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Abstract: The paper deals with a system of two nonlinear second-order parabolic equations.
Similar systems, also known as reaction-diffusion systems, describe different chemical processes.
In particular, two unknown functions can represent concentrations of effectors (the activator and
the inhibitor respectively), which participate in the reaction. Diffusion waves propagating over zero
background with finite velocity form an essential class of solutions of these systems. The existence of
such solutions is possible because the parabolic type of equations degenerates if unknown functions
are equal to zero. We study the analytic solvability of a boundary value problem with the degeneration
for the reaction-diffusion system. The diffusion wave front is known. We prove the theorem of
existence of the analytic solution in the general case. We construct a solution in the form of power
series and suggest recurrent formulas for coefficients. Since, generally speaking, the solution is not
unique, we consider some cases not covered by the proved theorem and present the example similar
to the classic example of S.V. Kovalevskaya.

Keywords: reaction-diffusion system; diffusion wave; existence theorem; analytical solution;
power series; majorant method; exact solution
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1. Introduction

Parabolic partial differential equations [1] are used in mathematical modeling of various processes
studied in the natural sciences. The most common tools for modeling are second-order equations,
which are a differential form of physical laws, in particular, Darcy or Fourier ones. Linear models are the
most popular, but with the comparative simplicity of research, which is their main advantage, they are
not always accurate enough to describe real phenomena. In such cases, nonlinear and, in particular,
quasilinear analogs are usually used. The monograph [2] presents the general theory of linear and
quasilinear second-order partial differential equations (PDEs), as well as some systems of PDEs.

One of the classes of partial differential equations that allow us to model significant nonlinear
effects are singular parabolic equations [3]. The most important example of such an equation is the
porous medium equation [4]. In the presence of a source term, it has the form

Tt = div(Tσ∇T) + f (T), f (0) = 0. (1)

Here σ > 0 is a constant, T is an unknown function, f (T) is a sufficiently smooth specified
function. Equation (1) is also called the nonlinear heat (filtration, diffusion) equation with a source
term. The power type of the function K(T) = Tσ (for the heat equation, it means a coefficient of thermal
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conductivity) plays a special role. This type of dependency is typical for a large number of applications.
For instance, Equation (1) is used to describe the mechanisms of radiative heat conductivity [5,6],
the processes of convection [7], diffusion and filtration of ideal polytropic gas in porous media [4,8],
as well as the population dynamics process [9]. Sometimes Equation (1) with T = T(t, x) is considered
as a specific case of a symmetric equation [10] or the generalized porous medium equation with
a given exponent σ = σ(t, x) [11]. Mathematical models based on Equation (1) and its analogues,
besides relatively high accuracy, are quite convenient for study, including the analytical one.

We can see that the parabolic type of Equation (1) degenerates at points where the unknown
function T = T(t, x) vanishes. As a result, Equation (1) obtains some specific properties. In particular,
it has solutions of the heat wave type (filtration wave, diffusion wave) propagating over a zero
background with a finite velocity [5,6]. It is known that such properties are typical for hyperbolic
equations and, generally speaking, atypical for parabolic ones. Geometrically, a heat wave is two
integral surfaces (or hypersurface if we consider two or more spatial variables) of Equation (1)
(trivial and non-negative solutions), joined along a certain line (or surface), which is called the wave
front. Further, we will call such solutions as HDW-type solutions. Despite substantial physical and
geometric interpretations, HDW-type solutions are relatively rare in the literature. We can highlight
the fundamental monographs of Ya.B. Zeldovich [5], A.A. Samarskii and co-authors [6], as well as
the works of A.F. Sidorov and his followers (see, for example, refs. [12,13]). Statements of boundary
value problems on the initiation of filtration waves, as well as methods for constructing the solutions
that have HDW-type, in the class of analytical functions, are proposed in [12,13]. The authors of
this article also belong to the scientific school of A. F. Sidorov. Previously, we studied the analytical
solvability of similar problems in various formulations: one-dimensional [14,15], symmetric [16,17]
and non-one-dimensional [18].

A relevant and interesting area of research in partial differential equations is the construction
of exact solutions with predetermined properties. There are quite a lot of methods for constructing
such solutions that are applicable to Equation (1). We should first mention the group analysis method
proposed and developed in the scientific school of L.V. Ovsyannikov [19,20]. We also point out the
articles [10,21], in which exact solutions of symmetric Equation (1) are obtained by various variants of
the generalized variable separation method. A detailed review of the approaches to construct exact
solutions to nonlinear partial differential equations can be found, for example, in the handbook [22].
In the article [23], we found exact HDW-type solutions to Equation (1) with different fronts. The
construction is reduced to the integration of ordinary differential equations (ODEs); their qualitative
research is carried out.

As a rule, a successful mathematical model is based not on a single equation, but their
systems. In particular, equations having type (1) in the case of a single spatial variable x form
reaction-diffusion systems {

Tt = (TσTx)x + f (T, S),
St = (SδSx)x + g(S, T),

(2)

where σ, δ > 0 are constants. Such systems describe various processes in biochemistry,
physical chemistry, chemical kinetics and thermodynamics [24,25]. For example, unknown functions
T = T(t, x) and S = S(t, x) can represent concentrations of effectors (the activator and the inhibitor,
respectively), which participate in the reaction [26]. Note that in the literature, you can find systems
of a slightly different form, which are also based on second-order parabolic equations with power
nonlinearity. In particular, reaction-diffusion systems where the functions f and p also depend on
independent variables are considered in [27,28]; systems describing heat and mass transfer are studied
in [29].

The objective of this research is the problem of constructing HDW-type solutions of the system
in Equation (2) that has a known law of front motion (a problem with a given diffusion front). In the
case of a system, it is more appropriate to talk about a diffusion wave, but we will keep the name
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“HDW-type solution” for simplicity. The power series method, widely used in the theory of differential,
integral and operator equations, is chosen as the central research apparatus.

In modern mathematics, the classical power series method [30] usually requires adaptation to the
studied problem. At the same time, unknown functions can have a wide variety of types. For example,
in the work of N. A. Sidorov [31], the solution of the ODE is given as a power series with coefficients
that depend on logarithms. We highlight the methods of characteristic [12] and special [12,13] series,
which modifications we apply in this study.

In this paper, we generalize the results on the construction and research of HDW-type solutions
for Equation (1), obtained earlier in the scientific school of A. F. Sidorov, to the case of the system in
Equation (2). The problem statement is given and discussed in Section 2.

In Section 3, the solutions to the problem with a given diffusion front are constructed as power-law
characteristic series with recursively determined coefficients. The proven existence theorem ensures
their convergence. The proof is carried out by the majorant method using the Cauchy–Kovalevskaya
theorem [30].

In Section 4, we obtain some exact HDW-type solutions of the system in Equation (2) for different
fronts. Here, as in some cases (see, for example, refs. [23,32]), the construction of the solution is
reduced to integrating ODEs. We point out the articles devoted to the construction of exact solutions
of parabolic systems with power nonlinearity. In article [28], the solutions of the two-component
reaction-diffusion system, which differs slightly from Equation (2), are constructed by the method of
linear defining equations. Multicomponent systems are considered in [27], where solutions have the
form of special matrix constructions. However, we could not find any publications deal with exact
solutions of Equation (2) that have HDW-type.

Section 5 discusses several significant particular cases that are not subject to the proved
statements. We give an example, which is a specialized analogue of the classical counterexample of
S. V. Kovalevskaya. It shows that the sufficient conditions for analytical solvability of the considered
problem (see Theorem 1 in Section 3) are close to the necessary ones.

Concluding the introduction, we note that the study of HDW-type solutions for systems of
equations with power nonlinearity of the form in Equation (2), as far as we know, is performed for the
first time.

2. Formulation

To be able to consider the class of analytical functions for any valid values of the constants σ and δ,
we will make the substitution u = Tσ, v = Sδ in Equation (2). Such transformations are standard [10]
and are regularly used by the authors (see [14] and subsequent works).

For the resulting system of equations{
ut = uuxx +

1
σ u2

x + F(u, v),
vt = vvxx +

1
δ v2

x + G(u, v),
(3)

we consider the boundary conditions

u(t, x)|x=a(t) = v(t, x)|x=a(t) = 0. (4)

It is assumed that a(t), F(u, v) and G(u, v) are known sufficiently smooth functions and

F(u, v) = σu1−1/σ f (u1/σ, v1/δ), G(u, v) = δv1−1/δg(v1/δ, u1/σ).

In addition, let a′(0) 6= 0 and F(0, 0) = G(0, 0) = 0.
The problem in Equations (3) and (4) is atypical for second-order systems. First, it contains

only one boundary condition for each unknown function, where, besides, the terms multiplying the
higher derivatives vanish. Second, it is obvious that the trivial solution u ≡ 0, v ≡ 0 satisfies this
problem. Thus, the classical existence and uniqueness theorems cannot be applied in this case. For the



Symmetry 2020, 12, 999 4 of 16

problem in Equations (3) and (4), the existence and uniqueness theorem of a nontrivial solution is valid.
We formulate and prove it in the next section.

3. Existence Theorem

For convenience, we introduce a new independent variable z = x− a(t), which allows setting
boundary conditions on the coordinate axis. The problem in Equations (3) and (4) takes the form{

ut − a′uz = uuzz +
1
σ u2

z + F(u, v),
vt − a′vz = vvzz +

1
δ v2

z + G(u, v),
(5)

u(t, z)|z=0 = v(t, z)|z=0 = 0. (6)

Remark 1. It is easy to show that the substitution z = x− a(t) is non-degenerate (the Jacobian is equal to one).
Therefore, Equations (3) and (4) and Equations (5) and (6) are equivalent.

Remark 2. Analytical function at a point means that it coincides in some neighborhood of this point with its
Taylor series expansion.

Theorem 1. Let a(t) be an analytical function at t = 0, F(u, v) and G(u, v) be an analytical functions at
(0, 0), a′(0) 6= 0 and F(0, 0) = G(0, 0) = 0. Let the following condition also hold,

uz(t, 0), vz(t, 0) 6≡ 0. (7)

Then, Equations (5) and (6) have a unique analytical solution for t = z = 0.

Proof of Theorem 1. The proof of the theorem is divided into two stages.

1. Constructing a solution in the form of the Taylor series.
2. Proving of convergence of a series by the majorant method.

We construct the solution to the problem in Equations (5) and (6) in the form of Taylor series with
respect to powers of the variable z = x− a(t),

u(t, z) =
∞

∑
n=0

un(t)
zn

n!
, un(t) =

∂nu
∂zn

∣∣∣
z=0

; v(t, z) =
∞

∑
n=0

vn(t)
zn

n!
, vn(t) =

∂nv
∂zn

∣∣∣
z=0

. (8)

Since the line x = a(t) is obviously a characteristic for the system in Equation (5), the series
in Equation (8) are characteristic [30]. The series in Equation (8) will be constructed when all their
coefficients are found. Let us search for them by induction by order of differentiation n.

From boundary conditions in Equation (6), it follows that u0, v0 ≡ 0.
To obtain u1 and v1 we set z = 0 in Equation (5). From Equation (6), we have that u|z=0 =

ut|z=0 = v|z=0 = vt|z=0 = 0. From the conditions of Theorem 1, F|u=0,v=0 = G|u=0,v=0 = 0. Finally,
taking into account the equalities uz|z=0 = u1, vz|z=0 = v1 (see Equation (8)), we get a system of two
square equations with respect to u1 and v1{

−a′u1 = 1
σ u2

1,
−a′v1 = 1

δ v2
1,

which has 4 solutions:

u11 = −a′σ, v11 = −a′δ; u12 ≡ 0, v12 = −a′δ; u13 = −a′σ, v13 ≡ 0; u14 ≡ 0, v14 ≡ 0. (9)

By the condition of the theorem uz(t, 0), vz(t, 0) 6≡ 0, hence, u1 = −a′σ, v1 = −a′δ and the other
pairs from Equation (9) are extraneous roots.

Differentiating Equation (5) by z for z = 0, we find the coefficients
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u2 =
a′′σ− Fu(0, 0)a′σ− Fv(0, 0)a′δ

a′(1 + σ)
, v2 =

a′′δ− Gu(0, 0)a′σ− Gv(0, 0)a′δ
a′(1 + δ)

.

Thus, the induction base has been created.
Now let the coefficients of the series in Equation (8) up to the number n inclusively be known.

We differentiate Equation (5) n times by z and set z = 0, then solve the resulting algebraic equations
with respect to unknown quantities un+1 and vn+1. As a result, we get the expressions

un+1 =
1

a′(1 + nσ)

[
n

∑
k=2

(
Ck

n +
1
σ

Ck−1
n

)
ukun+2−k + Fn − u′n

]
, (10)

vn+1 =
1

a′(1 + nδ)

[
n

∑
k=2

(
Ck

n +
1
δ

Ck−1
n

)
vkvn+2−k + Gn − v′n

]
. (11)

For convenience here we use the notation

Fn =
∂nF(u, v)

∂zn

∣∣∣
z=0

, Gn =
∂nG(u, v)

∂zn

∣∣∣
z=0

.

To simplify further formulas and to avoid repeating, we introduce the notation

Ωn(u) =
n

∑
k=2

(
Ck

n +
1
σ

Ck−1
n

)
ukun+2−k.

The right-hand sides in Equations (10) and (11) depend on the values that are known by the
induction assumption. Thus, the series in Equation (8) are constructed. For u1, v1 6≡ 0, its coefficients
are determined uniquely by Equations (10) and (11). Accordingly, the solution is unique.

Let us now move on to the second stage of proof. The proof uses the majorant method, which is
close to the classical method of the Cauchy–Kovalevskaya theorem proving [30]. Here, the construction
of the majorant is more difficult since the system we have is not the Cauchy–Kovalevskaya type.
Therefore, it cannot be solved with respect to the higher derivative. To apply it, we first obviate the
singularity by a partial expansion of the unknown function in a power series. Then we remove the
singularity by introducing majorant equations and differentiate them by z to resolve this with respect
to the higher (third) derivatives. As a result, we obtain the Cauchy problem of the third-order system
having Cauchy–Kovalevskaya type.

Before constructing the majorant problem, we make the substitution in the system in Equation (5)

u(t, z) = −σa′z + z2U(t, z), v(t, z) = −δa′z + z2V(t, z). (12)

The substitution in Equation (12) is a partial Taylor series expansion of the functions u and v.
In this case, Equation (6) is always satisfied. After the substitution, we collect like terms and divide the
first and second equations in Equation (5) by za′σ and za′δ, respectively. The problem takes the form

2
(

1 + 1
σ

)
U +

(
4 + 1

σ

)
zUz + z2Uzz =

= f0(t) + z f1(t, U, Ut, V) + z2 f2(t, U, V, Uz) + z3 f3(t, z, U, V, Uz, Uzz),

2
(

1 + 1
δ

)
V +

(
4 + 1

δ

)
zVz + z2Vzz =

= g0(t) + zg1(t, V, Vt, U) + z2g2(t, V, U, Vz) + z3g3(t, z, V, U, Vz, Vzz).

(13)

Functions fi, i = 0, 1, 2, 3, are found by formulas

f0(t) =
1

a′σ
(
σa′′ − a′σF1,0 − a′δF0,1

)
,

f1(t, U, Ut, V) =
1

a′σ

(
−Ut + 2U2 +

4
σ

U2 + F1,0U + F0,1V +
F2,0σ2

2
a′2 + F1,1σδa′2 +

F0,2δ2

2
a′2
)

,
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f2(t, U, V, Uz) =
1

a′σ

(
4UUz +

4
σ

UUz − F2,0σa′U − F1,1σa′V − F1,1δa′U − F0,2δa′V−

− F3,0σ3

6
a′3 − F2,1δσ2

2
a′3 − F1,2σδ2

2
a′3 − F0,3δ3

6
a′3
)

,

f3(t, z, U, V, Uz, Uzz) =
1

a′σ

(
UUzz +

1
σ

U2
z +

F2,0

2
U2 + F1,1VU +

F0,2

2
V2 +

F3,0

6
z2U3 +

F3,0σ2

2
a′2U−

− F3,0σ

2
a′zU2 − F2,1δ

2
a′zU2 + F2,1σδa′U +

F2,1σ2

2
a′V +

F2,1

2
z2U2V − F2,1σa′zUV−

− F1,2σ

2
a′zV2 + F1,2δσa′2V +

F1,2δ2

2
a′2U +

F1,2

2
z2V2U − F1,2δa′zVU +

F0,3

6
z2V3 +

F0,3δ2

2
a′V−

− F0,3δ

2
a′zV2 +

1
z4

∞

∑
i+j≥4

Fi,j
(−σa′z + z2U)i

i!
(−δa′z + z2V)j

j!

)
.

Functions gi, i = 0, 1, 2, 3, can be found by the similar formulas if we change σ by δ, U by V, V
by U and F by G. Here Fi,j, Gi,j are coefficients of the Taylor series that exist and converge by the
assumptions of the theorem.

F(u, v) =
∞

∑
i,j≥1

Fi,j
ui

i!
vj

j!
, G(u, v) =

∞

∑
i,j≥1

Gi,j
vi

i!
uj

j!
.

You can see that the functions fi, gi, i = 0, 1, 2, 3 are analytical in their variables in a neighborhood
of the origin. We sequentially differentiate Equation (13) and set z = 0. It leads us to the solution in the
form of the Taylor series

U(t, z) =
∞

∑
n=0

Un(t)
zn

n!
, V(t, z) =

∞

∑
n=0

Vn(t)
zn

n!
, (14)

whose coefficients are determined by the formulas

Un(t) =
un+2(t)

(n + 1)(n + 2)
, Vn(t) =

vn+2(t)
(n + 1)(n + 2)

. (15)

It is easy to see that the right sides of Equation (15) can be found using Equations (10) and (11).
It follows from Equation (15) that the series in Equations (14) and (8) have the same radius of
convergence. Thus, the local convergence of the series in Equation (14) ensures that the series in
Equation (8) converges in the same neighborhood.

We now construct a majorant for the series in Equation (14). Note that U0, V0, U1, V1, fi, gi,
i = 0, 1, 2, 3 are analytical functions. Therefore, we can find majorants for them. Let

U0, V0 �W0, U1, V1 �W1, fi, gi � hi, i = 1, 2, 3.

Let us show that the problem{
Wzz =

∂h1(t,W,Wt ,W)
∂z + h2(t, W, W, Wz) + zh3(t, z, W, W, Wz, Wzz),

W(t, z)|z=0 = W0, Wz(t, z)|z=0 = W1,
(16)

is the majorant problem for Equation (13). According to the definition of the majorant problem [30],
we need to prove that Un, Vn �Wn, where Wn are the Taylor series coefficients

W(t, z) =
∞

∑
n=0

Wn(t)
zn

n!
. (17)
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The coefficients Un and Vn have already been found. As for Wn, we determine by a similar
procedure, consistently differentiating Equation (16) and setting z = 0. It follows from the known
properties of majorant that

U2 =

∂ f1
∂z

∣∣∣
z=0

+ f2

∣∣∣
z=0

2(3 + 1/σ)
� ∂h1

∂z

∣∣∣
z=0

+ h2

∣∣∣
z=0

= W2,

Un = nαn
∂n−1 f1

∂zn−1

∣∣∣
z=0

+ n(n− 1)αn
∂n−2 f2

∂zn−2

∣∣∣
z=0

+ n(n− 1)(n− 2)αn
∂n−3 f3

∂zn−3

∣∣∣
z=0
�

� ∂n−1h1

∂zn−1

∣∣∣
z=0

+
∂n−2h2

∂zn−2

∣∣∣
z=0

+ (n− 2)
∂n−3h3

∂zn−3

∣∣∣
z=0

= Wn, n ≥ 3.

By similar reasoning, we get V2 �W2 and Vn �Wn, n ≥ 3. For brevity, we use the notation

αn =
1

2(1 + 1/σ) + (4 + 1/σ)n + n(n− 1)
.

The coefficients of the series in Equation (17) majorize the coefficients of the series in Equation (14).
Finally, we reduce Equation (16) to a problem of the Kovalevskaya type [30]. The necessity

for such reduction may also arise in the study of abstract operator equations [33]. We differentiate
Equation (16) by z and resolve it with respect to Wzzz. It brings the problem in Equation (16) to the form Wzzz =

1
1−z ∂h3

∂Wzz

(
∂2h1
∂z2 + ∂h2

∂z + h3 + z ∂h3
∂x1

+ z ∂h3
∂x2

Wz + z ∂h3
∂x3

Wz + z ∂h3
∂x4

Wzz

)
,

W(t, z)|z=0 = W0, Wz(t, z)|z=0 = W1, Wzz(t, z)|z=0 = W2.
(18)

Equation (18) is a Kovalevskaya type problem with analytical data. According to the
Cauchy–Kovalevskaya theorem, it has a unique analytical zero-majoring solution. This solution
is a majorant for the series in Equation (14) by construction. The local convergence of Equation (14),
as already noted, entails the convergence of the series in Equation (8), which is a solution to the
problem in Equations (5) and (6).

The analytical solution constructed in the proof is nontrivial. The existence of a trivial solution
for the problem in Equations (5) and (6) is obvious. We prove that it is unique, at least in the class of
analytical functions.

Corollary 1. Let a(t) be an analytical function at t = 0, F(u, v) and G(u, v) be an analytical functions at
(0, 0). Let the following identity also hold,

uz(t, 0), vz(t, 0) ≡ 0. (19)

Then the problem in Equations (5) and (6) has the unique analytical solution u(t, z) ≡ 0, v(t, z) ≡ 0 for
t = z = 0.

Proof of Corollary 1. To prove the corollary, it is enough to construct the solution in the form of the
Taylor series and show that all their coefficients will be identically equal to zero. From the conditions
in Equations (6) and (19) it follows that u0, v0 ≡ 0 and u1, v1 ≡ 0. We have that u1 = u14, v1 = v14

(see Equation (9)). Using the procedure for constructing the solution, as in the proof of Theorem 1,
we obtain that Un = 0, n = 2, ... This means that the problem in Equations (5) and (6) has only
trivial solution.

Remark 3. We can assume from continuity that the derivative a′(t) preserves the sign in the considered
neighborhood of zero. Therefore, on one side of the line x = a(t) solution in Equation (8) is positive, and on the
other side it is negative. The positive part of the solution in Equation (8) and the trivial solution u(t, z) ≡ 0,
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v(t, z) ≡ 0 form a continuous, piecewise smooth (on the line x = a(t) derivatives are discontinuous) HDW-type
solution of the problem in Equations (5) and (6).

4. Exact Solutions

As we have shown previously [23], the construction of HDW-type solutions for Equation (1) can
be reduced to Cauchy problems for second-order ODEs in some cases. Usually, such solutions to
nonlinear partial differential equations are called exact solutions [22]. If the ODE can be integrated in
quadratures [23], then we obtain exact solutions in the traditional sense. In this section, we will find
conditions that allow us to perform such a reduction for system (3).

Let, in the problem in Equations (5) and (6), which, recall, is equivalent to Equations (3) and (4),
terms that do not contain derivatives have the form F(u, v) = αvγ, G(u, v) = βuγ, α, β, γ > 0 are
constants. The problem becomes {

ut − a′uz = uuzz +
1
σ u2

z + αvγ,
vt − a′vz = vvzz +

1
δ v2

z + βuγ,
(20)

u(t, z)|z=0 = v(t, z)|z=0 = 0. (21)

When γ ∈ N, a(t) is an analytical function at t = 0 and a′(0) 6= 0, then the problem in
Equations (20) and (21) comes within Theorem 1 and has a unique nonzero analytical solution.
The following theorem shows that in some particular cases, this solution is exact, and its construction
is reduced to the Cauchy problem for a second-order ordinary differential equation.

Theorem 2. Let γ ∈ N, c1, c2, c3 ∈ R, c1 6= 0, c2 > 0, c3 6= 0. Then the problem in Equations (20) and (21)
allows being reduced to the Cauchy problem for a system of second-order ODEs

(1) for a(t) = c1ec3t, if γ = 1,
(2) for a(t) = c3 ln (c1t + c2), if γ = 2,
(3) for a(t) = (c1t + c2)

(γ−2)/(2γ−2), if γ ≥ 3.

Proof of Theorem 2. Theorem 1 ensures that the problem in Equations (20) and (21) has a unique
analytical solution in the form of the series in Equation (8) with respect to the powers of z and with
coefficients depending on t. Let us show the possibility of reduction to the Cauchy problem for the
system of ODEs by analyzing the structure of the series in Equation (8).

Spatial variable substitution s = (a(t)− x)/a(t) is successfully applied in the construction of exact
HDW-type solutions of nonlinear parabolic equations [17,23]. Such a replacement, first, allows you to
transform the condition on the diffusion front into a condition at s = 0, and second, it corresponds to
the structure of characteristic series [12,17,30]. This makes it possible to further perform the separation
of independent variables.

We introduce a new independent spatial variable s = (a(t)− x)/a(t) = −z/a(t). The second
independent variable does not change; we keep the notation t for it. The problem in Equations (20)
and (21) takes the form {

ut +
(1−s)a′

a us =
1
a2 uuss +

1
σa2 u2

s + αvγ,

vt +
(1−s)a′

a vs =
1
a2 vvss +

1
δa2 v2

s + βuγ,
(22)

u(t, s)|s=0 = v(t, s)|s=0 = 0. (23)

Based on the type of the system in Equation (22) and taking into account that F(v), G(u) are
power functions, we make (by analogy with [17]) one more substitution

u = aθ(t)p(t, s), v = aθ(t)q(t, s).
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Here θ is constant whose value will be specified later. As a result, Equations (22) and (23) take
the form {

aθ pt + θaθ−1a′p + (1− s)aθ−1a′ps = a2θ−2 ppss +
1
σ a2θ−2 p2

s + αaθγqγ,
aθqt + θaθ−1a′q + (1− s)aθ−1a′qs = a2θ−2qqss +

1
σ a2θ−2q2

s + βaθγ pγ,
(24)

p(t, s)|s=0 = q(t, s)|s=0 = 0. (25)

To separate the variables in Equations (24) and (25), we choose θ from the equality 2θ − 2 = θγ.
Thus, θ = 2/(2− γ), γ 6= 2. If γ = 2, separation of variables is impossible. Dividing both parts of

Equation (24) by a
2γ

2−γ brings the problem to the form pta
2−2γ
2−γ + 2

2−γ a
γ

γ−2 a′p + (1− s)a
γ

γ−2 a′ps = ppss +
1
σ p2

s + αqγ,

qta
2−2γ
2−γ + 2

2−γ a
γ

γ−2 a′q + (1− s)a
γ

γ−2 a′qs = qqss +
1
δ q2

s + βpγ.
(26)

To eliminate variable t from the terms multiplying p, ps and q, qs, we should choose such a(t) that
is a solution to the following ODE

a
γ

γ−2 a′ = c, (27)

where c 6= 0 is a constant. Note that the case c = 0 leads to a trivial solution.
Functions a(t) = c1ec2t (for γ = 1) and a(t) = (c1t + c2)

(γ−2)/(2γ−2) (for γ ≥ 3) are solutions to
Equation (27). Therefore, for all natural γ 6= 2, the system in Equation (26) can be rewritten as pta

2−2γ
2−γ + 2c

2−γ p + c(1− s)ps = ppss +
1
σ p2

s + αqγ,

qta
2−2γ
2−γ + 2c

2−γ q + c(1− s)qs = qqss +
1
δ q2

s + βpγ.
(28)

It remains to verify that pt = 0 and qt = 0, in other words, p = p(s) and q = q(s). In fact,
it follows from the proof of Theorem 1 that there is a unique nontrivial analytical solution to the
problem in Equations (28) and (25) that can be written as series

p(t, s) =
∞

∑
n=0

pn(t)
sn

n!
, q(t, s) =

∞

∑
n=0

qn(t)
sn

n!
. (29)

Their coefficients are determined by the following formulas:

p0 = q0 = 0, p1 = cσ, q1 = cδ,

p2 =
cσγ + αγδ(γ− 2)qγ−1

0
(2− γ)(σ + 1)

, q2 =
cδγ + βγσ(γ− 2)pγ−1

0
(2− γ)(δ + 1)

,

pn+1 =
1

c(1 + nσ)

[
p′na

2−2γ
2−γ +

2c
2− γ

pn − cnpn −Ωn(p)− Fn

]
, (30)

qn+1 =
1

c(1 + nδ)

[
q′na

2−2γ
2−γ +

2c
2− γ

qn − cnqn −Ωn(q)− Gn

]
, (31)

Fn =
∂n(αqγ)

∂sn

∣∣∣
s=0

, Gn =
∂n(βpγ)

∂sn

∣∣∣
s=0

. (32)

Let us show that all the coefficients are constant. It is easy to see that p0, p1, p2, q0, q1, q2 do not
depend on t. Setting n = 2 in Equations (30) and (31), we obtain that p3, q3 do not also depend on t.
The base of induction has been created. We now assume that all coefficients p3, ..., pn and q3, ..., qn

have the same property. Then the terms p′na
2−2γ
2−γ and q′na

2−2γ
2−γ vanish. Therefore, pn+1 and qn+1 are also

independent of t. In accordance with the principle of mathematical induction, all coefficients of the
series in Equation (29) are constant, and the unknown functions have the form p = p(s), q = q(s).
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Adding initial conditions p(0) = p0, q(0) = q0, p′(0) = p1, q′(0) = q1 that provide nontriviality
of the solution, we get the Cauchy problem

pp′′ + 1
σ (p′)2 + c(s− 1)p′ + 2c

γ−2 p + αqγ = 0,
qq′′ + 1

δ (q
′)2 + c(s− 1)q′ + 2c

γ−2 q + βpγ = 0,
p(0) = 0, p′(0) = cσ, q(0) = 0, q′(0) = cδ.

(33)

Its solution helps us to construct a solution to the original the problem in Equations (20) and (21)
in the form

u(t, x) = a
2

2−γ (t)p
(

a(t)− x
a(t)

)
, v(t, x) = a

2
2−γ (t)q

(
a(t)− x

a(t)

)
,

where a(t) = c1ec2t (for γ = 1) and a(t) = (c1t + c2)
(γ−2)/(2γ−2) (for γ ∈ N, γ ≥ 3).

Let us now consider the special case γ = 2. In this case F(u, v) = αv2, G(u, v) = βu2, so

un+1 =
1

a′(1 + nσ)

[
Ωn(u) + α

n−1

∑
k=1

Ck
nvkvn−k − u′n

]
,

vn+1 =
1

a′(1 + nδ)

[
Ωn(v) + β

n−1

∑
k=1

Ck
nukvn−k − v′n

]
.

We make the substitution u = a′(t)p, v = a′(t)q in Equations (20) and (21) and get a condition for
a(t), which ensures p = p(z), q = q(z). The problem in Equations (20) and (21) takes the form{ 1

a′ pt +
a′′

(a′)2 p = pz + ppzz +
1
σ p2

z + αq2,
1
a′ qt +

a′′
(a′)2 q = qz + qqzz +

1
δ q2

z + βp2,
(34)

p(t, s)|s=0 = q(t, s)|s=0 = 0. (35)

To eliminate variable t from the terms multiplying p and q we should choose such a(t) that is a
solution to the following ODE

a′′ = c(a′)2, c 6= 0 − const, (36)

The case c = 0 will be considered separately.
It is easy to make sure that the function a(t) = c3 ln(c1t + c2) is the solution to Equation (36) and

c = −1/c3. Therefore, the system in Equation (34) can be written as{
1
a′ pt + cp = pz + ppzz +

1
σ p2

z + αq2,
1
a′ qt + cq = qz + qqzz +

1
δ q2

z + βp2.
(37)

The solution to the problem in Equations (37) and (35) is constructed as a series

p(t, z) =
∞

∑
n=0

pn(t)
zn

n!
, q(t, z) =

∞

∑
n=0

qn(t)
zn

n!
, (38)

with the coefficients

p0 = q0 = 0, p1 = −σ, q1 = −δ, p2 =
cσ

1 + σ
, q2 =

cδ

1 + δ
,

pn+1 =
1

1 + σn

[
Ωn(p)− 1

a′
p′n − cpn + Fn

]
,

qn+1 =
1

1 + nδ

[
Ωn(q)−

1
a′

q′n − cqn + Gn

]
,
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Fn and G are obtained from (32) for γ = 2. By analogy with the general case, we can show that all
coefficients of the series in Equation (38) are constant, and the unknown functions have the form
p = p(z), q = q(z).

Initial conditions p(0) = p0, q(0) = q0, p′(0) = p1, q′(0) = q1 that provide nontriviality of the
solution bring us to the Cauchy problem

pp′′ + 1
σ (p′)2 + p′ − cp + αq2 = 0,

qq′′ + 1
δ (q
′)2 + q′ − cq + βp2 = 0,

p(0) = 0, p′(0) = −σ, q(0) = 0, q′(0) = −δ.
(39)

By its solution, we find a solution to the original the problem in Equations (20) and (21) for
γ = 2 as

u(t, x) = a′(t)p (x− a(t)) , v(t, x) = a′(t)q (x− a(t)) ,

where a(t) = c3 ln(c1t + c2).
Thus, all the cases specified in the theorem condition are considered. The construction of the

solution to the problem in Equations (20) and (21) is reduced to the integration of Cauchy problems for
ODEs having the form either Equation (33) in cases 1 and 3 or Equation (39) in case 2.

Next, we consider the case of a simple wave that has a constant propagation velocity.
The constraints on the functions F(u, v), G(u, v), in this case, can be significantly weakened compared
to Theorem 2.

Proposition 1. Let F(u, v) and G(u, v) be an analytical function at (0, 0), F(0, 0) = G(0, 0), a0, a1 6= 0 are
constant. Then the problem in Equations (3) and (4) allows being reduced to the Cauchy problem for a system of
ODEs if a(t) = a1t + a0.

Proof of Proposition 1. Consider the problem{
ut − a1uz = uuzz +

1
σ u2

z + F(u, v),
vt − a1vz = vvzz +

1
δ v2

z + G(u, v),
(40)

u(t, z)|z=0 = v(t, z)|z=0 = 0, (41)

which is a particular case of Equations (5) and (6), where a(t) is a linear function and z = x− a1t + a0.
All the conditions of Theorem 1 are satisfied; hence the problem in Equations (40) and (41) has a

unique solution in the form of the series in Equation (8). We rewrite Equations (10) and (11) obtained
for coefficients in the general case, taking into account the conditions of Proposition 1:

u0 = v0 = 0, u1 = −a1σ, v1 = −a1δ,

u2 = − Fu(0, 0)σ + Fv(0, 0)δ
1 + σ

, v2 = −Gu(0, 0)σ + Gv(0, 0)δ
1 + δ

.

un+1 =
1

a1(1 + nσ)

[
Ωn(u) + Fn − u′n

]
,

vn+1 =
1

a1(1 + nδ)

[
Ωn(v) + Gn − v′n

]
.

Following the procedure used in the proof of Theorem 2, we can show that all the coefficients of
the series in this case are constant. Therefore, the unknown functions have the form u = u(z), v = v(z).
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Taking into account the conditions for derivatives at z = 0, which provide nontriviality of the solution,
the problem in Equations (40) and (41) reduces to the following Cauchy problem:{

uu′′ + 1
σ (u
′)2 + a1u′ + F(u, v) = 0,

vv′′ + 1
δ (v
′)2 + a1v′ + G(u, v) = 0,

u(0) = 0, u′(0) = −σ, v(0) = 0, v′(0) = −δ.

It is easy to see that the case γ = 2, c = 0, which was omitted in the proof of Theorem 2, leads to
such a problem.

The study of the main case that leads to HDW-type solutions is finished.
In the next section, for completeness, we consider cases when none of the conditions in

Equations (7) and (19), are satisfied, i.e., u1 = u12, v1 = v12 and u1 = u13, v1 = v13.

5. Special Case

Assume now u1 = u12, v1 = v12 (see Equation (9)). Case u1 = u13, v1 = v13 is considered similarly
up to the notation and therefore is omitted.

Proposition 2. Let a(t) be an analytical function at t = 0, F(u, v) and G(u, v) be an analytical functions at
(0, 0). Let the following condition hold

uz(t, 0) 6≡ 0, vz(t, 0) ≡ 0. (42)

Then the problem in Equations (5) and (6) has a unique solution for t = z = 0 in the form of formal
power series.

Proof of Proposition 2. When constructing solutions in the form of the series

u(t, z) =
∞

∑
n=0

un(t)
zn

n!
, un(t) =

∂nu
∂zn

∣∣∣
z=0

; v(t, z) =
∞

∑
n=0

vn(t)
zn

n!
, vn(t) =

∂nv
∂zn

∣∣∣
z=0

, (43)

from Equation (42) we have that u0 ≡ 0, v0 ≡ 0 and u1 = −σa′, v1 ≡ 0.
Differentiating Equation (5) by z and setting z = 0, we find the coefficients

u2 =
a′′ − a′Fu(0, 0)

a′(1 + 1
σ )

, v2 = σGu(0, 0).

Assuming that Gu(0, 0) 6= 0, we can construct a non-trivial solution to the problem.
The other coefficients of the series in Equation (43) are as follows:

un+1 =
1

a′(1 + nσ)

[
Ωn(u) + Fn − u′n

]
,

vn+1 =
1
a′
[
v′n −Ωn(v)− Gn

]
.

It is easy to see that all coefficients of the series in Equation (43) are determined uniquely.

Remark 4. If G(u, v) = G(v), that is, the second equation of the system in Equation (5) does not depend on
the unknown function u, then Gn = 0, n = 1, 2, . . . and, therefore, v ≡ 0.

The proven proposition leaves open the question of convergence of the series in Equation (43).
The research has shown that it is impossible to prove a general existence and uniqueness theorem
similar to Theorem 1 in this case. The convergence or divergence of the series is determined by the
parameters of the problem. Next, we give examples confirming this.
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Example 1. In the problem in Equations (5) and (6) we set

F(u, v) ≡ 0, G(u, v) = u, a(t) = −ct, a′(t) = −c,

c > 0 is a constant, then it takes the form{
ut + cuz = uuzz +

1
σ u2

z ,
vt + cvz = vvzz +

1
δ v2

z + u,
(44)

u(t, z)|z=0 = v(t, z)|z=0 = 0. (45)

Let the conditions of Proposition 2 be satisfied, i.e., u1 = u12 = −σa′(t) = σc, v1 = v12 ≡ 0.
Now we find the solution to the problem in Equations (44) and (45). The form of Equation (44) allows us to

find the function u separately, and then determine the function v.
It is easy to show that in this case, the solution of the problem{

ut + cuz = uuzz +
1
σ u2

z ,
u(t, z)|z=0 = 0

is u = σcz. Proposition 2 ensures its uniqueness.
Next, we put the found u in the system and consider the problem{

vt + cvz = vvzz +
1
δ v2

z + σcz,
v(t, z)|z=0 = 0.

The formulas for the coefficients vn of the series (43) are given in the proof of Proposition 1, where constants
Gn are as follows:

G1 = σc, G0 = G2 = G3 = ... = 0.

Given these equalities and conditions in Equation (42), we obtain that

v0 ≡ 0, v1 ≡ 0, v2 = σGu(0, 0) = σ > 0,
vn+1 = 1

c [−v′n + Ωn(v)] , n ≥ 2.
(46)

It follows from Equation (46) that all coefficients vn for n ≥ 2 are positive constants. Therefore, v′n ≡ 0,
and we arrive at the solution to the problem in Equations (44) and (45):

v(z) =
∞

∑
n=0

vn

n!
zn, v0 = 0, v1 = 0, v2 = σ, vn =

1
c

Ωn−1(v), n ≥ 3. (47)

We now show that the radius of convergence R of the series in Equation (47) is zero. According to
d’Alembert theorem, the convergence radius of the Taylor series is defined as

R = lim
n→∞

∣∣∣∣vn(n + 1)
vn+1

∣∣∣∣ = lim
n→∞

vn(n + 1)
vn+1

, (48)

since vn > 0, vn+1 > 0. The estimate

vn+1 =
1
c

Ωn(v) =
1
c

n

∑
k=2

(
Ck

n +
1
δ

Ck−1
n

)
vkvn+2−k ≥

1
c

C2
nv2vn =

σ(n− 1)nvn

2c
≥ 0 (49)

helps us find the limit. From Equation (49) it follows that

2c(n + 1)
σ(n− 1)n

≥ vn(n + 1)
vn+1

≥ 0.
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We proceed to the limit as n→ ∞ and get

0 ≥ lim
n→∞

vn(n + 1)
vn+1

≥ 0.

Substituting the last inequality in Equation (48) we get that R = 0. In other words, the series in
Equation (47) converges only if z = 0, and the problem does not have an analytical solution.

Example 2. Here we consider the problem in Equations (44) and (45) in the case u1 = u13 ≡ 0, v1 = v13 = δc.
Then, according to Remark 4, the problem{

ut + cuz = uuzz +
1
σ u2

z ,
u(t, z)|z=0 = 0,

under the condition u1 ≡ 0 has only a trivial solution u ≡ 0. Then, Equation (44) takes the form{
vt + cvz = vvzz +

1
δ v2

z ,
v(t, z)|z=0 = 0,

It, as shown in Example 1, has a unique non-trivial solution v = δcz. The original problem in
Equations (44) and (45) is uniquely solvable in the class of analytical functions.

Thus, we can see that in the particular case discussed in this section, the solution in the form of a
formal series can always be constructed. However, the convergence directly depends on the specific
parameters of the problem.

Remark 5. In the considered case, Example 1 is an analog of the classical counterexample of S. V. Kovalevskaya
for the linear heat equation [30], which was presented 150 years ago. Just as the counterexample of
S. V. Kovalevskaya emphasizes the significance of all the conditions of the Cauchy–Kovalevskaya theorem,
Example 1 shows the importance of all the conditions of Theorem 1 proved in this paper.

6. Conclusions

Summarizing the study, we highlight that the obtained results generalize the research
on the construction of HDW-type solutions for nonlinear parabolic equations with singularity,
performed earlier in the scientific school of A. F. Sidorov, for the case of a parabolic system with
power nonlinearity. We have considered the problem with a given diffusion front. The solution
has been constructed as two characteristic series with recursively determined coefficients. We have
proved the convergence of series by the majorant method using the Cauchy–Kovalevskaya theorem.
This means that the existence and uniqueness theorem of a nontrivial solution in the analytical functions
class has been proved.

The obtained non-zero solution with a trivial one forms a piecewise analytical heat wave. We have
considered special cases where the construction of HDW-type solutions has been reduced to the
Cauchy problem for a second-order ordinary differential equation.

It has been shown that the solution can also be constructed in the form of formal Taylor series if
the conditions of the proved theorem are not satisfied. However, Example 1, which is an analog of the
well-known counterexample of S. V. Kovalevskaya, shows that it is impossible to prove a more general
statement about the convergence of the specified series, as compared to Theorem 1.

Solution representations in the form of series can be directly applied for numerical calculations [12].
However, the series convergence domain is the neighborhood of the point t = 0, and this neighborhood
is usually small. In this regard, we plan using an original approach based on the boundary element
method (BEM) to solve the problem of the diffusion wave movement at a given time interval.
Previously, we successfully applied the BEM in combination with the dual reciprocity method for
constructing HDW-type solutions for the porous medium equation [15,16]. The main point here is the



Symmetry 2020, 12, 999 15 of 16

elimination of singularity in the multipliers at the highest derivatives; this can be done by the series
constructed in this paper.

Further research in this field may be associated with the following directions. The first one is the
proof of existence and uniqueness theorems for the problem of heat wave initiation by a boundary
regime for the system in Equation (3). The second one is the development of a numerical-analytical
method based on Theorem 1 and the boundary element method [15,16]. The third one is increasing the
number of spatial variables in the problem [18].

Systems of nonlinear parabolic equations with singularity will further be applied to study natural
processes occurring in Lake Baikal. This will allow us to improve the accuracy and adequacy of
modeling and forecasting. Additionally, the modeling and simulation will help us to study this system
in more detail that, in turn, assists in the protection of the environmental system of the lake included
in the list of UNESCO world heritage sites. More specifically, the developed analytical methods in
combination with computational technologies, which are planned to be developed, will be applied to
modeling polluting substances near settlements, changes in the thickness of the ice and the evolution
of the Baikal biota populations.
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