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Abstract: Assistive braille technology has existed for many years with the purpose of aiding the
blind in performing common tasks such as reading, writing, and communicating with others.
Such technologies are aimed towards helping those who are visually impaired to better adapt to the
visual world. However, an obvious gap exists in current technology when it comes to symmetric
two-way communication between the blind and non-blind, as little technology allows non-blind
individuals to understand the braille system. This research presents a novel approach to convert
images of braille into English text by employing a convolutional neural network (CNN) model and a
ratio character segmentation algorithm (RCSA). Further, a new dataset was constructed, containing
a total of 26,724 labeled braille images, which consists of 37 braille symbols that correspond to
71 different English characters, including the alphabet, punctuation, and numbers. The performance
of the CNN model yielded a prediction accuracy of 98.73% on the test set. The functionality
performance of this artificial intelligence (AI) based recognition system could be tested through
accessible user interfaces in the future.

Keywords: asymmetric communication; optical braille recognition (OBR); artificial intelligence (AI);
machine learning; convolutional neural network (CNN)

1. Introduction

The World Health Organization (WHO) estimates that 38 million people in the world are blind
and 217 million are moderately to severely vision impaired [1]. Individuals who are blind or have
impaired vision are unable to read printed text. Instead, some use braille, a system of raised dots that
can be read by touch. Braille symbols are formed within braille cells: units of space which can fill up
to six raised dots [2]. The locations for the six raised dots are numbered one to six and arranged in
two columns as shown in Figure 1. According to the National Federation of the Blind [3], fewer than
10 percent of the 1.3 million that are legally blind in the United States use braille to read. These statistics
stem from the fact that some visually impaired individuals find the process of learning and using
braille to be lengthy and cumbersome [4]. As a consequence, braille literacy has begun to decline as
more people are beginning to turn to technology and audio recordings as a substitution for braille [5].
However, assistive technologies and audio recordings are not suitable for everything that a vision
impaired individual encounters on a daily basis. More importantly, those who are visually-impaired
may require the help of others to aid them in interpreting braille. Moreover, individuals who work
with the blind and are not familiar with braille may also require resources for two-way interaction via
braille because of the complexity of the system.
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Figure 1. Illustration of the basic structure of the braille cell.

Asymmetric two-way communication was a term first defined by Grunig and Hunt to describe an
imbalance in communication between individuals participating in public relations where information
is often lost or altered [6]. Although the problem presented in this paper may not necessarily
be related to public relations, it is indeed an example of asymmetric communication (Figure 2),
as there are fewer communication methods to allow non-visually impaired individuals to understand
braille, which would most likely lead to a depletion in braille literacy and thus hinder the blind in
effectively making contributions to society. As such, technology that helps to balance this asymmetry
in communication is needed to promote information flow and communication between blind and
non-blind individuals.

Figure 2. Illustration of asymmetric communication between visually impaired and non-visually
impaired individuals.

Optical character recognition (OCR) is the process of capturing and processing images of
handwritten, printed, or typed text into natural language characters. Although there exist many
modern OCR devices, such devices cannot be effectively used to recognize braille characters since
braille consists of individual dots rather than continuous strokes [7]. Optical braille recognition (OBR)
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technologies, such as the braille translation software offered by Neovision (http://www.eyeway.org/
?q=optical-braille-recognition-software), have been created to convert braille images into text and to
account for the differences between normal characters and braille symbols, but they can be expensive,
outdated, and non-portable. Moreover, according to Isayed and Tahboub, there is a lack of research on
the use of portable devices, such as mobile and camera devices, for the acquisition of braille images
in the field of OBR [8]. Thus, the aim of this research is to create a free, modern, and user-friendly
technology that is readily available and accessible.

This research introduces a new braille dataset consisting of 37 characters corresponding to
71 character classes and provides a novel method which couples a ratio character segmentation
algorithm (RCSA) and a convolutional neural network model (CNN) to convert a line of braille into its
English counterpart. This simple RSCA algorithm replaces the need for a much more complex image
segmentation algorithm that is needed for most braille recognition systems.

Motivation

While many blind individuals use braille to better adapt to the visual world, by mapping
braille symbols to natural language characters, there are not as many non-blind individuals who
can understand the braille system. Hence, braille documents and labels that are constructed and
used by the visually impaired cannot be understood by the majority of the population, thus creating
a segregation in society and an imbalance in communication flow. As someone who has had close
interactions with the blind, this study was conceived by considering any difficulties that a blind
individual or their close acquaintances may encounter on a daily basis. For instance, while caring for a
blind individual who suffered from a recurring medical condition that required prompt medication,
it became obvious how important it was to understand the braille system. All of the individual’s
medicine bottles were labeled in braille, so the process of finding the correct medication was a laborious
task. With the lack of accessible braille-to-text conversion technology, I used old braille-to-English
dictionaries to convert every label into English text, one letter at a time. While this may be just
one example where fast and efficient OBR technologies may be beneficial to both the blind and
non-blind, there are many other instances where the blind rely on non-visually impaired individuals to
help them navigate their everyday activities. Parents of visually impaired children that struggle with
understanding their children’s braille system for reading and writing may have trouble communicating
with and teaching their children and would likely benefit from having easily accessible OBR technology.
Moreover, with the help of portable OBR systems, staff working at institutes for the visually impaired
will have a more effortless time understanding the resources used by the visually impaired. As such,
this braille system has the potential to be useful in decreasing asymmetric communication that any
non-blind individual may face when trying to assist a blind individual.

In addition, research has revealed a noticeable gap in the reproduction and preservation of braille
documents constructed by the blind [9], which can be remedied by leveraging efficient OBR systems.
Many have disregarded braille documents simply because they were unable to interpret their contents.
This negatively impacts the blind community as it hinders their ability to communicate their ideas
to society through print. Hence, the main purpose of this recognition system is to aid non-blind
individuals in understanding braille; it is a tool to assist non-blind individuals in “reading” braille
in order to better communicate with and to aid the blind. It also serves the purpose of preserving
and reproducing the contents of braille documents that may otherwise be uninterpretable by the
general population.

This paper is organized as follows: Section 2 gives an overview of the techniques used in this
study as well as previous approaches to OBR. Section 3 gives an introduction to convolutional neural
networks, a machine learning approach to OBR which has not been done previously. Sections 4–6
outline the setup of the study, the proposed approach, and the results respectively. Finally, Section 7
provides a discussion of the results, limitations of the study, future directions, as well as a conclusion
on the implications of this study.

http://www.eyeway.org/?q=optical-braille-recognition-software
http://www.eyeway.org/?q=optical-braille-recognition-software
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2. Literature Reviews

OBR has been an active field of research for many years. The act of converting braille images
into text can be split into three main parts, image acquisition, cell segmentation, and braille-to-text
translation. Researchers in the past have used scanners to acquire braille images; however this
technique was incapable of handling distortions such as stains or defects in the paper [10–13].
Murray and Dias demonstrated an attempt to overlook paper quality by scanning only small portions
of a braille document at once, but this method proved to be quite slow and laborious [14]. Furthermore,
scanners are not practical image acquisition devices since they only work on thin and flat surfaces such
as paper; however, daily occurrences of braille may not always fall into this category. As such,
it was decided that portable devices such as cellphones and cameras should be considered for
image acquisition.

Once a braille image is captured, the individual dots in the image need to be separated from the
background. Edge detection is a common image processing technique that finds the edges of objects
within an image by detecting discontinuities in image brightness [15]. Edge detection is however not
effective with images acquired from cameras since these images may be subject to glare and distortions
caused by camera angles and lighting. Thus, in this study, a method that does not rely on differences
in image brightness is required for dot recognition.

Due to the uniformity in the placement of braille dots, past research efforts focused on the use
of grids and matrices for braille-to-text translation [10–12,16]. By plotting the dots in each character
and noting the presence or absence of each of the six dots, they were able to map each braille symbol
to its corresponding text character [8]. The mapping of braille symbols to text is often performed
using binary codes for each braille cell, which are then converted to decimal codes using the following
formula [8,10,16] :

D =
6

∑
k=1

2bk lk (1)

where lk is the dot location as numbered in Figure 1, bk is either 0 if there is no dot or 1 if there is a dot
at location k, and D is the decimal code. Although this method of recognizing braille symbols is rather
straightforward, it may not be effective when there is too much noise in the image as image defects
could be mistaken for braille dots. In order to address this issue, image pre-processing techniques
can be employed to de-noise the background of the braille image. Some researchers have used gray
scale image conversion and noise filtering techniques such as increasing the brightness of images [10].
An example of an RGB to grayscale conversion formula used by Li and Yan is as follows [13]:

grayscale = 0.299r + 0.599g + 0.112b (2)

where r, g, and b are the values for the red, green, and blue color components, respectively.
An alternative approach that omits the need to de-noise the data is to build a machine

learning based recognition system that learns noisy data and improves its performance overtime.
Machine learning algorithms have been successfully applied in the past to convert braille symbols
into their natural language counterpart. Li and Yan implemented a support vector machine
model [13], Morgavi and Morando used an MLP model [11], and Wong et al. applied a probabilistic
neural network [17]; however, none so far have used convolutional neural networks to perform
braille-to-text conversions.

3. Introduction to Convolutional Neural Networks

An artificial neural network (ANN) is a machine learning method consisting of connected neurons,
inspired by the biological nervous systems. In Figure 3, each node represents a neuron while each arrow
represents a connection from the output of one node to the input of another node. Each connection
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is assigned a weight that conveys its importance. In all ANN models, there is one input layer and
one output layer, while the number of hidden layers can be tuned. The process of training a neural
network model with multiple layers is known as “deep learning” [18].

Figure 3. Diagram of a simple artificial neural network (ANN) model consisting of an input layer
(three input nodes), a hidden layer (five hidden nodes), and an output layer (two output nodes).

An image consists of a rectangular matrix of pixels specified as width × height, where width and
height are both measured in the number of pixels. Furthermore, there is a third parameter, the number
of channels, which specifies whether an image is black and white (number of channels = 1) or colored
(number of channels = 3, representing RGB). Thus, an image with dimension 28× 28× 3 is an RBG
image of size 28 pixels by 28 pixels.

The convolutional neural network (CNN) is one form of ANN that is mostly applied to image or
pattern recognition tasks [19]. By using kernels (filters) with a specified size and stride, CNNs are able
to maintain the spatial and temporal information of the images, unlike other types of neural networks,
such as the multilayer perceptron (MLP), which squeezes image matrices into one dimensional
vectors [20]. Most CNN models consist of convolutional layers, pooling layers, and fully-connected
layers [21]. Rectified linear unit (ReLU) is a non-linear activation function that rounds negative values
to zero and is often used for deep learning in computer vision [22]. These layers consist of some or all
of the following tunable hyperparameters: stride, kernel size, and padding. A larger kernel size or
stride can overlook features and skip essential details in the images whereas a smaller-sized kernel
could provide more information that may not necessarily be relevant [23]. Since pixels in the middle
of the image are used more often than those on the border, padding can be added to the border of an
image to increase the amount of information preserved on the borders of images [24]. If the image size
is n× n, the filter size is f × f , the padding size is p, and the stride is of length s, then the dimension
of the output image after each convolutional or pooling layers can be calculated as follows:⌊

n + 2p− f
s

+ 1
⌋
×

⌊
n + 2p− f

s
+ 1

⌋
(3)
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In Figure 4, the input image (blue) has size 5 × 5, kernel of size 3 × 3, padding (white) of size
(1, 1), and stride of (2, 2). The output image (green) is then of size⌊

5 + 2− 3
2

+ 1
⌋
×

⌊
5 + 2− 3

2
+ 1

⌋
= 3× 3 (4)

Each pixel in the output image is a result of the corresponding convolution (grey).

Figure 4. Illustration showing how convolutions work on an image with a single channel for simplicity
(adapted from https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/padding_strides.gif).

4. Dataset and Setup

The dataset consists of English braille symbols, specifically English Grade 1 braille which is
un-contracted, meaning there is a specific braille symbol for each letter in the English alphabet as well
as for punctuation. Just as there are insufficient datasets for speech-to-text recognition [25], multiple
online searches showed a lack of braille character datasets that fit the needs of this study. The few
that do exist are either in foreign languages, have broken links, are not publicly available, or only
contain printed images of braille, which are not suitable for training a recognition system that can
learn imperfect and blurry images. As such, a new dataset was constructed. In consideration of the
fact that braille may not always look embossed or printed in a photograph or may have distortions
due to camera angles or lighting, it was recognized that a substantial dataset of characters would be

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/padding_strides.gif
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required to train the model. Images of braille were gathered from various sources, including rare book
collections, online images, signs, and labels. Images were then cropped into single characters and the
characters were then labeled individually. To ensure that the training, test, and validation sets did not
overlap in terms of source images, only a few randomly chosen braille characters were cropped out
of each source image and included in the dataset. The data was exported as a csv file, containing the
labels and source directories of the images, to be used for model training. Noise and filters including
changing sharpness, resolution, contrast, brightness, and color of the images (Figure 5a), were added
not only to increase the dataset size, but also to better train the model by allowing it to recognize and
predict imperfect images of braille. Since the dataset was created by cropping various images of braille,
the images were not uniformly sized. To address this issue, all the images in the dataset were re-sized
to 28 × 28 × 3 pixels. These dimensions were then permuted to 3 × 28 × 28 pixels prior to being fed
into the model.

(a)

(b)

Figure 5. (a) Sample cropped images from the braille dataset. (b) The 37 different symbols in the braille
dataset, which makes up 71 braille character classes. Note: The first 10 letters of the alphabet have
the same braille symbols as the 10 numerical digits, so the “#′′ symbol preceding the digit character is
used to denote a numerical symbol. Similarly, the “CAPS” symbol precedes a letter symbol to denote a
capital letter.

The dataset consists of approximately 700 copies of each of the 37 different braille symbols,
as shown in Figure 5b, which adds up to a total of 26,724 labeled braille character images.
The 37 characters are comprised of 26 braille symbols representing letters in the English alphabet,
10 numerical digits and 11 other braille symbols, 8 of which are English punctuation characters.
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Since there are not enough symbols in the braille system to encompass all the possible letters in the
English language, some symbols are repeated and require an additional symbol preceding them in
order to be differentiated. A number character precedes a braille symbol to signify a numerical value
rather than a letter of the alphabet, since the first 10 letters of the alphabet have the same braille
symbols as the 10 numerical digits, and a capitalization character comes before a letter of the alphabet
to represent a capital letter [2]. A space character was also incorporated into the dataset to allow for
the recognition of individual words amongst a string of braille. Considering all the different English
characters including punctuation, numbers, the space symbol, and lowercase and capital letters, a total
of 71 character classes are contained in the dataset.

5. Proposed Approach

A diagram illustrating the general methodology is shown in Figure 6. After a braille image is
acquired, it is first subject to pre-processing before it is submitted to the recognition system. The two
main steps involved in converting the image into English text are segmentation of the image by the
ratio character segmentation algorithm (RCSA) and model training and predicting as shown in Figure 7.
Each braille character that was segmented out using the RCSA was individually fed into the model;
their outputs were then concatenated to produce the English conversion.

Figure 6. Overview of the steps involved in optical braille recognition (OBR).

5.1. Image Acquisition and Pre-Processing

Braille images can be acquired using devices such as mobile phones and cameras that allow
for the easy submission of the image onto the recognition system. Prior to feeding the image into
the RCSA and CNN model, certain properties such as image skewness need to be fixed. A simple
pre-processing technique for solving the skewing problem is to use linear regression to find the
line-of-best-fit through the braille dots to find and correct the angle of skewness [26]. Using the general
linear regression formula:

Y = bX + a (5)

b can be derived by:
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b =
n ∑n

i=1 xiyi −∑n
i=1 xi ∑n

i=1 yi

n ∑n
i=1 x2

i − (∑n
i=1 xi)2

(6)

where n is the number of pixels and xi and yi are the coordinates of the image.

Figure 7. Diagram of the proposed approach for the ratio character segmentation algorithm (RCSA)
and model training and prediction.

Another method for addressing image skewness is to simply rotate the image until parallel
lines that run vertically and horizontally across the image intersect the dots exactly [27].
Other pre-processing steps described in Section 2, such as de-noising and grayscale conversion are not
required in this study since the braille dataset already contains noisy and filtered samples to allow the
model to learn imperfect braille images.

An additional pre-processing technique that is required for this recognition system is the cropping
of white-space around the braille image to allow for optimal image segmentation in the proceeding step.

5.2. Ratio Character Segmentation Algorithm

Many popular OCR libraries utilize deep learning with image segmentation to distinguish
single characters within an image [28]; however, since the spacing around each braille character
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is uniform due to the three-by-two matrix structure of the braille cell, as seen in Figure 1, a novel
ratio character segmentation algorithm was created for partitioning an image of braille into individual
braille characters. This algorithm took the height of the braille image and multiplied it by 0.78 to
derive the width of a single braille character within the image. This function was able to be extended
to a full line of consecutive braille characters due to the uniformity of the dimensions of each braille
cell. The number of characters within a braille image was obtained by dividing the total width of the
braille image by the width of a single braille character within the image. Since the ratio segmentation
algorithm depended upon a certain height-to-width ratio for each braille character, the expected input
of the algorithm was a single-lined braille image that was cropped till the padding around the entire
image was approximately one-third of the distance between each braille character, as seen in the upper
portion of Figure 7. An in-depth step-by-step procedure for implementing the RCSA is as follows:

1. Crop a single line of braille till the padding around the entire image is approximately one-third
of the distance between each braille character.

2. Measure the height (h) of the braille image.
3. The width (w) of the braille characters is h ∗ 0.78.
4. Measure the total width (wtotal) of the line of braille.
5. The number of characters in the braille image (nchars) is thus wtotal/w.
6. Segment the image into nchars equal segments width-wise. Each character will then be fed

individually into the CNN model.

5.3. Convolutional Neural Network Model

A convolutional neural network (CNN) was used to train on the newly constructed dataset
due to its wide scale success in image classification and recognition [29]. The CNN model includes
two convolutional blocks each consisting of a convolution layer, max pooling layer, and leaky ReLU,
followed by a linear layer, a leaky ReLU, and a final linear layer as seen in Figure 8.

Figure 8. Diagram of the architecture of the convolutional neural network (CNN) model.

A total of 80% of the dataset was allocated to the training set and the remaining 20% was split
evenly between the test and validation sets. A training set was used to train the CNN model, while a
test set was used to estimate how well the model had been trained to predict and classify different
braille images. An additional validation step was included for hyperparameter selection in order to
ensure that the parameters did not overfit the training set after thorough training, or in other words,
to ensure that the model did not learn the data and noise in the training set too well that it failed to fit
additional data and predict future data reliably. However, the test set served as the “true” measure
of performance since nothing was optimized for performance on the test set and it was possible for
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hyperparameter search to overfit the validation set by trying out too many hyperparameters. A batch
size of 30 was used for each of the three subsets. Specifications such as the batch size, a learning rate of
1e-4, cross entropy loss as the loss function, and the Adam optimization algorithm as the deep learning
optimizer, were determined based on multiple tests on the training performance of the model.

The CNN model with the best hyperparameters is saved then used in the OBR algorithm.
Pseudocode for the proposed implementation of OBR is shown in Algorithm 1. Lines 5 to 9 correspond
to the RCSA for one input braille image, while lines 11 to 24 detail how the recognition system outputs
the corresponding English character based on the model prediction.

Algorithm 1 OBR algorithm

1: model = CNN()
2: model.load()
3: for each input image im do
4: resize and permute image to 3× 28× 28 pixels
5: h← height of im
6: w← h ∗ 0.78
7: wtotal ← total width of im
8: nchars ← wtotal/w
9: divide image into nchars equal segments width-wise

10: translation← “"
11: for each braille symbol sym in the image do
12: prediction←model.predict(sym)
13: if prediction == “#′′ or “CAPS′′ then
14: continue
15: end if
16: if preceding symbol prediction is “#′′ then
17: translation.append(numerical prediction corresponding to prediction)
18: else if preceding symbol prediction is “CAPS′′ then
19: translation.append(uppercase prediction corresponding to prediction)
20: else
21: translation.append(character corresponding to prediction)
22: end if
23: end for
24:
25: return translation
26: end for

6. Results

For evaluating the proposed CNN model, 80% of the dataset was allocated for the training set
and the remaining 20% was split evenly among the test and validation sets. After thorough training,
the CNN model was able to predict and classify images with an accuracy of 98.73% on the test set.
A learning curve was plotted after thorough training and testing of the model to check for overfitting
as shown in Figure 9.

Since both the training and validation losses slowly plateau overtime, and the validation
loss does not suddenly peak above the training loss, this indicates that the model was learning
rather than memorizing the training subset. To experiment on the functionality of this AI system,
the model and the ratio segmentation algorithm were incorporated into two user interfaces,
a Flask web application and an Android application. The web application contains a page that
allows users to easily upload and submit a pre-cropped image of braille and receive its English
counterpart, while the Android application employs the uCrop API functionality provided by Yalantis
(https://github.com/Yalantis/uCrop) to allow users to take a picture or select an image of braille
from their phone gallery, crop the image, and submit the image into the AI system to receive an instant
English conversion.

https://github.com/Yalantis/uCrop
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Figure 9. Plot showing the training and validation loss as a function of the number of training epochs.

7. Discussion and Conclusions

There are many methods for acquiring images of braille including the use of scanners and
document cameras; however, these devices are not as commonly used as mobile phones, which are
portable and can easily capture one’s day-to-day observations. The proposed method of braille
image acquisition makes use of portable phones or camera devices that can capture images of braille
and allow users to receive instant braille-to-text conversions. Although this approach may be more
prone to noise due to the innate nature of camera-captured images, this method can be employed
seamlessly throughout real-world encounters of braille, which are not limited to printed braille. Thus,
by constructing the dataset from a diverse collection of braille images, the feat of recognizing and
predicting blurry, unfocused, and distorted images was able to be accomplished.

The initial approach to character segregation was to utilize fewer layers in the model and instead
incorporate edge detection to distinguish braille character dots from their background. Edge detection
is a common machine learning technique used to find boundaries of objects within an image,
which would enable the individual braille dots to be extracted from the image, as suggested by
Ng et al. [15] who separated embossed pages of braille into distinct dots and background sections.
However, it was decided that this technique would not be used as it relies on the detection of
discontinuities in brightness which is not as effective when the data contains background noise.

In addition, although the standard approach to OBR is to divide each braille cell into 3 by 2 grids
and account for the presence or absence of a dot in a particular grid [28], it was recognized that this
method may not be as suitable for images of braille that could be highly affected by camera angles
and lighting. A new approach was taken with regards to character segmentation followed by model
training on the individual images. This approach allows the recognition system to recognize the
white-space around characters rather than the presence or absence of individual dots in each braille
cell and proved to be equally efficient at segregating and recognizing individual braille characters.
However, this character segmentation approach relies on a ratio segmentation cropping algorithm
that is very sensitive to an excess or lack of padding, thus requiring an additional step of cropping the
image for optimal translations.

The AI system has been implemented to recognize and translate the characters and words of a
single line of braille into English text with an accuracy of 98.73%. This was achieved by linking the
CNN model to two recognition techniques: character and word recognition. Single characters were
able to be recognized through the use of the RCSA while individual word recognition was achieved by
adding a space character as one of the 37 symbols in the braille dataset. A diagram illustrating this
progress is presented in Figure 10.



Symmetry 2020, 12, 1069 13 of 15

This approach presents some limitations that may be sources of future investigation. Line-by-line
conversions of braille may not be the most efficient method for converting large lengths of braille into
English text. In the future, image segmentation should be incorporated into this AI system, which will
provide an additional function of partitioning an image of a page of braille into multiple lines of braille
that can then be interpreted and converted into English text by the current system. An alternative
approach is to extend the ratio character segmentation technique into line ratio segmentation, so that
the segmentation of characters and lines of braille can be performed simultaneously.

Figure 10. Flow chart showing the typical steps needed to predict paragraphs of braille (in green).
The combination of the CNN model and the RSCA algorithm with the addition of a space character in
the dataset (in blue) enables the jump from predicting braille characters to braille lines.

Future directions could also involve adding additional characters to the braille dataset in order to
encompass the entire braille system and to further improve the accuracy of braille-to-text conversions.
At the moment, it is difficult to make comparisons with other research works related to OBR since
the datasets used amongst these works are inconsistent in terms of language and acquisition sources.
However, it is worthy to note that other OBR studies have also yielded high prediction performance.
Morgavi and Morando achieved 98% accuracy by using a scanner and an MLP model on printed
braille documents [11]. Li and Yan’s approach yielded 95% by also using a scanner and printed braille
documents, except with a support vector machine model [13]. The consistent achievements of high
prediction accuracy amongst different OBR approaches is most likely related to the uniformity in the
placement of the braille dots.

Additionally, both user interfaces are currently undergoing alpha testing to identify any potential
issues that may arise when in use and are intended to be made public once testing is complete. This will
allow for error-free real-world conversions of braille images to English text.

Braille may not be a system that is familiar to many, but it is certainly important to those with
impaired vision or those who are close to individuals who rely on the braille system. By leveraging
a phone camera capturing method, a simple ratio character segmentation algorithm, and a neural
network approach to OBR, this technology has the potential to deeply impact the blind community as
it provides a solution to asymmetric communication flow between the blind and non-blind by allowing
the braille system to be universally interpreted and understood.

Funding: This work was partially supported by the Ministry of Science and Technology of Taiwan under grant
number MOST 106-2410-H-230-001-MY2.
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