ((n + 1)ωf + J) Γge,n+1(t) + JΓeg,n+1(t),

i
dΓee,n(t)

dt
= (nωf + ω0 + (2n + 2)J) Γee,n(t). (A3)

The set of equations (A3) leads to the non-resonant solution Equation (13), which in the limit of
large u is of the same order as the resonant solution Equation (12).

Appendix B

The trace-preserving Kraus channels are:

F̂ [$̂] =
∞

∑
n=0

{
µ1|Γn+1,ge(t)|2|n + 1, eg〉〈n + 1, eg|+ µ2|Γn+1,eg(t)|2|n + 1, ge〉〈n + 1, ge|

}
, (A4)

F̂ [$̂post] = Z−1
m

(
µ2|Γm,eg(t)|2|m, ge〉〈m, ge|+ µ1|Γm,ge(t)|2|m, eg〉〈m, eg|

)
, (A5)

F̂ [$̂post,e
S ] = µ2 Z−1

e

∞

∑
n,m=0

Γn+1,eg(t)Γ∗m+1,eg(t)|n + 1, ge〉〈m + 1, ge|, (A6)

F̂ [$̂post,g
S ] = µ1 Z−1

g

∞

∑
n,m=0

Γn+1,ge(t)Γ∗m+1,ge(t)|n + 1, eg〉〈m + 1, eg|. (A7)

Appendix C

The direct measurement probabilities are:

P1,e
$̂ =P2,g

$̂ = µ1

∞

∑
n=0
|Γn,ge(t)|2,

P2,e
$̂ =P1,g

$̂ = µ2

∞

∑
n=0
|Γn,eg(t)|2 (A8)

The indirect (blind) measurement results (measurement results are discarded):
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Q1,e
$̂ =Q2,g

$̂ = Z−1
m µ1|Γm,ge(t)|2,

Q2,e
$̂ =Q1,g

$̂ = Z−1
m µ2|Γm,eg(t)|2. (A9)

Q2,e
$̂post,g

=Q1,g
$̂post,g

= 0,

Q1,e
$̂post,g

=Q2,g
$̂post,g

= Z−1
g µ1

∞

∑
n=0
|Γn,ge(t)|2. (A10)

Q1,e
$̂post,e

=Q2,g
$̂post,e

= 0,

Q2,e
$̂post,e

=Q1,g
$̂post,e

= Z−1
e µ2

∞

∑
n=0
|Γn,eg(t)|2. (A11)
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