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Abstract: Recently, X-ray pulsar-based navigation (XPNAV) as a significant navigation method has
been widely used in deep space exploration. However, the accuracy of XPNAV is limited to the
existence of the pulsar direction error. To improve the performance of XPNAV, we have proposed
a novel algorithm named “the modified augmented state extended Kalman filter” (MASEKF).
The algorithm considers the high-order terms of direction error and then adds a more precise direction
error into state equation and measurement equation. In the simulation, by comparing the performance
of MASEKF, EKF, and ASEKF at the same time, it is found that MASEKF has better performance
in the accuracy and stability, and the results also demonstrate that MASEKF algorithm has faster
convergence speed. This paper provides a strong reference for other improvements of algorithms
towards direction error. The purpose of this study is to establish MASEKF and add the direction
error into the measurement equation and the state equation, so as to realize the coordination and
symmetry of the algorithm.
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1. Introduction

Over the past decades, the Global Positioning System (GPS), a well-known navigation method,
has been performing well in low Earth orbit (LEO) satellite navigation [1]. It provides users with
real-time position and speed information. Unaffected by the weather, the positioning accuracy of the
single machine is better than 10 m. The dominant application and high precision of GPS have strongly
impressed people. However, the GPS signal is designed to transmit information toward the earth;
the dominating advantage of GPS cannot be used well in in-depth space exploration. Thus, GPS cannot
provide autonomous navigation information services for spacecraft flying in interstellar space [2].
To overcome the above defects, X-ray pulsar-based navigation (XPNAV) is emerged that can work well
in solving deep space problems; it uses the X-ray emitted by pulsars in the universe, then obtains the
precise information of spacecraft by measuring the Time-of-Arrival (TOA) of X-ray pulsar radiation
signals [3]. In XPNAV, the X-ray detector is installed on the spacecraft, the radiated X-ray photons
are detected by the pulsar, the photon arrival time is measured, and the pulsar image information
is extracted. After the corresponding signal and data processing, the spacecraft determines some
parameters, such as the orbit of navigation, time, and attitude. As a matter of fact, XPNAV has attracted
plenty of attention around the world.

In the previous researches of XPNAV, a significant research achievement is realized by proposing
a recursive extended Kalman filter algorithm (EKF). Through the application of EKF, the accuracy of
spacecraft’s position error can be controlled within 100 m, and the accuracy of velocity error is around
10 mm/s [4]. On the basis of EKF algorithm, a novel algorithm named the suboptimal multiple fading
extended Kalman filter (SMFEKF) is established subsequently, which can be up to 65.43% and 61.70%
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lower than that with EKF for position and velocity errors, respectively [5]. Similarly, there is another
algorithm named the strong tracking extended Kalman filter (STEKF), which has introduced the fading,
to dynamically adjust the gain matrix; it is sure that STEKF can overcome the EKF defects in filtering
performance degradation caused by the more complex nonlinear navigation model due to uncertainty.
Therefore, STEKF has higher valuation accuracy, numerical stability, and strong traceability than
EKF [6]. Besides EKF, other nonlinear state estimators have been developed such as the unscented
Kalman filter (UKF), which as one of the sigma point Kalman filters, avoids a derivative calculation
and has a higher theoretic precision than EKF [7]. Through incorporating state constraints in the UKF,
the strong robustness of UKF is verified, and the performance of the UKF estimates is better compared
to that of the EKF in the convergence rate as well as in the long-term state estimation error [8]. On the
principles of UKF, a augmented state unscented Kalman filter (ASUKF) is proposed by regarding the
system bias as a slowly time-varying augmented state; the simulation confirms its effectiveness and
reliability [9]. Furthermore, a novel approach of the modified strong tracking Kalman filter (STUKF)
is designed, which had introduced a defined suboptimal fading factor based on the orthogonality
principle of the innovation vectors in the framework of the UKF into the prediction covariance to
adjust the Kalman gain matrix; the effectiveness of the STUKF is demonstrated in the simulation
experiments [10]. Recently, a lot of novel algorithms have been developed quickly, an Adaptive
Divided Difference Filter (ADDF) algorithm is introduced, which had optimized pulsar’s position
vector error by maximizing the incident flux density recorded by the X-ray detector; its simulation
results had revealed that the navigation performance of ADDF can be improved by 70% compared
with that of UKF and DDF [11]. Then, with the awareness of a tiny direction error may cause a
huge system bias in XPNAV [12], a pulse time difference of arrival (TDOA) technology is proposed
with the consideration about direction error, which is conducted by measuring several spacecraft
simultaneously. Although the accuracy of XPNAV can improve a lot, the huge complex work and
expensive operation do constrain the use of TDOA [13]. Another flexible method is to introduce the
norm of direction error, which is verified to have higher accuracy by conducting rigorous simulation
experiment. However, this algorithm relies heavily on the initial state of system bias and usually
accompanies with large amount of calculation [14].

In this paper, different from prior works of literatures, the source of error that caused low accuracy
of XPNAV is discussed carefully, recognizing the system error caused by pulsar direction error in detail.
If changes of the dynamic model and measurement model are viewed as slowly time-varying, then the
right ascension and declination of pulsar’s motion can be measured accurately. When Very Long
Baseline Interferometry (VLBI) is the primary source of direction error, assuming that direction error
unchanged during the measurement time step; hence, it is feasible to get a specific formula of direction
error [4,12,15]. With consideration of the high-order terms of direction error, a new algorithm named
Modified Augmented State Extended Kalman Filter (MASEKF) is constructed; it can optimize the
state equation and measurement equation by introducing the improved direction error, which can be
regarded as an innovative attempt. Besides, it is worth noting that EKF is applied widely in engineering
due to its fast calculation speed, and thus, EKF is selected as the filtering part of MASEKF. In the
simulation, under three different initial conditions, the performance of MASEKF is compared with that
of ASEKF and EKF at the same time.

The content structure of this paper is arranged as follows. Section 1 is a refined introduction;
the theory of pulsar direction and the improved algorithm MASEKF are outlined in Section 2;
subsequently, the simulation is conducted in Section 3; and a brief conclusion is drawn in Section 4.
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2. Materials and Methods

2.1. Theory of Pulsar Direction Error

2.1.1. The Principle of XPNAV

XPNAV is well suited in dealing with deep space exploration problems, and pulsar used in
navigation can emit X-ray photon signals. During the process of the propagation of the signal,
X-ray detector on the spacecraft can capture the signal to measure the amount and the arriving time of
photon [16,17]. Subsequently, epoch folding method is used (it is the process of counting the recorded
photons by means of direct folding or rapid folding and finally, normalizing the photon number
and obtaining the pulse contour) [18] to obtain the time tsc of the pulsar arrival at the spacecraft,
using a pulsar timing method to get the time tSSB of the pulsar arrival at the center of the solar system
(SSB). Then, XPNAV can calculate corresponding time delay between tsc and tSSB [19]. Additionally,
the corresponding distance can be acquired, which is the difference between the distance from SSB
to pulsar and the distance from spacecraft to the pulsar. In addition, in spite of the tiny changes of
pulsars, during the simulation period, when the position of the pulsar and the spacecraft’s initial
parameters have been determined, a recursive estimation model of spacecraft position and velocity
can be established accurately [20,21]. The basic principle of XPNAV is shown in Figure 1.
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Figure 1. The principle of X-ray pulsar-based navigation (XPNAV) (the parameters and geometric
diagrams used by XPNAV).

Following the above analysis, it can be found that tSC and tSSB are two fundamental parameters
that need to be determined at the beginning, which is usually calculated by the epoch folding method.
Another primary parameter ∆t can be easily determined by ∆t = tSSB − tSC. The result of the system
error is not negligible for the positional accuracy of the spacecraft. Thus, the pulse time model can be
modified as follows [4,9].
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where ti
SSB is the time from the ith pulsar to the SSB, ti

SC is the time from the ith pulsar to the spacecraft,
c is the speed of light, ni stands for the real direction vector of the ith pulsar, rSC is the vector from
SSB to spacecraft, D0 represents the relative distance between the pulsar and the SSB, b is the position
vector of SSB relative to the center of the sun, G is the gravitational constant, Msun is the mass of the
sun, and Bi is the system bias caused by the direction error of the ith pulsar. On the right-hand side
of the expression, the first item is the first-order Doppler delay, which is the propagation time from
the detector to the SSB and the pulsar to the SSB. The second item is the annual parallax caused by
the annual change in the earth orbit, which together with the first term are collectively referred to as
Roemer delay, and the third item is Shapiro delay [22].

As is indicated in Figure 1, since GPS satellite is used in the simulation, the orbital dynamics
model is required to establish under the Earth-centered inertial (ECI) reference frame. Thereby the
relationship of the vector between spacecraft, earth centroid, and SSB can be expressed below.

ri = rsc − re (2)

where rsc represents the vector from SSB to spacecraft, ri is the vector between the ith spacecraft and
earth center of mass, and re stands for the vector between SSB and earth center of mass, which is
usually obtained by JPL ephemeris DE421.

2.1.2. Analysis of System Error

In the process of applying XPNAV, system error was produced by the following aspects: 1. direction
error ∆n, in this paper, Roemer delay and Shapiro delay were the main source of direction error; 2. clock
error caused by clock drift; 3. the error caused by D0; and 4. position error caused by ephemeris.
In general, the ephemeris error is time varying and changes slowly. However, the ephemeris error
can increase by 0.25 m within 1 h, which should be taken into account seriously in XPNAV [23].
Among the above four common errors, the error caused by D0 is tiny, that is because the distance
between the pulsar and the SSB is quite large [14,24]. Clock error is another vital item that do affect
the accuracy of navigation; in the subsequent discussion, its value and possible changed situation are
carefully considered.

In the prior studies, the Time-Differenced method is often used to handle system error. However,
due to the inaccuracy of the initial model and without the consideration of direction error, after applying
the Time-Differenced method in the Mars probe and Jupiter detector, it is found that the position error
can even reach to the level of kilometers. Besides, as a commonly used algorithm UKF, constructing
sampling points is easy to diverge and always accompany with poor stability. Some existing methods
could not deal with the existence of large system error well [25]. To research the system error more
scientifically, the other error terms causing system error should be discussed in detail, and the
corresponding algorithm should be optimized to meet the higher accuracy requirements.

Bi is obtained by the difference on the right-side term of Equation (1). In the difference,
the corresponding terms of the real direction vector are different from the terms of the estimated
direction vector, and after the elimination of the terms independent of the direction vector, Equation (3)
is obtained as below.

Bi =
(
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)
· rsc +

1
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−
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− 2
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where n̂i is the estimated unit direction vector.
In Equation (3), many terms are defining Bi, but it is found that most existing algorithms only

consider the effect of the first term
(
ni
− n̂i

)
· rsc. In fact, all terms in Bi should be considered seriously;

thus, a simple calculation is conducted to get the magnitude of every item in Equation (3); the specific
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position in the orbit of the ARGOS vehicles was chosen at time = 2451538.96769266 JD, and the results
were only valid for this specific location. The single source used in this analysis was the Crab Pulsar,
along with its proper motion of µα = −17 mas/year and µδ = 7 mas/year and a distance of 2 kpc [26].
A value of ∆tn = 100 days was selected as a representation of the elapsed time between the measured
D0 and the current time [18].

In Table 1, it can be seen that the value of the first term is quite larger than that of other
terms, but that does not mean that the term with smaller value can be discarded casually; it is
found that even the third term with the smallest value can produce a position error around 0.45 m
(0.000000001493c ≈ 0.45 m). Therefore, all terms in Bi need to be handled carefully. In order to capture
the subtle changes produced by Bi, the derivative of Bi versus time t is calculated as is shown below.

dBi

dt = L1 + L2 + L3 + L4

L1 =
(ni
−(ni

−n̂i)·rsc)(dre)

dt
L2 = 1

cD0

[
dre
dt re

(
ni2
−

(
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− n̂i

)
· rsc

)]
L3 = 1

D0

[
dre
dt

(
ni2
−

(
ni
− n̂i

)
· rsc

)]
L4 = 2bGMsun

c2
dre
dt

[(n̂i+1)(re+rsc)]
[(nin̂i+n̂i+ni+1)](ni·b+|b|)

(4)

Table 1. The calculated results.
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In accordance with Equation (4), it can be found that
(
ni
− n̂i

)
plays a vital role in dBi

dt , ∆n =
(
ni
− n̂i

)
,

and ∆n is the pulsar direction error as well.
∣∣∣∣ dre

dt

∣∣∣∣ is the earth rotation rate; due to the existence of
direction error and the earth rotation, the accompanied deviation can be quite large. For example, if the
pulsar direction error is 0.001′′ , the maximum value of the earth rotation rate is closed to 30.3 km/h and
the maximum of deviation is approximate to 1.468× 10−4m/s [27]. Therefore, the algorithm towards
the pulsar direction error should be optimized further.

2.1.3. Analysis of Direction Error

According to literature [27], the Taylor series expansion of direction error should be discussed.
Taylor’s series expansion method is widely used in the above arguments, but its quadratic terms and
other terms are usually ignored [28], which is a primary reason because of which the direction error
cannot be mainly eliminated.

In this part, the right ascension angle α and the real declination angle δ form the pulsar direction
vector; direction vector is usually shown as (α, δ) . Let the estimated position be

(
α̂, δ̂

)
, then the pulsar

direction error ∆n can be calculated using

αi = α̂i + ∆αi

δi = δ̂i + ∆δi

ni = n̂i + ∆ni
(5)
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Usually, the real pulsar direction vector ni is expressed as follows.

ni =


cos δi cosαi

cos δi sinαi

sin δi

 (6)

In the prior researches, the high order terms in ni are ignored consistently; only the first-order
term is saved in the final algorithm. Its expression is usually shown as follows.

∆ni =


− cos δ̂i sin α̂i

· ∆αi
− cos α̂i sin δ̂i

· ∆δi

cos δ̂i cos α̂i
· ∆αi

− sin δ̂i sin α̂i
· ∆δi

cos δ̂i
· ∆δi

 (7)

In this paper, the high-order expansion terms of direction error are processed further;
the second-order term of the Taylor series is shown below.

∆ni =


− sin δi cosαi

· ∆δi
− sinαi cos δi

· ∆αi
−

cosαi cos δi
·∆δi2

2 + sin δi sinαi
· ∆δi∆αi

−
cos δi cosαi

·∆αi2

2
− sin δi sinαi

· ∆δi + cosαi cos δi
· ∆αi

−
cos δi sinαi

·∆δi2

2 − sin δi cosαi
· ∆δi∆αi

−
sinαi cosαi

·∆αi2

2
cos δi

· ∆δi
−

sin δi
·∆δi2

2

 (8)

Actually, the apparent differences between the previous methods and the proposed method need
to be shown clearly. We introduced the measurement equation and the state equation into discussions
because these two equations can reflect the differences between various ways straightly.

2.2. The Improved Algorithm of MASEKF

Extended Kalman filter (EKF) is an efficient recursive filter that estimates the state of a dynamic
system based on a series of measurements. It performs the first-order linear truncation of Taylor
expansion of the nonlinear function but ignores the remaining higher order terms. Therefore, EKF is
applicable for the nonlinear system [29]. However, ignoring the high-order terms does affect the
navigation accuracy. In order to overcome the above defect, ASEKF is proposed by considering the
state noise and measurement noise in the augmented state.

In the XPNAV, based on the dynamic equation of spacecraft in the Earth-centered inertial,
to construct the state equation and measurement equation, several specific states as the position and
velocity of the probe are selected to occupy in the equation, thereby the ordinary state equation of
ASEKF is calculated as follows [30].

.
X(t) =


.
ri
.
vi

∆
.
ni

 =


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+ ∆Fz

λ1
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λ3



(9)

where r = (rx, ry, rz) is the position vector of the spacecraft in ECI, r =
√

r2
x + r2

y + r2
z , v = (vx, vy, vz)

is the velocity vector of the spacecraft in ECI, ∆ni is the norm of pulsar direction error, µ = GM0 is
the gravity of the earth, which can be viewed as a fixed constant. J2 is the second-order harmonic



Symmetry 2020, 12, 1059 7 of 23

coefficient and Re is the radius of the earth. ∆Fx, ∆Fy, ∆Fz are the higher-order perturbation terms,
such as solar radiation pressure perturbation, etc., which can be regarded as zero-mean Gaussian white
noise. λ1,λ2,λ3 are the process noises in the rate of ∆n, which are normally handled as zero-mean
Gaussian white noise as well.

It can be found that EKF improves the accuracy of Kalman filtering, then the accuracy of EKF is
improved further by ASEKF, whereas ASEKF algorithm is optimized by adding the direction error terms,
which has already been widely used in navigation around the world [31,32]. To improve the accuracy
of ASEKF further, the other high-order terms existed in direction error should be considered seriously.

2.2.1. The State Equation

In this paper, MASEKF was proposed to meet higher accuracy requirements, which took the
high-order terms of direction error into account seriously. As is indicated in Equation (8), the direction
error has been expanded in second-order terms by Taylor series. To get the expression of the state
equation of MASEKF, the formation of direction error is changed as follows.

∆ni = Hi
·



∆δi

∆αi

∆δi2

∆δi∆αi

∆αi2


(10)

Hi =



− sin δi cosαi
− sinαi cos δi − cosαi cos δi

2 sin δi sinαi − cosαi cos δi

2
− sin δi cosαi cosαi cos δi − sinαi cos δi

2 − sin δi cosαi − sinαi cosαi

2
cos δi 0 − sin δi

2 0 0
0 0 0 0 0
0 0 0 0 0


(11)

where α is the right ascension angle, ∆αi is the first-order differential of right ascension, ∆αi2 is
the second-order differential of right ascension, δ is the real declination angle, ∆δi is the first-order
differential of the real declination angle, and ∆δi2 is the second-order of differential of the real
declination angle.

Then, combining Equation (10), the state equation of MASEKF is subsequently obtained. It can be
shown as follows.

.
X(t) = F(t)X(t) +ω(t) (12)

X(t) =
[

ri vi ∆δi ∆αi ∆δi2 ∆δi∆αi ∆αi2
]T

(13)

F(t) =


03×3 I3×3 03×5 03×5 03×5

F21 03×3 03×5 03×5 03×5

05×3 05×3 F33 05×5 05×5

05×3 05×3 05×5 F44 05×5

05×3 05×3 05×5 05×5 F55


(14)
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F21 =


f11 f12 f13

f21 f22 f23

f31 f32 f33


f11 = −

µe

(
1−

3r2
x

r2

)
r3 +

µeRe J2
r5

[(
7.5r2

z
r2 − 1.5

)
−

r2
x

r2

(
52.5r2

z
r2 − 7.5

)]
f12 =

µerxry

r5 +
[
3− Re

2 J2
r2

(
52.5r2

z
r2 − 7.5

)]
f13 =

µerxrz
r5 +

[
3− Re

2 J2
r2

(
52.5r2

z
r2 − 7.5

)]
f21 = f12, f31 = f13, f32 = f23

f22 = −
µe

1−
3r2

y
r2


r3 +

µeRe J2
r5

[(
7.5r2

z
r2 − 1.5

)
−

r2
y

r2

(
52.5r2

z
r2 − 7.5

)]
f23 = −

µeryrz

r5 +
[
3− Re

2 J2
r2

(
52.5r2

z
r2 − 22.5

)]
f33 = −

µe

(
1−

3r2
z

r2

)
r3 −

µeRe
2 J2

r5

[
52.5r4

z
r4 −

45r2
z

r2 + 4.5
]

F33 =
[
λ1,λ2,λ2

1,λ1λ2,λ2
2

]T

F44 =
[
λ3,λ4,λ2

3,λ3λ4,λ2
4

]T

F55 =
[
λ3,λ4,λ2

5,λ5λ6,λ2
6

]T

(15)

ω(t) = [ω1,ω2, · · · ,ω21]
T (16)

where F(t) is the Jacobian matrix of the system, J2 is the second-order harmonic coefficient, Re is the
radius of the earth, µe is the gravity of the earth, λ1 and λ2 stand for the change rate of the right
ascension and declination of the first pulsar, λ3 and λ4 indicate the change rate of the right ascension
and declination of the second pulsar, λ5 and λ6 show the change rate of the right ascension and
declination of the third pulsar, ω is the process noise, and both λ and ω are the zero-mean Gaussian
white noise.

2.2.2. The Measurement Equation

The changes in velocity vector and position vector were both considered in the MASEKF algorithm.
The measurement model is determined as follows.

Z(t) = h(X, t) + V(t) (17)

where, h(X, t) =
[
h1(X, t), h2(X, t), · · · , hm(X, t)

]T
, m is the number of the selected pulsars, and V(t) is

the measurement noise.
By combining Equation (1) and Equation (12) in the meantime, the measurement equation can be

subsequently determined, which is calculated as follows.

Z(t) = ∆t·c = c·
(
ti
SSB − ti

SC

)
= ni
·rSC + 1

2D0

[
−r2

SC +
(
ni
·rSC

)2
− 2b·rSC + 2

(
ni
·b
)(

ni
·rSC

)]
+

2GMsun
c2 ln

∣∣∣∣ni
·rSC+|rSC |

ni·b+|b| + 1
∣∣∣∣+ Bi

(18)

where h(X, t) is the right-hand side of Equation (13). When ni = n̂i + ∆ni, let the second item and
the third item on the right side of Equation (18) be high-order term ε. Then, Equation (18) can be
transformed as follows.

∆t =

(
n̂i + ∆ni

)
·rSC

c
+ ε

(
n̂i + ∆ni

)
(19)
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where ∆t is the difference between ti
SSB and ti

SC. Though the high-order term ε is of a rather
small magnitude, in order to avoid the truncation error as much as possible, it still should be
linearized subsequently.

In the process of kth filter calculation, the magnitude of n̂i is roughly equal to that of
(
n̂i + ∆ni

)
,

hence, the term ε
(
n̂i

)
is used to replace the term ε

(
n̂i + ∆ni

)
. Equation (19) can be rewritten as follows.

∆t =

(
n̂i + ∆ni

)
·rSC

c
+ ε

(
n̂i

)
(20)

ε(k)
(
n̂i

)
= ε1

k

(
n̂i

)
+ ε2

k

(
n̂i

)
(21)

where ε1
k

(
n̂i

)
stands for the second term in Equation (18) and ε2

k

(
n̂i

)
stands for the third term in

Equation (18); they can be expressed as

ε1
k

(
n̂i

)
=

1
2cD0

[
−r2

SC +
(
ni
·rSC

)2
− 2b·rSC + 2

(
ni
·b
)(

ni
·rSC

)]
(22)

ε2
k

(
n̂i

)
=

2GMsun

c3 ln

∣∣∣∣∣∣ni
·rSC + |rSC|

ni·b + |b|
+ 1

∣∣∣∣∣∣ (23)

Since the position of spacecraft in BCRS (Barycentric Celestial Reference System) can be viewed as
same as that of the earth in BCRS, compared with the spacecraft’s position, the changes of spacecraft’s
velocity and position were quite small. Thus, it is reasonable to let part of rsc(k) be replaced by rsc(k−1),
then Equations (22) and (23) can be expressed as follows.

ε1
k

(
n̂i

)
=

rsc(k)

2cD0

[
−rsc(k−1) +

(
ni
·rSC(k−1)

)
ni
− 2b + 2

(
ni
·b
)(

ni
)]

(24)

ε2
k

(
n̂i

)
=

2GMsun

c3 ln

∣∣∣∣∣∣∣ ni
·rSC(k)

ni·b + |b|
+

rsc(k−1)

ni·b + |b|
+ 1

∣∣∣∣∣∣∣ (25)

Subsequently, the second-order Taylor expansion to rSC(k) at time k− 1 was carried out. In order
to make the process of expansion convenient, some simplification is done as follows.

a1 =
2GMsun

c3 ,a2 =
rsc(k−1)

ni·b + |b|
+ 1, a3 =

ni

ni·b + |b|
(26)

ε2
k

(
n̂i

)
= a1 ln

[
a2 + a3rSC(k)

]
= a1 ln

[
a2 + a3rSC(k−1)

]
+ a1

a3
a2+a3rSC(k−1)

(
rSC(k) − rSC(k−1)

)
−

1
2

[
a1a2

3

[a2+a3rSC(k−1)]
2

](
rSC(k) − rSC(k−1)

)2
+ ∆

(27)

Consequently, combining Equations (21), (24)–(27), the observation equation can be determined
as follows.

∆t =
n̂i
·rSC(k)

c
+ ε

(
n̂i

)
+

∆n
∣∣∣rSC(k)

∣∣∣cos
〈
∆n, rSC(k)

〉
c

(28)
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where
ε(k)

(
n̂i

)
=

rsc(k)
2cD0

[
−rsc(k−1) +

(
ni
·rSC(k−1)

)
ni
− 2b + 2

(
ni
·b
)(

ni
)]

+ 2GMsun
c3

[
ln

[
rsc(k−1)(1+ni)

ni·b+|b| + 1
]

+
(

ni

rsc(k−1)(1+ni)+(ni·b+|b|)

)(
rSC(k) − rSC(k−1)

)
−

1
2


(

ni

ni ·b+|b|

) 2

 rsc(k−1)(1+ni)

ni ·b+|b|
+1

2


(
rSC(k) − rSC(k−1)

)2

+ ∆

(29)

∆ni = Hi
·



∆δi

∆αi

∆δi2

∆δi∆αi

∆αi2


Hi =



− sin δi cosαi
− sinαi cos δi − cosαi cos δi

2 sin δi sinαi − cosαi cos δi

2
− sin δi cosαi cosαi cos δi − sinαi cos δi

2 − sin δi cosαi − sinαi cosαi

2
cos δi 0 − sin δi

2 0 0
0 0 0 0 0
0 0 0 0 0



(30)

3. Results and Discussion

3.1. The Procedures of Simulation

In order to further discuss the effectiveness and performance of the proposed algorithm, EKF and
ASEKF were also simulated at the same time, and then all simulation results were analyzed in detail.
In this paper, the procedures of the simulation were divided into four parts as Figure 2.
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Figure 2. The procedures of simulation.

1. Preprocessing

The work of preprocessing should be completed initially, which includes obtaining the parameters
of pulsar, spacecraft, etc. The required parameters were determined through some official websites,
databases, and software. In particular, the data of the pulsar’s position and velocity is obtained in the
Australia Telescope National Facility (ATNF). In this study, Pulsar Catalogue was used to generate
observation data, which is viewed as the real position as well [14]. It is worth mentioning that the
pulsar position used in different algorithms is the real pulsar position plus the set error. Meanwhile,
the position vector from the earth center of mass to SSB was obtained from DE421; STK software
provided the necessary information of probe, such as position and velocity.

2. Observation Simulation

The main work of this part was to obtain the proper pulsars used in later simulation; all pulsars’
parameters were inputted into Inter Visual Fortran 11. Generally speaking, the higher the signal
frequency of the pulsar, the greater the radiation energy of the photon, the smaller the background
radiation energy, the narrower the pulse width in the periodic contour, the larger the number of pulses,
the larger the quality factor of the pulsar, and the higher the positioning accuracy of the pulsar. Under the
constraints of positioning accuracy and quality factor, Weighted Dilution Of Precision (WDOP) method
and observation analysis to acquire the most suitable pulsars were used [21]. Specifically, after selecting
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pulsars, the most important thing was to determine the time delay. The number of photons reaching
the detector can be obtained by simulating the number of photons generated in Poisson distribution.
The pulse profile of simulated observation can be obtained by adding the number of photons repeatedly.
Then, using the FFT method to cross-correlate the simulated observation profile with the standard
pulse profile, the time delay can be obtained in the end.

3. Analysis of System Error

In this research, the direction error caused by Roemer delay and Shapiro delay was analyzed
in detail.

4. Orbit Determination

The core work involved in this part was conducted based on the MASEKF module, combining
orbital dynamics to process the simulated observation data. The state of the spacecraft was obtained,
and the precision statistics of the calculated results were carried out. When the precision evaluation
exceeds the threshold value of Cramer-Rao Lower Bound [33], the simulation was finished, otherwise,
the orbit simulation was simulated again. The experiment cannot stop simulating until the accuracy
meets the requirements.

To make this research more comprehensive, the performance of three different algorithms was
verified further. Root mean square error (RMSE) was applied to confirm the simulation precision
of three algorithms, which can quantify the deviation between the observed values and real values
straightly. It is worth noting that RMSE is extremely sensitive to outliers, such as maximum error and
minimum error. The expression of RMSE is as follows.

RMSEr =

√√√√ M∑
j=1

‖ ∆r
(
tko+ j

)
‖

2
(31)

RMSEv =

√√√√ M∑
j=1

‖ ∆v
(
tko+ j

)
‖

2
(32)

where RMSEr is the RMSE of the estimated position error, RMSEv is the RMSE of the estimated velocity
error, M is the sampling point of the stable filter interval, ∆r is the estimated position error, tko is the
initial moment of filtering stability, and ∆v is the estimated velocity error. In the end, the RMSE of the
three algorithms was calculated and analyzed cautiously.

3.2. Initial Conditions

Actually, there are 140 pulsars that can be used in navigation; in this paper, WDOP method was
applied with the constraint of quality factor to select 40 pulsars, which is the process of preliminary
selection as well. If the selected 40 pulsars have better performances, then the most suitable pulsars
are chosen through observation analysis. Finally, three pulsars (B1821-24, B1937+21, and B0531+21)
were adopted as the navigation sources. The corresponding parameters of the three pulsars are shown
in Table 2.
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Table 2. Parameters of the pulsars.

Pulsars B1821-24 B1937+21 B0531+21

Galactic longitude (deg) 7.80 57.51 184.56
Galactic latitude (deg) −5.58 −0.29 −5.78

Periods (s) 0.00305 0.00156 0.0335

Photon flux
(
2− 10 keV,

erg
cm2

s

)
1.25× 10−12 4.1× 10−13 9.93× 10−9

Distance between the pulsar and SSB (kpc) 5.5 3.6 2.0
The width of the pulsar (s) 5.5×10−5 2.1×10−5 1.7× 10−3

Pulsed fraction (%) 98.0 86.0 70.0
Ranging error (m) 232.23 247.02 77.78

In the simulation, the research object was the earth-orbiting spacecraft. The parameters are
presented in Table 3. Meanwhile, it is well accepted that GPS plays a vital role in the navigation system,
and its data is available [13,25]; many prior studies have selected GPS as the research object due to
its importance and extensive application. Thus, GPS_BII-10 was adapted to be further researched
in this paper; its corresponding data are provided by STK software. The simulation time was set
between 2017.10.1.16.00.00 and 2017.10.2.16.00.00. The measurement time step was determined as
246.8 s, whose effectiveness has been confirmed many times in the existing pieces of literature [3,19].
Usually, the filtering step runs immediately after the pulsar observation step [34]. The total time of the
simulation was 86,400 s; the simulation parameters of EKF, ASEKF, and MASEKF were set as follows.

Table 3. Parameters of the orbit.

Orbit Element Satellite

Semimajor axis (km) 27,908.632497
Mass (kg) 1403

Initial position (m) −16,242,041.827; −5,242,312.694; 22,071,892.826
Initial velocity (m/s) −2669; −3676.998; −887.52

Eccentricity 0.0005
Inclination (deg) 55.521

The argument of Perigee (deg) 165.303
Right ascension of ascending node (deg) 80.526

True anomaly (deg) 301.079
The start time 2017.1.16.00.00.00

(1) Initial state error:

δxEKF = (307 m, 307 m, 307 m, 5.2 m/s, 5.2 m/s, 5.2 m/s)

δxASEKF = (307 m, 307 m, 307 m, 5.2 m/s, 5.2 m/s, 5.2 m/s, 20 m, 20 m, 20 m)

δxMASEKF = (307 m, 307 m, 307 m, 5.2 m/s, 5.2 m/s, 5.2 m/s, 20 m, 20 m, 5 m, 5 m, 5 m, 20 m, 20 m, 5 m, 5 m, 5 m, 20 m, 20 m, 5 m, 5 m, 5 m)

(2) Initial estimation-error covariance:

PEKF(0) = diag
[
(307 m)2, (307 m)2, (307 m)2, (5.2 m/s)2, (5.2 m/s)2, (5.2 m/s)2

]
PASEKF(0) = diag

[
(307 m)2, (307 m)2, (307 m)2, (5.2 m/s)2, (5.2 m/s)2, (5.2 m/s)2, (20 m)2, (20 m)2, (20 m)2

]
PMASEKF(0) = diag

 (307 m)2, (307 m)2, (307 m)2,
(

5.2 m
s

)2
,
(

5.2 m
s

)2
,
(

5.2 m
s

)2
, (20 m)2, (20 m)2, (20 m)2, (5 m)2,

(5 m)2, (5 m)2, (20 m)2, (20 m)2, (5 m)2, (5 m)2, (5 m)2, (20 m)2, (20 m)2, (5 m)2, (5 m)2, (5 m)2


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(3) The covariance of the state process noise:

QEKF = diag
[
(0.5 m)2, (0.5 m)2, (0.5 m)2, (0.01 m/s)2, (0.01 m/s)2, (0.01 m/s)2

]
QASEKF = diag

[
(0.5 m)2, (0.5 m)2, (0.5 m)2, (0.01 m/s)2, (0.01 m/s)2, (0.01 m/s)2,

(
10−7 m

)2
,
(
10−7 m

)2
,
(
10−7 m

)2
]

QMASEKF = diag

 (0.5 m)2, (0.5 m)2, (0.5 m)2,
(

0.01 m
s

)2
,
(

0.01 m
s

)2
,
(

0.01 m
s

)2
,
(
10−7 m

)2
,
(
10−14 m

)2
,
(
10−14 m

)2
,
(
10−14 m

)2
,
(
10−7 m

)2
,(

10−7 m
)2

,
(
10−14 m

)2
,
(
10−14 m

)2
,
(
10−14 m

)2
,
(
10−7 m

)2
,
(
10−7 m

)2
,
(
10−14 m

)2
,
(
10−14 m

)2


In addition, the observation noise covariance can be determined as follows [18].

σ =
w

√[
Bx + Fx

(
1− P f

)]
(Stobsd) + FxSP f tobs

2FxSP f tobs
(33)

where, w is the width of the pulsar, Bx is the X-ray background radiation flux, which is about
0.005 ph/cm2/s in the prior researches, Fx is the radiation photon flux from the pulsar, P f is the ratio of
the pulse radiation flux to the average radiation flux in one pulsar period, S is the effective area of the
X-ray detector, its value is 1 m2, tobs is the observation period, tobs = 246.8 s, and d is the ratio of w to P.

The pulsar period parameters are shown in Table 2. Hence, the covariance of observation noise
can be calculated. The result of R is given by

R = diag
(
232.232, 247.022, 77.782

)
(34)

where diag is an abbreviation for diagonal matrix.

3.3. Simulation and Analysis

In the simulation, in order to confirm the performance of the proposed algorithm clearly, ASEKF and
EKF were simulated to be compared with MASEKF, conducting the simulation under three different
conditions. In this paper, the factor of the direction error is an essential changeable condition of the
simulation, since the system error includes the direction error, clock error, ephemeris error, and other
possible existing errors, the settings of the above errors are presented below.

1. Clock error

The initial clock error, the clock error drift, and change rate of the drift were set as 2.5858× 10−6s,
4.136679×10−11, and 6.88×10−18, respectively.

2. Ephemeris error

According to reference [35], the ephemeris error is usually less than 1 × 10−13 in the other
planets’ ephemerides. However, the error in the earth’s ephemeris has been verified to be the biggest,
which could have specific influences on the performance of XPNAV. Since the simulation time is from
2017.10.1.16.00.00 to 2017.10.2.16.00.00, and ephemeris is time varying. Consequently, the changeable
tendency of ephemeris error within the simulation period can be determined in Figure 3.
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3. Direction error

Owing to the limited space and the previous attempts in other works of literature [34],
the simulation was conducted with the initial error condition of (0 mas, 0 mas), (1 mas, 1 mas),
and (−1 mas, −1 mas); it should be noted that mas as a unit represents milli–arcsecond.

4. Cosmic background noise

In the observation and simulation stage, the photon arrival model under the Poisson distribution
to simulate the distribution of cosmic background noise was construct; it was found that the pulse
observation profile of the photon arrival model under the Poisson distribution was closest to the actual
pulse profile. In the orbit determination stage, cosmic background noise was added to the observation
noise, and then it was subjected to the Kalman filter algorithm for processing.

5. Other errors

According to the prior researches, other errors may mainly exist in the following aspects:
(1) the distance between SSB and spacecraft, the greater the distance, the higher the system error;
(2) the value of the pulsar frequency derivative, the larger the value, the larger the system error,
and (3) the size of proper motion and the age of the position epoch, the greater the appropriate motion,
the older the epoch, the greater the system error. Considering the above possible existing errors,
other errors were set to 10−8 m.

Besides, the simulated observation data was combined with random noise. By adding the
random noise during the simulation process of obtaining tSC and tSSB, whose value is usually less
than 10−7s, the corresponding position error can be controlled within 30 m. Besides, the uncertainty
information (the triple standard deviation) was added to prove the reliability of the estimated results.
The data are indicated in Figures 4–6.
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Figure 4. The estimated result when the position error is (0 mas, 0 mas). (a) The estimated position
error and (b) the estimated velocity error. The solid line represents the estimation results of different
algorithms, and the dashed line represents the triple standard deviation of different algorithms.
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In Figures 4–6, it can be found that the estimated result of the position error fluctuates greatly,
especially in the case of (0 mas, 0 mas), the estimated result of EKF’s position error cannot satisfy the
requirement of the triple standard deviation around 50 epochs, which indicates the poor performance
of EKF. In contrast, the estimated results of ASEKF and MASEKF’s position error are acceptable in
scenarios of (0 mas, 0 mas) and (1 mas, 1 mas), it is notable that the estimated result of velocity error
of three algorithms can satisfy the requirement of the triple standard deviation, which can strongly
illustrate the effectiveness of ASEKF and MASEKF under any simulation condition.

Table 4 displays the statistical simulation results, when there is no initial error; it is apparent that
EKF has the worst performance. It is well accepted that EKF performs Kalman filtering by linearizing
the nonlinear system, ignoring the direction error term unconsciously. This means that EKF cannot
eliminate the corresponding measurement noise and state noise effectively; the above defects of EKF
result in its lower accuracy. Through analyzing Figure 4, it was found that the velocity error of EKF
diverges at 300~350 epochs, which was rather unstable, thereby it was tough for the system to converge
on the whole.

Table 4. The simulation results of the three algorithms.

Simulation
Condition

EKF ASEKF MASEKF

Position
Error (m)

Velocity
Error (m/s)

Position
Error (m)

Velocity
Error (m/s)

Position
Error (m)

Velocity
Error (m/s)

(0 mas, 0 mas) 125.137 0.787 122.489 0.766 113.578 0.749
(1 mas, 1 mas) 126.086 0.862 123.532 0.751 121.408 0.742

(−1 mas, −1 mas) 151.733 1.687 138.576 1.721 122.932 1.513

What’s more, different from EKF algorithm, ASEKF algorithm linearizes the nonlinear system
after adding the direction error into the state vector, considering the first-order term of the direction
error in Taylor series expansion, which could certainly improve the accuracy in a way. Therefore,
the accuracy of ASEKF has improved a lot than that of EKF, but the performance of ASEKF seems to be
a little bit of unstable, as indicated in Figures 5 and 6. It could be seen that the accuracy of ASEKF
decreases quickly in scenarios of (−1 mas, −1 mas); the accuracy difference between (−1 mas, −1 mas)
and (1 mas, 1 mas) is much bigger than that of between (0 mas, 0 mas) and (1 mas, 1 mas), and it seems
that ASEKF is more suited in scenarios of (0 mas, 0 mas) and (1 mas, 1 mas).

Furthermore, based on the theory of the ASEKF algorithm, the proposed MASEKF has considered
the second-order terms of direction error, adding the more accurate direction error into the state
equation and measurement equation subsequently. Therefore, the MASEKF algorithm tends to have a
better convergence effect and stronger stability. As is shown in Table 4, it is evident that MASEKF
has the best accuracy performance under three different conditions; the accuracy of ASEKF is close to
the accuracy of MASEKF in scenarios of (1 mas, 1 mas). Besides, MASEKF can converge quickly to
121 m in position error, whereas the velocity error of MASEKF converges rapidly to about 0.729 m/s
after about 50 epochs. It seems that the improvement and optimization of MASEKF only bring a small
increase in accuracy in scenarios of (1 mas, 1 mas). In fact, when the simulation are conducted in
situations of (−1 mas, −1 mas), the advantages of MASEKF stand out, the accuracy of MASEKF is
quite higher than the other two algorithms, and its accuracy difference is quite small between (−1 mas,
−1 mas) and (1 mas, 1 mas), which verifies the better stability of MASEKF.

What’s more, for the purpose of comparing the performance of different algorithms further,
simulations were conducted to obtain the RMSE under different conditions; RMSE can reflect the
difference of the accuracy straightly. Figures 7–9 show the performance comparison of EKF, ASEKF,
and MASEKF under different initial conditions.
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For clarity, Table 5 lists the necessary information of Figures 7–9. Regardless of whether there
was system bias, MASEKF always had the fastest converge speed and the best navigation accuracy.
The performance of ASEKF was much better than that of EKF, which illustrated that the optimization
of the high-order terms of the direction error significantly improved the accuracy of the algorithm.
Besides, it can also be observed that the proposed algorithm considered second-order terms of Taylor
series of direction error, which outperforms the algorithm that only considered the first-order terms of
Taylor series of direction error. Furthermore, as is shown in Table 6, the accuracy of EKF and ASEKF
was analyzed compared to that of MASEKF. It was found that EKF has poor accuracy, especially in
scenarios of (0 mas, 0 mas), and the accuracy of the velocity error of MASEKF was improved by 43.06%
than that of EKF. Similarly, the accuracy of the velocity error of MASEKF was improved by 36.11% than
that of ASEKF. Meanwhile, though the accuracy of ASEKF improved a lot than the traditional EKF
algorithm, its performance cannot stay stable in all conditions, such as in scenarios of (1 mas, 1 mas);
the accuracy of position error and velocity error of ASEKF were worse than that of EKF. All values
were positive in Table 6, which means that the accuracy of EKF and ASEKF were worse than that of
MASEKF. In fact, MASEKF always performed well, compared with traditional EKF algorithm, and it
increased the average accuracy by 8.84% and 20.53% in position error and velocity error, respectively,
under the three conditions.
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Table 5. The results of root mean square error (RMSE) under different conditions.

Simulation
Condition

EKF ASEKF MASEKF

Position
Error (m)

Velocity
Error (m/s)

Position
Error (m)

Velocity
Error (m/s)

Position
Error (m)

Velocity
Error (m/s)

(0 mas, 0 mas) 17.501 0.206 17.592 0.196 16.841 0.144
(1 mas, 1 mas) 17.904 0.235 17.993 0.238 17.268 0.208

(−1 mas, −1 mas) 19.421 0.160 17.948 0.142 15.690 0.128

Table 6. The comparison performance of different algorithms with the modified augmented state
extended Kalman filter (MASKEF).

Simulation
Condition

EKF ASEKF

Position Error Velocity Error Position Error Velocity Error

∆ Percentage ∆ Percentage ∆ Percentage ∆ Percentage

(0 mas, 0 mas) 0.66 3.92% 0.062 43.06% 0.751 4.46% 0.052 36.11%
(1 mas, 1 mas) 0.636 3.68% 0.027 12.98% 0.725 4.20% 0.03 14.42%

(−1 mas, −1 mas) 3.731 23.78% 0.032 25.00% 2.258 14.39% 0.014 10.94%

Explanation: ∆ represents the difference between the compared algorithm and MASEKF, “Percentage” means
convert ∆ to a percentage, the larger its percentage value, the lower its accuracy.

To confirm the stability of the proposed algorithm in the whole simulation period, we compared
the simulated orbit with the real one. The simulated trajectories and their partial enlargement are
shown in Figure 10 [25]. It is evident that the MASEKF algorithm has the closest approximation
between the simulated track and the real track at any simulation time. All results demonstrated that
MASEKF not only had obvious superiority in the overall result but also ensured its high accuracy and
stability at any time.
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4. Conclusions

In this paper, MASEKF algorithm is proposed based on the ASEKF algorithm, which expands the
second-order term of the direction error to reduce the high-order truncation errors. Adding the more
precise direction error into the state equation and measurement equation, thus, MASEKF can reduce
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the non-Gaussian error propagation in the nonlinear system. Finally, simulation is conducted by
comparing the performance of MASEKF, ASEKF, and EKF. It is found that MASEKF is more versatile
and efficient, compared with traditional EKF algorithm, and MASEKF can even increase the average
accuracy by 8.84% and 20.53% in position error and velocity error, respectively, in the three simulation
conditions. In the future, scholars can research the reliable algorithm of pulsar position error or other
errors according to the algorithm proposed in this paper.
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