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Abstract: This article concerns smoke detection in the early stages of a fire. Using the computer-aided
system, the efficient and early detection of smoke may stop a massive fire incident. Without considering
the multiple moving objects on background and smoke particles analysis (i.e., pattern recognition),
smoke detection models show suboptimal performance. To address this, this paper proposes a hybrid
smoke segmentation and an efficient symmetrical simulation model of dynamic smoke to extract a
smoke growth feature based on temporal frames from a video. In this model, smoke is segmented
from the multi-moving object on the complex background using the Gaussian’s Mixture Model (GMM)
and HSV (hue-saturation-value) color segmentation to encounter the candidate smoke and non-smoke
regions in the preprocessing stage. The preprocessed temporal frames with moving smoke are
analyzed by the dynamic smoke growth analysis and spatial-temporal frame energy feature extraction
model. In dynamic smoke growth analysis, the temporal frames are segmented in blocks and the
smoke growth representations are formulated from corresponding blocks. Finally, the classifier was
trained using the extracted features to classify and detect smoke using a Radial Basis Function (RBF)
non-linear Gaussian kernel-based binary Support Vector Machine (SVM). For validating the proposed
smoke detection model, multi-conditional video clips are used. The experimental results suggest that
the proposed model outperforms state-of-the-art algorithms.

Keywords: smoke detection; pattern recognition; background subtraction; Gaussian’s mixture model
(GMM); HSV color segmentation; smoke growth features; support vector machine (SVM)

1. Introduction

Fire accidents cause a great impairment to human life, the economy, the environment, and ecology.
Detecting a fire in its early stage can prevent mass destruction and save thousands of lives and valuable
assets. Smoke components represent the beginning of the early stage of a fire and a forewarning to
possibly catastrophic incidents. Thus, detecting smoke at an early stage can potentially provide crucial
information to prevent a fire event as well as minimize the damage and, consequently, save lives
and properties.

The conventional fire alarm system is usually built with a point sensor, which works in the
manner of heat transactions through the sensor. While a small area can be covered using this technique,
a large area would still remain vulnerable to fire. This occurs because the smoke propagates in various
directions and takes time to reach the sensor in a big area, which ultimately fails to give a timely
warning. Besides, all sorts of interference in the sensor could delay the alarm or raise a false alarm [1].
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Nowadays, the uses of different sensors and multimedia data processing have a great impact on
develop smart homes, smart cities, smart industries, smart hospitals, smart agriculture, and others.
Internet of multimedia Things (IoMT) devices and data processing is much more popular, especially
video image processing to monitoring system [2]. As a part of the development of a smart home or
industry, a video image-analysis-based smart fire alarm system is demandable. With increased use of
modern technology and security concerns, high-resolution video cameras are available at the house,
parking place, playground, office, industry, and even on the road. The video cameras have a high
frame rate, small response time, and computational power with respect to smoke sensors, which can
provide cost-effective solutions by covering wide areas. Moreover, it is easy to embed high functional
and robust video image processing smoke alarm systems, which might reduce high false alarm.

Considering the above-mentioned limitation and advantage of a video camera, a video frame
processing-based fire detection system has been developed in the last few years. Its effectiveness in
the detection of a fire quickly made it popular. Relatively wider area coverage, better accuracy, and a
lower rate of false alarms made it more robust and dynamic. Thus, the main focus of this research
is to develop a robust and efficient smoke detection system using video processing, smoke pattern
recognition, and machine learning techniques.

Many methods exist for the detection of smoke in the computer image processing sector. However,
most of them experimented by combining several methods to improve performance and reliability.
Most methods are similar to conventional smoke detection approaches. They include motion detection,
a region of particle analysis, smoke volume energy [3–5]. Growth rate analysis from the dynamic
volume of an increased number of smoke pixel has a great impact on detecting smoke. The differences
in the efficacy of those algorithms are observed in different stages. All of the methods and techniques
mainly consist of three steps: the preprocessing step; the smoke feature extraction step; and the smoke
identification step.

In the preprocessing step, determining the region of interest (ROI) serves as the fundamental task
for identifying and analyzing the smoke pixels and the eligible regions from the video frames taken for
the experiment. Many researchers have used the color segmentation method (CS) [6–11] to segment
the ROI from the input videos taken by static cameras. This is generally done by transforming the
RGB color space into HSV color space [7], YUV color space [9], YCbCr color space [11], or HIS color
space [4] color spaces. The intensity value of an image pixel, saturation, and hue in terms of variations
are visualized and punctuated by the HSV color space, which helps to perform the segmentation
more easily. Optical flow [8] and frame differencing [5] are primarily used to analyze the vulnerable
area to fire. Despite this, the frame differencing does not give optimal performance for background
subtraction. As a result, in this paper, a hybrid smoke segmentation combination of the GMM [12]
moving foreground detection and HSV color segmentation are considered for removing the complex
background and unwanted non-smoke moving objects in the preprocessing steps.

In recent decades, several researchers have conducted studies in this area. For example,
Y. Cappellini [6] built an intellectual system for programmed fire detection in the forests. G. Healey
proposed a system to detect a real-time fire [13]. H. Yamagishi worked on an algorithm where a color
camera is used for fire flame detection [7]. However, fire detection was based on flame detection,
which proved inaccurate and over-sensitive to color features. K. Dimitropoulos et al. proposed a
spatio-temporal flame and texture modeling for fire detection [14]. In this instance, smoke detection is
both a prior demand and more challenging than detecting fire. Many researchers are working to detect
smoke by efficiently extracting features from the smoke image with dynamic movement characteristics.
Y. Chunyu [15] has worked on such a video-based fire and smoke detection system using motion and
color features. I. Kolesov [9] worked with ideal mass transport based on visual flow and neural systems
for fire and smoke detection from video. Wavelet in smoke, image processing for automatic smoke
detection, and adoptive background modeling for real-time tracking [10,12,16] have been developed
for building a very effective and accurate fire alarm system. D. K. Appana et al. [17] used optical flow
characteristics for fire alarm systems in which they used combined features from the Gabor filter-based
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edge orientation and the smoke energy components of Spatial-temporal frequencies. The proposed
model of that paper considered HSV color analysis-based smoke region segmentation and the frame
difference-based smoke flow pattern using the Gabor filter. Table 1 presents the comparative study of
state-of-the-art research.

Table 1. A comparative study of state-of-the-art research.

Ref. Aim of the Research Method Pros Cons

[8]
Fires detection based on

video analysis by
surveillance cameras

Foreground masking, Background
subtraction, Optical flow analysis

using color evaluation, shape
variation, and movement evaluation.

A hybrid combination of color
evaluation, shape variation, and

movement evaluation for optical flow
shows the effective results.

Background subtraction and
foreground masking based on frame

differencing is vulnerable to a
dynamic changing environment.

[9] Fire and smoke detection
using video

Optimal Mass Transportation (OMT)
for extracting optical flow descriptor

of RGB video frame and Neural
Networks for classifying smoke/fire

OMT is useful for detecting smoke or
fire on a similar colored background.

There is no background subtraction
process is introduced and smoke color

moving object might misguide the
detection process

[14]
Flame modeling for

wildfire detection using
a video signal

Background subtraction using
non-parametric model,

Spatio-temporal features such as color
probability, flickering, spatial and

Spatio-temporal energy, and dynamic
texture analysis for wildfire detection

Codebook with the combination of
various Spatio-temporal and dynamic

texture analysis construct a strong
feature vector to classify fire

using SVM.

This model is for flame and fire
detection which need to be enhanced

for smoke detection. Also, feature
extraction using several flame

movement descriptors demands high
computation power.

[17]
optical flow

characteristics for fire
alarm systems

Combined features from the Gabor
filter-based edge orientation and the

smoke energy components of
Spatial-temporal frequencies. SVM is

used for smoke classification.

HSV color segmentation is effective
for detecting a smoke object. Gabor

filter-based edge orientation of frame
differencing and Spatial-temporal

energy of frame shows good smoke
classification result.

Background segmentation on a static
frame is suboptimal for a dynamically

changing environment. Smoke
descriptor based on temporal frame

differencing might show some
false alarm.

[18]

Motion modeling and
dynamic texture

recognition for smoke
detection

HSV color segmentation for candidate
smoke regions detection,

Spatio-temporal energy analysis, and
histograms of oriented gradients and

optical flows (HOGHOFs)

spatio-temporal energy analysis,
(HOGHOFs) show effectiveness for

moving smoke detection

HOGHOF descriptors for smoke
motion modeling are sub-optimal for

a smoke-like moving object

Nevertheless, those papers considered single-frame-based smoke region segmentation and smoke
descriptor calculation, and, because of this, the performance is suboptimal. Very few researches
considered the dynamic background and smoke-colored moving object. Smoke flow based on
consecutive frame differencing is not enough for detection complex smoke explosion. There is no
consideration for the optical flow of non-smoke but rather the smoke-like object. Furthermore,
the smoke particles’ growth differs from non-smoke.

To address the challenges, the proposed model of this paper considers the advanced candidate
smoke region segmentation and dynamic smoke growth feature extraction based on temporal frames
of a continuous video sequence.

In this paper, the combination of GMM-based adaptive moving object detection and HSV color
segmentation is used in the preprocessing stage for segmenting the moving smoke-only object from the
complex background and non-smoke moving objects. After preprocessing, the smoke growth features
are extracted using proposed frame-block segmentation-based smoke growth analysis. In particular,
the Spatial-temporal energy features are extracted from selected temporal frames. Finally, the smoke
features are classified by an RBF non-linear kernel-based Support Vector Machine (SVM) classifier.

This paper is organized in the following pattern. Section 2 discusses the details about the proposed
model, including smoke growth analysis and feature extractions. Section 3 evaluates the performance
of the proposed model. Section 4 concludes this paper.

2. Proposed Model

In this proposed model, the hybrid smoke segmentation combines moving foreground detection
and smoke object segmentation. Block segmentation-based dynamic smoke growth analysis for smoke
feature extraction, along with the spatial frame energy, is proposed here. Finally, an SVM algorithm is
used to classify moving objects, which here is smoke. The proposed approach focused on the growth
area of the smoke and characteristics features of smoke growth against time for classifying smoke and
non-smoke objects. A flowchart of the proposed smoke detecting method appears in Figure 1 and is
further discussed in the following subsections in greater detail.
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Figure 1. Proposed smoke detection model using video analysis.

2.1. Preprocessing and Hybrid Segmentation

This preprocessing consists of two steps. First, the GMM-based moving object detection is used
for segmenting the moving objects from a complex background. Second, the segmented moving object
is further preprocessed by HSV color segmentation for separating the smoke-like moving object. Next,
the process is described in detail in the following subsections.

2.1.1. Moving Foreground Detection Using GMM Segmentation

In the case of smoke detection, the moving object on a background is the primary concern.
A color-based segmentation subtracts the color-matched static object. Seeing this, moving foreground
segmentation is quite essential. Background subtraction is processed to identify the foreground object
for the concerned video frames. It is the most popular approach to detect moving image content from
the video frame of a static camera.

A popular approach to background subtraction is frame differencing, where the frame difference
is done between the current video frame and a reference frame. Still, there is a significant challenge
in a real environment, where the background image is not fixed perfectly, i.e., the change of gradual
and sudden illumination, change of background geometry, motion change, and others. Moreover,
the frame differencing method is extremely sensitive to the threshold value and the frame rate based
on the speed of foreground objects.

An efficient moving object subtraction can handle the long-term background change as well
as a change of lighting intensity. To overcome the challenges, the Gaussian Mixture Model (GMM)
provides the optimal solution. Seeing this, the GMM method is applied in this research for separating
the moving foreground object of a video frame. The basic steps of this algorithm are preprocessing,
background modeling, foreground identification, and data validation. Background modeling is the key
concern of this algorithm. The GMM foreground detection methods are two types, i.e., non-adaptive
and adaptive. The adaptive model is the most popular because, unlike the non-adaptive model,
it maintains the background model over time.

In the initial step of the GMM foreground subtraction model, T number of frames are first
considered to contract the Gaussian in the pixel-wise level and K number of Gaussian is used to
represent a pixel Xt at time T. The probability of a pixel X can be formulated as Equation (1).

P(Xt) =
K∑

i=1

ωi,tη
(
Xt,µi,t, σ2

i,t

)
(1)
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where ωi represents the weight of i-th Gaussian, µi,t represents the mean of i-th Gaussian of t-th frame,
and σi,t2 covariance. The η probability density function of Gaussian is formulated in Equation (2).

η
(
Xt,µ, σ2

)
=

1

(2πσ2)
1
2

e−
(Xt−µ)

2

2σ2 (2)

In these consecutive steps, the K number of Gaussians distributions are classified according to the
value of ω/σ. Finally, the first B Gaussians are selected as the background model, where B is formulated
as Equation (3).

B = arg min
b
(

b∑
k=1

ωk > T) (3)

where T is the minimum limit of fraction and the background models are selected when ω1 to ωb is
exceeded to the value of T. In this iterative process, the weight of i-th Gaussian of K distribution of
time t is updated according to the following equation:

ωk,t = (1− α)ωk,t−1 + α
(
Mk,t

)
(4)

Figure 2 presents the overall process of GMM foreground moving object subtraction. The GMM
method effectively separates the moving object; however, non-smoke objects might present inside the
frame. With this, smoke or smoke-like objects need to be separated using color segmentation.
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Figure 2. Gaussian Mixture Model (GMM) method for foreground moving object detection.

2.1.2. Smoke-Like Moving Object Separation Using HSV Color Segmentation

The moving object detection process efficiently segments the foreground moving object. There are
other moving objects, however, which can misguide the process. Thus, removing the non-smoke
subject might increase the performance of the smoke detection model. Hence, filtering only the object
that is related to smoke becomes vitally important.

With a proper supply of resources and elements in a faire incident, fuels come in contact with
oxygen in the air and create a combusting matter consisting of these two elements, leaving burnt
residues that generate flame and smoke. The features of smoke can differ depending on the temperature
at the time of burning, chemical elements, and surroundings. Oxygen and other elements are needed
to ignite a fire. When the temperature is low, then the color of smoke can be bluish-white to white.
The color changes to grayish-black to black when the temperature is rising and this color remains
unchanged until combustion occurs. The foreground image frames, generally represented by the RGB
color method, help to distinguish the different colors of the frames. However, regardless of these
guidelines, images can still have problems in terms of nonlinear visual perception and illumination
dependency [2]. To identify smoke, and smoke-like moving objects, the color segmentation is performed
by finding the pixels that match the color from a specific frame of smoke. In this process, HSV color
model analysis is used to transform the RGB color space, creating a threshold of hue (H), saturation (S),
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and the components of value (V), which are formulated in Equation (5). The threshold limits of the
saturation are slow and shigh followed by 0 and 0.28. and the limits of the value (V) are vlow and vhigh
followed by 0.38 and 0.985. As no threshold to the hue components was applied, the value of hlow and
hhigh are 0 and 1, respectively.

Fcandidate(i, j) =
{

1,
0,

f (conditions == true)
otherwise

where conditions =
hlow < H(i, j) < hhigh,
Slow < S(i, j) < Shigh,
vlow < V(i, j) < vhigh

(5)

If the condition of Equation (5) is satisfied, the color of smoke is identified, where Fcandidate(i,j) is at
the spatial location(i,j). H(i,j), S(i,j), and V(i,j) are followed by the hue, and saturation, as well as the
value components of a pixel in the spatial space. The saturation limits and values are attained from
the experimental statistical data, which are made with training videos, and could satisfy to discover
smoke areas for the videos that are used for the experiment. The non-smoke regions are removed by a
pre-processing method in which the extra unnecessary objects were removed, and the frames are being
made smoother with the help of morphological closing method. Then, those areas were filled with
the 2D four-connected neighborhood. Figure 3 presents the process of HSV color segmentation for
removing the non-smoke object.Symmetry 2020, 12, 1075 7 of 18 
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2.2. Smoke Feature Extraction

Smoke has a dynamic property to expand in a different direction as a diffusion process. Generally,
smoke expands dynamically and changes its shape due to the effect of wind. For extracting the
properties of the dynamic changes of smoke, the following subsections describe the temporal frame
selection, a novel block segmentation-based smoke growth analysis, smoke growth features extraction,
and spatial-temporal energy featuring extraction.

2.2.1. Temporal Frame Selection

Modern video capturing technology produces a large number of frames with a high resolution.
Nonetheless, it is computationally expensive to consider all the frames in a video clip for processing.
What is more, the expansion of smoke might not be significant in subsequent frames, which proves
quite difficult to consider for the identification model. To overcome these issues, this research considers
the selected temporal frames. To select the temporal frames, we considered the captured video is F
frame per second (f/s), the frame selection interval is F/n, and considered video time T is N/n, where N
is a total number of considered frames. In this study, two selected frames per second (n = 2) and 4
selected frames (N = 4) from 2 s (T = 2) are considered for analyzing the smoke growth. Figure 4
presents the temporal frame selection process. According to the proposed model, we are considering 4
consecutive frames within 2 s. The smoke features are extracted from considered frames and classify
smoke based on the previously trained model. For the experiment, we developed the simulation
program using Matlab, which is not so much faster. We hope that the whole feature extraction and
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classification process will be finished within the next 2 s before coming to the next batch of frames
using a faster coding technique.
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2.2.2. Frame Blocks Segmentation

As a dynamic behavior, the smoke appears and expands dynamically both upward and in other
directions. The dynamic growth of smoke can be determined by the analysis of the frame content
of a video using a static camera. As indicated, several studies have been undertaken in this area.
Normally, the growth of smoke is determined by calculating the frame differencing [16]. Several
limitations exist, however, especially when subtracting frame content from another previous frame,
which sometimes generates an unwanted smoke-like spot; such an occurrence might misguide the
smoke identification process. In addition, subtracted frame output could fail to identify the behavior
and direction of growth, which confuses the model for the smoke-like color, but not non-smoke objects.
To quell this problem, this paper proposes a new block segmentation-based smoke growth analysis
process in which the frames are segmented into blocks and a measure presents a smoke component in
each block. The improvement of block content between consecutive blocks helps to determine the
growth behavior and direction of smoke or smoke-like objects. This process consists of two parts.
The following subsections describe the process of frame segmentation-based smoke growth analysis.

In the Frame-Block Segmentation (FBS) process, the video frames are segmented into multiple
blocks and the smoke density of blocks are calculated. This process helps to analyze the presence of
the smoke and smoke movement behavior analysis. Equation (6) presents the formula of FBS. In this
paper, selected frames are segmented into 16 density blocks, which is later used for further analysis of
smoke growth.

SBi, j = [(xstart : xend), (ystart : yend)]

xstart = (mod(i, 4) − 1) × (w/4)

xend = mod(i, 4) × ((w/4) − 1)

ystart = (mod( j, 4) − 1) × (h/4)

yend = mod( j, 4) × ((h/4) − 1)

(6)

where SB is the segmented block, w is the width, h is height, xstart and xend are start and end position of
x-axis of each block, ystart and yend are start and end position of y-axis of each block, i = 1.4, and j = 1.4.

In the segmented blocks, the smoke or smoke-like objects are represented using an image
component with the non-zero-pixel value. Consequently, the smoke density ratio (Di) of non-zero
elements is calculated of each (i-th) segmented block. The density of the non-zero element in a frame
is calculated as (total number of non-zero pixels (ni)/ total number of pixels of i-th block (Ni)) and
multiplied by 100. Figure 5 presents the FBS process, SBs, and smoke density ratio (Di) of the blocks.



Symmetry 2020, 12, 1075 8 of 18

Symmetry 2020, 12, 1075 8 of 18 

 

component in each block. The improvement of block content between consecutive blocks helps to 
determine the growth behavior and direction of smoke or smoke-like objects. This process consists of 
two parts. The following subsections describe the process of frame segmentation-based smoke 
growth analysis. 

In the Frame-Block Segmentation (FBS) process, the video frames are segmented into multiple 
blocks and the smoke density of blocks are calculated. This process helps to analyze the presence of 
the smoke and smoke movement behavior analysis. Equation (6) presents the formula of FBS. In this 
paper, selected frames are segmented into 16 density blocks, which is later used for further analysis 
of smoke growth. 

 

(6) 

 
where SB is the segmented block, w is the width, h is height, xstart and xend are start and end position 
of x-axis of each block, ystart and yend are start and end position of y-axis of each block, i=1.4, and j=1.4. 

In the segmented blocks, the smoke or smoke-like objects are represented using an image 
component with the non-zero-pixel value. Consequently, the smoke density ratio (Di) of non-zero 
elements is calculated of each (i-th) segmented block. The density of the non-zero element in a frame 
is calculated as (total number of non-zero pixels (ni)/ total number of pixels of i-th block (Ni)) and 
multiplied by 100. Figure 5 presents the FBS process, SBs, and smoke density ratio (Di) of the blocks. 

 

 

Figure 5. Segmented blocks of a frame and smoke density ratio (Di). 

2.2.3. Smoke Growth Segmented Frame Block 

Commonly, smoke expands upward and in other directions with the influence of wind. 
Alternatively, the other smoke-like moving objects, i.e., car light movement, move in a horizontal 
direction, whereas a smoke-like static object, i.e., an electric bulb, has a static position. 

To analyze the smoke growth, a segmented smoke block of consequence temporal selected 
frames is compared. In this process, the temporal selected frames (TFj) are segmented using the FBS 
process. The smoke density ratio (Di) is calculated for each block of each frame. Figure 6 presents the 
smoke density ratio in each block of each temporal frame. Finally, the smoke growth rates (SGR) of 

( ) ( )[ ]
( )( ) ( )

( ) ( )( )
( )( ) ( )

( ) ( )( )14/4,mod
4/14,mod

14/4,mod
4/14,mod
:,:,

−×=
×−=

−×=
×−=

=

hjy
hjy

wix
wix

yyxxSB

end

start

end

start

endstartendstartji

Figure 5. Segmented blocks of a frame and smoke density ratio (Di).

2.2.3. Smoke Growth Segmented Frame Block

Commonly, smoke expands upward and in other directions with the influence of wind.
Alternatively, the other smoke-like moving objects, i.e., car light movement, move in a horizontal
direction, whereas a smoke-like static object, i.e., an electric bulb, has a static position.

To analyze the smoke growth, a segmented smoke block of consequence temporal selected frames
is compared. In this process, the temporal selected frames (TFj) are segmented using the FBS process.
The smoke density ratio (Di) is calculated for each block of each frame. Figure 6 presents the smoke
density ratio in each block of each temporal frame. Finally, the smoke growth rates (SGR) of smoke
growth frames (SGF) are calculated by differencing the Di of corresponding SB of consequence in 2
frames. At the end of this growth analysis, SGFs are generated according to equation (7), where TFjDi
is smoke density ratio of i-th segmented block of j-th temporal frame. Figure 7 illustrates the process of
calculation of smoke growth rate, where TF1, TF2, TF3 are selected temporal frames and SGF1 and
SGF2 are smoke growth frames.

i f
(
TF j+1Di − TF jDi > 0

)
SGF jSGRi = TF j+1Di − TF jDi

else

SGF jSGRi = 0

(7)
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2.2.4. Smoke Growth Features

During the temporal consequence of smoke growth, the ratio of smoke growth of different
segmented blocks varies. Moreover, some stationary and static movement smoke-like objects have
distinguishable growth patterns compared with the smoke object. The localization of smoke growth
within the segmentation block and its patterns is potential information for detecting smoke. The smoke
growth rate (SGR) of the different segmented blocks is therefore considered for extracting features.
In this feature extraction process, the SGR values of blocks of SGFs are averaged and construct the
average smoke growth frame (ASGF). Finally, the block values of ASGF are organized into a feature
vector. Figure 8 represents the process of the smoke growth feature extraction.
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2.2.5. Spatial-Temporal Energy Features

Initially, the smoke object has mostly semi-transparent or very few image regions. In time, the
transparency of smoke decreases while the smoke image region increases. Based on the level of
opaqueness, the frame spatial energy is decreasing while the smoke volume is increasing. This parameter
is also very effective to differentiate the smoke versus non-smoke moving objects. From this point of
view, the spatial-temporal energies of video frames are calculated using 2D wavelet transform analysis.

In 2D wavelet transform analysis, the one-dimensional wavelet decomposition is initially applied
to the columns. In this process, the low-pass and high-pass are useful to generate sub-images containing
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the high frequency and low-frequency components, respectively. In the following step, the two sub-band
images are again decomposed using the one-dimensional wavelet decomposition, which makes the
four sub-band images, i.e., approximation, horizontal details, vertical details, and diagonal details.
Figure 9 presents the wavelet decomposition of a 2D image and its output. For calculating the frame
energy, the energy of each pixel is calculated by summing the energy of pixel of horizontal, vertical,
and diagonal components. Ultimately, the frame average energy is calculated by averaging the energies
of all pixels. Equation (8) presents the formula for calculating the energy of each pixel, and Equation (9)
presents the formula of a selected frame. Figure 10 presents the spatial energies of frames with
non-smoke and smoke moving objects.

E(i, j) = ω∅ϕ(i, j)2 +ω∅∅(i, j)2 +ωϕ∅(i, j)2 (8)

En =
1

m ∗ n

∑
i, j

E(i, j) (9)

Symmetry 2020, 12, 1075 10 of 18 

 

smoke growth rate (SGR) of the different segmented blocks is therefore considered for extracting 
features. In this feature extraction process, the SGR values of blocks of SGFs are averaged and 
construct the average smoke growth frame (ASGF). Finally, the block values of ASGF are organized 
into a feature vector. Figure 8 represents the process of the smoke growth feature extraction. 

 

 

Figure 8. Smoke growth feature extraction from SGFs. 

2.2.5. Spatial-Temporal Energy Features 

Initially, the smoke object has mostly semi-transparent or very few image regions. In time, the 
transparency of smoke decreases while the smoke image region increases. Based on the level of 
opaqueness, the frame spatial energy is decreasing while the smoke volume is increasing. This 
parameter is also very effective to differentiate the smoke versus non-smoke moving objects. From 
this point of view, the spatial-temporal energies of video frames are calculated using 2D wavelet 
transform analysis. 

In 2D wavelet transform analysis, the one-dimensional wavelet decomposition is initially 
applied to the columns. In this process, the low-pass and high-pass are useful to generate sub-images 
containing the high frequency and low-frequency components, respectively. In the following step, 
the two sub-band images are again decomposed using the one-dimensional wavelet decomposition, 
which makes the four sub-band images, i.e., approximation, horizontal details, vertical details, and 
diagonal details. Figure 9 presents the wavelet decomposition of a 2D image and its output. For 
calculating the frame energy, the energy of each pixel is calculated by summing the energy of pixel 
of horizontal, vertical, and diagonal components. Ultimately, the frame average energy is calculated 
by averaging the energies of all pixels. Equation (8) presents the formula for calculating the energy 
of each pixel, and Equation (9) presents the formula of a selected frame. Figure 10 presents the spatial 
energies of frames with non-smoke and smoke moving objects. 

 
Figure 9. Wavelet decomposition of a 2D frame image. ߃(݅, ݆) = ߱∅ఝ(݅, ݆)ଶ + ߱∅∅(݅, ݆)ଶ + ߱ఝ∅(݅, ݆)ଶ (8) 

Figure 9. Wavelet decomposition of a 2D frame image.

Symmetry 2020, 12, 1075 11 of 18 

 

௡ܧ = 1݉ ∗ ݊෍ܧ(݅, ݆)௜,௝  (9) 

 
Figure 10. Spatial energies of frames with non-smoke and smoke moving object. 

2.2.6. Final Feature Vector 

Finally, the total feature vector is constructed by combining the smoke growth features and 
spatial-temporal energy features. As discussed in the previous subsection, the total number of SGFs 
of ASGF is 16, which represents the smoke growth features. Besides this, five spatial-temporal energy 
features are calculated from four temporal selected frames. Because of this, the total feature vector 
size the 20. Finally, the total feature vector of considered video clips is used for training for and 
verification of smoke detection. 

2.3. Smoke Identification Using SVM 

In general, smoke detection is a binary classification problem. Many state-of-the-art machine 
learning and classification models exist. Based on the problem set, different classification model 
shows satisfactory performance. The k-NN is a simple non-parametric classification algorithm. The 
k-NN classification algorithm does not use the stored pre-trained model at classification. During the 
classification process, it measures the distance value of neighbors of different classes and classifies a 
test sample based on the distance voting of the training sample. The k-NN is very simple; however, 
k-NN might not be good for complex and non-linear feature distribution. Moreover, it requires 
distance calculation at every time. Additionally, fixing the value of the number of nearest neighbor k 
is quite challenging [19]. On the other hand, CNN is an exceptionally effective machine learning and 
classification model, especially for image classification problems. The CNN executes a high number 
of convolutions in different layers and extracts high profiled features based on the context of images. 
Those features are very much effective for image classification. However, it demands a high 
computation process [20]. Alternatively, the SVM is commonly used in machine learning and 
classification models. In the training process, this algorithm finds the optimal hyper-line (linear or 
non-linear) and select the minimum number of support vectors to construct the trained model. 
During the classification process, the stored trained model is used for classifying the test sample. The 
SVM is a binary classifier and it is much suitable for the two-class classification process. If we can 
provide good extracted features, then the SVM shows very good results without high computation. 
The SVM has a linear and a different non-linear kernel, which are suitable for the classification 

Figure 10. Spatial energies of frames with non-smoke and smoke moving object.



Symmetry 2020, 12, 1075 11 of 18

2.2.6. Final Feature Vector

Finally, the total feature vector is constructed by combining the smoke growth features and
spatial-temporal energy features. As discussed in the previous subsection, the total number of SGFs of
ASGF is 16, which represents the smoke growth features. Besides this, five spatial-temporal energy
features are calculated from four temporal selected frames. Because of this, the total feature vector size
the 20. Finally, the total feature vector of considered video clips is used for training for and verification
of smoke detection.

2.3. Smoke Identification Using SVM

In general, smoke detection is a binary classification problem. Many state-of-the-art machine
learning and classification models exist. Based on the problem set, different classification model shows
satisfactory performance. The k-NN is a simple non-parametric classification algorithm. The k-NN
classification algorithm does not use the stored pre-trained model at classification. During the
classification process, it measures the distance value of neighbors of different classes and classifies a
test sample based on the distance voting of the training sample. The k-NN is very simple; however,
k-NN might not be good for complex and non-linear feature distribution. Moreover, it requires
distance calculation at every time. Additionally, fixing the value of the number of nearest neighbor
k is quite challenging [19]. On the other hand, CNN is an exceptionally effective machine learning
and classification model, especially for image classification problems. The CNN executes a high
number of convolutions in different layers and extracts high profiled features based on the context
of images. Those features are very much effective for image classification. However, it demands
a high computation process [20]. Alternatively, the SVM is commonly used in machine learning
and classification models. In the training process, this algorithm finds the optimal hyper-line (linear
or non-linear) and select the minimum number of support vectors to construct the trained model.
During the classification process, the stored trained model is used for classifying the test sample.
The SVM is a binary classifier and it is much suitable for the two-class classification process. If we can
provide good extracted features, then the SVM shows very good results without high computation.
The SVM has a linear and a different non-linear kernel, which are suitable for the classification problem
accordingly. However, the RBF non-linear kernel is very much effective for most of the non-linear
classification problems. Resultantly, the SVM is used in this proposed model for detection smoke.

The SVM is a non-probabilistic classifier, which can separate the provided data into two classes
utilizing the optimal hyper-plane and maximizing the margin in high-dimensional feature space [17,21].
Usually, the linear SVM linearly separates the sample into classes, but several non-linear kernels
of SVM, i.e., polynomial, Gaussian radial basis function, hyperbolic tangent, and others, are highly
effective for classifying the complex non-linear problem. In this paper, the radial basis function (RBF)
non-linear kernel is used in this proposed model for detection smoke. The RBF non-linear kernel is
formulated as Equation (10).

k
(
svi, sv j

)
= exp

−‖ svi − sv j ‖
2

2σ2

 (10)

where k(svi, svj) is the kernel function, and svi and svj are the input data, and parameter σ is a set by the
user. The σ used here to determine the width of the kernel function k. Here, note that, if small σ values
are used, then overtraining may occur. Again, if σ values are large, then the basis function puts an
oval around the points without describing their shapes or patterns. Hence, seeing this, it is clear that
σ values impact the classification accuracy. Therefore, in this study, optimal σ values were used to
recognize smoke effectively.
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3. Experimental Result and Evaluation

3.1. Experimental Setup and Video Dataset

In order to evaluate the proposed model, a standard experimental video clip dataset has been
prepared. For the social and environmental restriction, we could not make any smoke or fire event
inside or outside the university area. Thus, the video dataset contains eight videos, which are collected
from the Bilkent and Visor online benchmarked video repositories. Table 2 includes a summary of
the experimental video dataset. The frame resolution of the videos is 320 × 240. Figure 11 shows the
screenshots of the video collected from the Bikent and Visor online benchmarked video repositories.
Each video of the experimental dataset is split into 2-second video clips and stored into two classes,
i.e., smoke clips and non-smoke clips. For example, if a video is 25 f/s then 25*2 = 50 frames consist
of each clip. For this experiment, the Matlab 2018a version is used to build a simulation program,
video analysis, feature extraction, and classification model.

Table 2. Summary of experimental videos.

Video # Video Name f/s Time No. of Frames

V_Bil_01 Bilkent/sBehindtheFance 10.00 1 min 3 s 630
V_Bil_02 Bilkent/sEmptyR1 16.67 28 s 466
V_Bil_03 Bilkent/sParkingLot 25.00 1 min 9 s 1725
V_Bil_04 Bilkent/sWasteBasket 10.00 1 min 30 s 900
V_Vis_01 Visor/movie13 25.00 1 min 20 s 2000
V_Vis_02 Visor/movie14 25.00 1 min 26 s 2150
V_Vis_03 Visor/burnout 25.00 1 min 28 s 2200
V_oth_01 other/IndoorVideo 14.99 1 min 20 s 1199
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3.2. Experimental Process

In this proposed model, the video frames are initially preprocessed and remove the background for
detecting the moving foreground object. The GMM-based moving object detector detects the moving
foreground efficiently, which extracts all moving objects in the frame. Because moving smoke is the
main concern of this detecting process, the filtered frames with moving objects are further processed
for recognizing only smoke objects using HSV color segmentation. The preprocessing step segments
the smoke or smoke-like object of the frame for further analysis. Figure 12 shows some preprocessed
frames with smoke and non-smoke objects.

In the following step, temporal frame selection has been done to trade-off the image processing
computational overhead and enough smoke growth for detection. To select the temporal frames,
two frames per second and four selected frames are considered for analyzing the smoke growth.
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Figure 12. Foreground moving object and smoke object detection.

The next and most important step of the proposed algorithm is the frame segmentation-based
smoke growth analysis. The temporal selected frames are segmented into 16 blocks and the smoke
density ratios (Di) are calculated of each block of each frame. The smoke particles gradually fill the
block. With a certain amount of smoke particles, almost all the blocks of the segmented are covered.
Depending on the presence of smoke or smoke-like objects at the segmented block, the Di value is
increased. In the experiment’s smoke frames, it is noticed that the di values of upward segmented
blocks are increased in consecutive temporal frames. Alternatively, moving smoke-like objects, such as
car lights or a moving person, give similar changes of smoke, but the expansion of the Di value only
moved in a horizontal direction. Moreover, the Di value of video frames for light bulbs remain at the
same-segmented block. Figure 13 presents the smoke moving objects and non-smoke moving objects.
The stationary smoke-like object was already filtered out by moving foreground object detection.
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After getting the Di, the smoke growth rate (SGR) is calculated by differencing the Di of the
corresponding segmented block of consequence (two frames) and constructs the smoke growth
frame (SGF). At the end of this growth analysis, three SGFs are generated, where SGF1 = TF2 − TF1,
SGF2 = TF3 − TF2, and SGF3 = TF4 − TF3. At the end of the smoke growth calculation, the 16 ASGFs
are calculated for each block from all selected temporal frames to extract features. The ASGF values of
the density block are serialized in vector to generate smoke growth features vector. Figure 14 presents
non-smoke and smoke growth feature vectors.

To extract the spatial-temporal energy of a frame, the average energy of horizontal, vertical, and
diagonal components of 2D wavelet transformation is calculated. As discussed in the previous section,
the energy of the frame is varied based on the level of the opaqueness of the smoke volume. Due to
this, the spatial energies of selected temporal frames are considered as spatial-temporal energy features.
Figure 15 presents the Spatial energies of frames with non-smoke and smoke clips for a video with 25
frames/second, where red presents energy of frames with some and the color blue presents otherwise.
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Finally, to generate the feature vector for classifying smoke, two types of features are combined:
a) smoke growth features and b) spatial-temporal energy features. In total, 20 features combining
with 16 ASGFs and 4 (four) energies are considered as a feature vector for the classification process.
For evaluating the proposed model, the extracted phenomena of smoke growth are used for training and
classification using SVM. To increase the reliability of the experimental results, 2-fold cross-validation
is used. The 2-fold cross-validation splits the extracted feature vector of dataset randomly into three
subsets, and each subset contains (Nsamples/2) × Nclasses × Nfeatures feature vectors. In this experiment,
Nclasses is 2 (two) and Nfeatures is 20. In the evaluation process using SVM, the entire training and testing
process is iterated in two instances. In each iteration, one subset of the feature vector is used from
training and one is used for testing. In this study, the classification accuracy (CA) is calculated from the
confusion matrix for assessing the performance in each evaluation. The calculation CA is formulated
in Equation (11), where the Ntsample is a total test sample and NTP is the number of true positives
(number of data points of class A that are correctly classified as class A) of a class. Table 3 presents the
experimental parameters of this proposed model. Finally, the average of the CA of all classes over the
iterations is considered as final evaluation criteria.

CA =

∑
Nclasses

NTP

Ntsamples
× 100(%) (11)
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Table 3. Experimental parameters.

Parameter Name Notation Value

HSV color segmentation
Min threshold of hue (H) hlow 0
Max threshold of hue (H) hhigh 1

Min threshold of saturation (S) slow 0
Max threshold of saturation (S) shigh 0.28

Min threshold of value (V) vlow 0.38
Max threshold of value (V) Vhigh 0.985
Temporal frame selection

Frame per second f/s Based on video
Selected frame per second n 2

Total number of considered frame N 4
Total time duration T 2

Frame block segmentation
Segmented density block SBij 16, i = 4, j = 4
Special temporal energy

Level of wavelet transformation 3
Feature vector

Total number of features Nfeature 20
Total number of classes Nclass 2

3.3. Experimental Result and Evaluation

To validate the proposed model, the experimental model is contrasted with state-of-the-art smoke
detection models. Table 4 presents the details of compared methods for validation.

Table 4. List of compared algorithm.

Algorithms Ref # Title Method

Algorithm-1 [18]
Smoke detection using Spatio-temporal
analysis, motion modeling and dynamic

texture recognition

HSV color segmentation for candidate smoke regions detection,
Spatio-temporal energy analysis, and histograms of oriented

gradients and optical flows (HOGHOFs)

Algorithm-2 [17] Smoke detection approach using optical
flow characteristics for alarm systems

Combined features from the Gabor filter-based edge orientation
and the smoke energy components of Spatial-temporal

frequencies. SVM is used for smoke classification.

Figure 16 presents the average CA of different videos of the proposed model and state-of-the-art
algorithms. In Algorithm-1 [18], the author presented an efficient spatial-temporal analysis-based
smoke detection model. In this approach, the smoke region of the video frame is segmented using
HSV color analysis only, which, on occasion, shows a false smoke region for the complex and dynamic
movement background. In our proposed model, this challenge is addressed by adaptive moving
object detection and the color segmentation-based smoke region detection process. In paper [18],
spatial-temporal smoke analysis is applied, which has proven to be effective. Conversely, histograms
of oriented gradients and optical flow (HOGHOF) descriptors for smoke motion modeling are
sub-optimal for a smoke-like moving object. In V_Bil_02, there is a background light and V_Bil_03 has
very thin smoke. Thus, the performance of Algorithm-1 shows very low classification accuracy, which
degrades the overall performance. In Algorithm-2 [17], the author presented a smoke flow pattern for
smoke detection. By contrast, only color segmentation is used for smoke segmentation in this paper.
The smoke flow pattern is detected by a multi-angle orientation-based Gabor filter applied to the
temporal differenced frame. Furthermore, the statistical parameter is extracted as features. Temporal
differenced smoke edges extracted by the Gabor filter indicate good performance in many cases. In the
case of extremely dynamic moving smoke, however, our proposed model outperforms this model.
During the experiment, the performances of the state-of-art model for video V_Bil_02 (Bilkent/sEmptyR)
is below average because of static smoke-color light. Even so, the proposed model shows better
performance. In the video V_Bil_03 (Bilkent/sParkingLot) the smoke transparency is extremely high,
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which affects the classification performance. Figure 17 provides the average classification accuracy for
the proposed model as well as the state-of-the-art algorithms.
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4. Conclusions

Nowadays, fire incidents are taking lives more than other accidents. Such incidents destroy
properties, businesses, industries, and cause an imbalance to nature. Smoke is an early indicator of a
fire accident. In this paper, an effective approach is proposed for the detection of smoke based on the
smoke-growth analysis. The flow of the working process starts with the preprocessing. In preprocessing,
the background is subtracted, and moving smoke objects are separated using GMM-based adaptive
background subtraction and HSV color analysis-based segmentation. To reduce the burden of image
processing, the temporal frame is selected. The presence of smoke in a target area is determined by the
growth of smoke in the region based on novel smoke block segmentation-based smoke growth analysis.
After analysis, the smoke growth features are extracted. Simultaneously, the spatial-temporal energy
features are extracted, and a feature vector is generated for smoke classification. Thereafter, SVM-based
decision making is applied to identify the smoke appearing in the video frames. The proposed
model has experimented with standard videos from benchmarked datasets, which eventually showed
improvement in classification. The proposed model outperforms state-of-the-art algorithms, yielding
97.34% average classification accuracy. Besides the benefits, this proposed model might not be suitable
for a smoke accident at far from the camera. This is very much effective for close monitoring in the
indoor and outdoor environment with other movable objects. Moreover, we did not evaluate our
algorithm for a dense fog scenario. As future work in the realm of outdoor smoke and fire monitoring,
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we might consider some abnormal environments. Moreover, we may consider an advanced deep
learning model for better performance.
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