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Abstract: In a uniformly convex and q-uniformly smooth Banach space with q ∈ (1, 2], one use VIP
to indicate a variational inclusion problem involving two accretive mappings and CFPP to denote the
common fixed-point problem of an infinite family of strict pseudocontractions of order q. In this paper,
we introduce a composite extragradient implicit method for solving a general symmetric system of
variational inclusions (GSVI) with certain VI and CFPP. We then investigate its convergence analysis
under some weak conditions. Finally, we consider the celebrated LASSO problem in Hilbert spaces.
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1. Introduction-Preliminaries

Throughout this article, one always supposes that H is a real infinite dimensional Hilbert space
endowed with norm ‖ · ‖ and inner product 〈·, ·〉. Let the nonempty subset C ⊂ H be convex and
closed, and let the mapping PC be the nearest point (metric) projection of H onto C. Let A : C → H
be a nonself mapping. The celebrated variational inequality problem (VIP) is to find an element
x∗ ∈ C s.t. 〈y− x∗, Ax∗〉 ≥ 0, for all y ∈ C. One denotes by VI(C, A) the set of all solutions of the
VIP. The VIP acts as a unified framework for lots of real industrial and applied problems, such as,
machine learning, transportation, image processing and economics; see, e.g., [1–7]. One knows that
Korpelevich’s extragradient algorithm [8] is now one of the most popular algorithms to numerically
solve the VIP. It reads as follows:{

xj+1 = PC(xj − `Ayj) ∀j ≥ 0,
yj = PC(xj − `Axj),

with ` ∈ (0, 1
L ), where L is the Lipschitz constant of the mapping A. If its solution set is not empty,

it was obtained that sequence {xj} is weakly convergent. The price for the weak convergence is that
A must be a Lipschitz and monotone mapping. To date, now, the extragradient method and relaxed
extragradient methods have received much attention and has been studied extensively; see, e.g., [9–13].
Next, one assumes that B is monotone set-valued mapping defined on H and A is a monotone
single-valued mapping defined on H, respectively. The so-called variational inclusion problem is to
find an element x∗ ∈ H s.t. 0 ∈ (A + B)x∗ and it has recently been studied by many authors based on
splitting-based approximation methods; see, e.g., [14–17]. This model provides a unified framework
for a lot of theoretical and practical problems and was investigated via different methods [18–22].
To the best of the authors’ knowledge, there are no few associated results obtained in Banach spaces.
Next, one will turn our attention to Banach spaces.

Next, E∗ will be used to present be the dual space of Banach space E. Let ∅ 6= C ⊂ E be a
convex and closed set. Given a nonlinear mapping T on C, one uses the symbol Fix(T) to denote the
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set of all the fixed points of T. Recall that the mapping T is said to be a Lipschitz mapping if and
only if, ∀x, y ∈ C, ‖Tx− Ty‖ ≤ L‖x− y‖. If the Lipschitz constant L is just one, one say that T is a
nonexpansive mapping whose complementary mappings are monotone.

Recall that the duality mapping Jq : E→ 2E∗ is defined by

Jq(x) = {φ ∈ E∗ : 〈x, φ〉 = ‖x‖q, ‖φ‖ = ‖x‖q−1}.

For a particular case, one uses J to stand for J2, which is commonly called the normalized duality.
Recall that a mapping T defined on C is said to be a strict pseudocontraction of order q if, ∀x, y ∈ C,
there is jq(x − y) ∈ Jq(x − y) such that the following inequality holds 〈Tx − Ty, jq(x − y)〉 ≤ ‖x −
y‖q − ς‖(I − T)x− (I − T)y‖q for some ς > 0.

The convexity modulus of space E, δE, which maps the interval (0, 2] to the interval [0, 1], is defined
as follows

δE(ε) = inf{2− ‖x + x′‖
2

: x′, x ∈ E, ε ≤ ‖x′ − x‖, ‖x′‖ = 1 = ‖x‖}.

The smoothness modulus of space E, ρE, which maps the interval [0, ∞) to the interval [0, ∞), is defined
as follows

ρE(τ) = sup{‖τx′ + x‖+ ‖τx′ − x‖ − 2
2

: x′, x ∈ E, ‖x′‖ = ‖x‖ = 1}.

Recall that a space E is said to be uniformly convex if δE(e) > 0, ∀e ∈ (0, 2]. Recall that a space E is
said to be uniformly smooth if limτ→0+

ρE(τ)
τ = 0. Further it is said to be q-uniformly (q > 1) smooth

if ∃c > 0 s.t. c ≥ s−qρE(s), ∀s > 0. In q-uniformly (q > 1) smooth spaces, one has the following
celebrated inequality, for some jq(x + y) ∈ Jq(x + y),

‖x + y‖q − ‖x‖q ≤ q〈y, jq(x + y)〉 ∀x, y ∈ E. (1)

One says that an operator Π : C → D, where D is convex and closed subset of C, is said to be a
sunny mapping if, (1− ξ)Π(x) + ξx ∈ C for ξ ≥ 0 and x ∈ C, Π(x) = Π[Π(x) + ξ(x−Π(x))]. If Π is
both nonexpansive and sunny, then 〈x̄− x′, J(Π(x̄)−Π(x′))〉 ≥ ‖Π(x̄)−Π(x′)‖2, ∀x̄, x′ ∈ C.

In the setting of q-uniformly smooth spaces, we recall that an operator B is said to be accretive
if, for some jq(x′ − x̄) ∈ Jq(x′ − x̄), 〈u − v, jq(x′ − x̄)〉 ≥ 0, for all u ∈ Bx′, v ∈ Bx̄. An accretive
operator B is said to be inverse-strongly of order q if, for each x′, x̄ ∈ C, ∃jq(x′ − x̄) ∈ Jq(x′ − x̄) s.t.
〈u − v, jq(x′ − x̄)〉 ≥ α‖u − v‖q, for all u ∈ Bx′, v ∈ Bx̄ for some α > 0. An accretive operator B
is said to be m-accretive if (I + λB)C = E for all λ > 0. Furthermore, one can define a mapping
JB
λ : (I + λB)C → C by JB

λ = (I + λB)−1 for each λ > 0. Such JB
λ is called the resolvent of B for

λ > 0. In the sequel, we will use the notation Tλ := JB
λ (I − λA) = (I + λB)−1(I − λA) ∀λ > 0.

From [9], we have Fix(Tλ) = (A + B)−10 ∀λ > 0 and ‖y− Tλy‖ ≤ 2‖y− Try‖ for 0 < λ ≤ r and
y ∈ C. From [23], one has JB

λ x = JB
µ (

µ
λ x + (1− µ

λ )JB
λ x) for all λ, µ > 0, x ∈ E and Fix(JB

λ ) = B−10,
where B−10 = {x ∈ C : 0 ∈ Bx}.

Let A1, A2 : C → E and B1, B2 : C → 2E be nonlinear mappings with Bkx 6= ∅ ∀x ∈ C, k = 1, 2.
Consider the symmetrical system of variational inclusions, which consists of finding the pair (x∗, y∗)
in C× C s.t. {

0 ∈ ζ1(A1y∗ + B1x∗) + x∗ − y∗,
0 ∈ ζ2(A2x∗ + B2y∗) + y∗ − x∗,

(2)

where ζk is a positive constant for k = 1, 2. Ceng, Postolache and Yao [24] obtain the fact that
problem (2) is equivalent to a fixed point problem.

Based on the equivalent relation, Ceng et al. [24] suggested a composite viscosity implicit rule for
solving the GSVI (2) as follows:{

yj = JB2
ζ2
(xj − ζ2 A2xj),

xj = αj f (xj−1) + δjxj−1 + β jVxj−1 + γj[µSxj + (1− µ)JB1
ζ1
(yj − ζ1 A1yj)] ∀j ≥ 1,
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where µ ∈ (0, 1), S := (1 − α)I + αT with 0 < α < min{1, 2λ
κ2
}, and the sequences

{αj}, {δj}, {β j}, {γj} ⊂ (0, 1) are such that (i) αj + δj + β j + γj = 1 ∀j ≥ 1; (ii) limj→∞ αj = 0,

limj→∞
β j
αj

= 0; (iii) limj→∞ γj = 1; (iv) ∑∞
j=0 αj = ∞. They proved that {xj} converges strongly to a

point of Fix(G) ∩ Fix(T), which solves a certain VIP.
In this article, we introduce and investigate an implicitly composite solution method to solve the

GSVI (2) with certain VIP and CFPP constraints. We then analyze convergence of the suggested method
in the setting of real Hilbert spaces under some mild conditions. An application is also considered.

From now on, one always uses κq > 0 to denote the smoothness coefficient; see [25,26]. One also
lists some essential lemmas for the strong convergence theorem next.

Lemma 1 ([27]). Let E be q-uniformly smooth with q ∈ (1, 2], and ∅ 6= C ⊂ E a closed convex set.
Let T : C → C be a ς-strict pseudocontraction of order q. Given α ∈ (0, 1). Define a single-valued nonlinear
mapping Tα : C → C by Tαx = (1− α)x + αTx. Then Tα is nonexpansive with Fix(Tα) = Fix(T) provided

0 < α ≤ ( ςq
κq
)

1
q−1 .

Lemma 2 ([28]). Let E be q-uniformly smooth with q ∈ (1, 2]. Suppose that A : C → E is an
α-inverse-strongly accretive mapping of order q. Then, for any given λ ≥ 0,

λ(αq− κqλq−1)‖Ax− Ay‖q + ‖(I − λA)x− (I − λA)y‖q ≤ ‖x− y‖q, ∀x, y ∈ C.

Lemma 3 ([26,28]). Let q ∈ (1, 2] be a fixed real number and let E be a q-uniformly smooth Banach space.
Then ‖x + y‖q ≤ q〈y, Jq(x)〉+ ‖x‖q + κq‖y‖q, ∀x, y ∈ E. Let B1, B2 : C → 2E be two m-accretive operators.
Let Ai : C → E (i = 1, 2) be σi-inverse-strongly accretive mapping of order q for each i = 1, 2. Define an
operator G : C → C by

G := JB1
ζ1
(I − ζ1 A1)JB2

ζ2
(I − ζ2 A2).

If 0 ≤ ζi ≤ ( σiq
κq
)

1
q−1 (i = 1, 2), then G is a nonexpansive mapping.

The following lemmas was proved in [29], which is a simple extension of the inequality established
in [26].

Lemma 4. In a uniformly convex real Banach space E, there is a convex, strictly increasing, continuous function
g, which maps [0,+∞) to [0,+∞) with g(0) = 0 such that

‖λx′ + µx̄ + νx̃‖q ≤ λ‖x′‖q + µ‖x̄‖q + ν‖x̃‖q −Wqg(‖x̄− x̃‖),

where q > 1 is any real number and Wq is a real function associated with µ and ν, for all x′, x̄, x̃ ∈ {x ∈ E :
‖x‖ ≤ r} (r is some real number) and λ, µ, ν ∈ [0, 1] such that λ + ν + µ = 1.

Lemma 5 ([26]). If E be a uniformly convex Banach space, then there exist a convex, strictly increasing,
continuous function h, which maps [0,+∞) to [0,+∞) with h(0) = 0 such that

h(‖x− y‖) ≤ ‖x‖q − q〈x, jq(y)〉+ (q− 1)‖y‖q,

where x and y are in some bounded subset of E and jq(y) ∈ Jq(y).

Lemma 6 ([30]). Let {Sn}∞
n=0 be a sequence of self-mappings on C such that

∞

∑
n=1

sup
x∈C
‖Snx− Sn−1x‖ < ∞.
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Then, for each y ∈ C, {Sny} converges strongly to some point of C. Moreover, let S be the self-mapping on C
defined by Sy = limn→∞ Sny for all y ∈ C. Then limn→∞ supx∈C ‖Snx− Sx‖ = 0.

Lemma 7 ([31]). Let E be a strictly convex Banach space. Let Tn be a nonexpansive mapping defined on
a convex and closed subset C of E for each n ≥ 1. Let

⋂∞
n=0 Fix(Tn) be nonempty. Let {λn} be a positive

sequence such that ∑∞
n=0 λn = 1. Then a mapping S on C defined by Sx = ∑∞

n=0 λnTnx ∀x ∈ C is well defined,
nonexpansive and Fix(S) =

⋂∞
n=0 Fix(Tn) holds.

Lemma 8 ([32]). Let E be a smooth Banach space. Let T : C → C, where C is convex and closed set
in E, be a self-nonexpansive mapping. Suppose that λ is constant in the interval (0, 1). Then {zλ}, where
zλ = (1−λ)Tzλ +λu, converges strongly to a fixed point x∗ ∈ Fix(T), which solves 〈u− x∗, J(x∗− x)〉 ≥ 0
for all x ∈ Fix(T).

Lemma 9 ([33]). Let {an} be a sequence in [0, ∞) such that an+1 ≤ (1− sn)an + snνn ∀n ≥ 0, where {sn}
and {νn} satisfy the conditions: (i) {sn} ⊂ [0, 1], ∑∞

n=0 sn = ∞; (ii) lim supn→∞ νn ≤ 0 or ∑∞
n=0 |snνn| < ∞.

Then limn→∞ an = 0.

Lemma 10 ([34]). Let {Γn} be a real sequence such that there exists a real sequence {Γni}, which is a
subsequence of {Γn} such that Γni+1 > 1Γni for each integer i ≥ 1. Let {τ(n)}n≥n0 be a integer Define
the sequence defined by τ(n) = max{k ≤ n : Γk+1 > Γk}, where the integer n0 ≥ 1 is chosen in such
a way that {k ≤ n0 : Γk+1} > Γk 6= ∅. (i) Γτ(n)+1 ≥ Γτ(n) and Γτ(n)+1 ≥ Γn for each n ≥ n0;
(ii) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n)→ ∞.

2. Results

Throughout this section, suppose that C is a convex closed set in a Banach space E, which is both
uniformly convex and q-uniformly smooth with q ∈ (1, 2]. Let both B1 : C → 2E and B2 : C → 2E be
m-accretive operators. Let Ak : C → E be single-valued σk-inverse strongly accretive mapping for each
k = 1, 2. Further, one assumes that G : C → C is a self mapping defined as G := JB1

ζ1
(I − ζ1 A1)JB2

ζ2
(I −

ζ2 A2) with constants ζ1, ζ2 > 0. Let Sn be a ς-uniformly strictly pseudocontractive mapping for each
n ≥ 1. Let A : C → E and B : C → 2E be a σ-inverse-strongly accretive mapping of order q and an
m-accretive operator, respectively. Assume that the feasibility set Ω :=

⋂∞
n=0 Fix(Sn) ∩ (A + B)−10∩

Fix(G) is nonempty.

Algorithm 1: Composite extragradient implicit method for the GSVI (2) with VIP and
CFPP constraints.

Initial Step. Given ξ ∈ (0, 1), α ∈ (0, min{1, ( ςq
κq
)

1
q−1 }). Let x0 ∈ C be an arbitrary initial.

Iteration Steps. Compute xn+1 from the current xn as follows:
Step 1. Calculate{

wn = sn((1− ξ)xn + ξGwn) + (1− sn)((1− α)xn + αSnxn),
un = JB1

ζ1
(I − ζ1 A1)JB2

ζ2
(wn − ζ2 A2wn);

Step 2. Calculate yn = JB
λn
(un − λn Aun);

Step 3. Calculate zn = JB
λn
(un − λn Ayn + rn(yn − un));

Step 4. Calculate xn+1 = αnu + βnun + γn((1− α)zn + αSnzn), where u is a fixed element in C,
{rn}, {sn}, {αn}, {βn}, {γn} ⊂ (0, 1] with {λn} ⊂ (0, ∞) and αn + βn + γn = 1.

Set n := n + 1 and go to Step 1.

Lemma 11. Let the vector sequence {xn} be constructed by Algorithm 1. One has that the sequence {xn}
is bounded.
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Proof. Putting vn = JB2
ζ2
(wn − ζ2 A2wn) and Sα,n := (1− α)I + αSn ∀n ≥ 0, we know from Lemma 1

that each Sα,n : C → C is nonexpansive with Fix(Sα,n) = Fix(Sn). Let p ∈ Ω :=
⋂∞

n=0 Fix(Sn) ∩
Fix(G) ∩ (A + B)−10. Then we observe that p = Gp = Sn p = JB

λn
((1− rn)p + rn(p− λn

rn
Ap)). By use

of Lemmas 2 and 3, we deduce that I − ζ1 A1, I − ζ2 A2 and G := JB1
ζ1
(I − ζ1 A1)JB2

ζ2
(I − ζ2 A2) are

nonexpansive mappings. It is clear that there is only one element wn ∈ C satisfying

wn = sn((1− ξ)xn + ξGwn) + (1− sn)(αSnxn + (1− α)xn).

Since G and Sα,n are both nonexpansive mappings, we get

‖wn − p‖ ≤ sn((1− ξ)‖xn − p‖+ ξ‖Gwn − p‖) + (1− sn)‖Sα,nxn − p‖
≤ sn(ξ‖wn − p‖+ (1− ξ)‖xn − p‖) + (1− sn)‖xn − p‖,

and hence ‖wn − p‖ ≤ ‖xn − p‖ ∀n ≥ 0. Using the nonexpansivity of G again, we deduce from
un = Gwn that ‖un − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖. By use of Lemmas 2 and 4, we have

‖yn − p‖q ≤ ‖(I − λn A)p− (I − λn A)un‖q

≤ ‖un − p‖q − λn(σq− κqλ
q−1
n )‖Aun − Ap‖q,

which leads to ‖yn − p‖ ≤ ‖un − p‖. On the other hand,

‖zn − p‖q = ‖JB
λn
((1− rn)un + rn(yn − λn

rn
Ayn))− JB

λn
((1− rn)p + rn(p− λn

rn
Ap))‖q

≤ rn‖(I − λn
rn

A)yn − (I − λn
rn

A)p‖q + (1− rn)‖un − p‖q

≤ rn[‖yn − p‖q − λn
rn
(σq− κqλ

q−1
n

rq−1
n

)‖Ayn − Ap‖q] + (1− rn)‖un − p‖q

≤ λn(
κqλ

q−1
n

rq−1
n
− σq)‖Ayn − Ap‖q + rnλn(κqλ

q−1
n − σq)‖Aun − Ap‖q + ‖un − p‖q.

This ensures that ‖zn − p‖ ≤ ‖un − p‖. So it follows from (3.2) that

‖xn+1 − p‖ ≤ αn‖p− u‖+ βn‖un − p‖+ γn‖Sα,nzn − p‖
≤ αn‖p− u‖+ (1− αn)‖xn − p‖,

which leads to ‖xn − p‖ ≤ max{‖p− u‖, ‖p− x0‖}.

Theorem 1. Suppose that {xn} is the vector sequence generated/defined by Iterative Algorithm 1. Assume that
the parameter sequences satisfy ∑∞

n=0 αn = ∞ and limn→∞ αn = 0; 0 < a ≤ βn ≤ b < 1 and 0 < c ≤
sn ≤ d < 1; 0 < r ≤ rn < 1 and 0 < λ ≤ λn < λn

rn
≤ µ < ( σq

κq
)

1
q−1 ; 0 < ζi < ( σiq

κq
)

1
q−1 , i = 1, 2.

Suppose ∑∞
n=0 supx∈D ‖Sn+1x − Snx‖ < ∞, where D is a bounded set in set C. Define the mapping S by

Sx = limn→∞ Snx for all x ∈ C. Then the sequence {xn} converges to x∗ ∈ Ω strongly. The solution also
uniquely solves 〈x∗ − u, J(x∗ − x̄)〉 ≤ 0 for all x̄ ∈ Ω.

Proof. First, we set vn = JB2
ζ2
(wn − ζ2 A2wn), x∗ ∈ Ω and y∗ = JB2

ζ2
(x∗ − ζ2 A2x∗). Since un = JB1

ζ1
(I −

ζ1 A1)vn and vn = JB2
ζ2
(I − ζ2 A2)wn, we have un = Gwn. Using Lemma 2 yields that

‖vn − y∗‖q ≤ ζ2(κqζ
q−1
2 − σ2q)‖A2wn − A2x∗‖q + ‖wn − x∗‖q

and
‖un − x∗‖q ≤ ζ1(κqζ

q−1
1 − σ1q)‖A1vn − A1y∗‖q + ‖vn − y∗‖q.

Combining the last two inequalities, we have

‖un − x∗‖q ≤ ζ2(κqζ
q−1
2 − σ2q)‖A2wn − A2x∗‖q + ζ1(κqζ

q−1
1 − σ1q)‖A1vn − A1y∗‖q + ‖wn − x∗‖q.
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Using (1) and Lemma 4, we obtain that

‖xn+1 − x∗‖q

≤ qαn〈u− x∗, Jq(xn+1 − x∗)〉+ ‖βn(un − x∗) + γn(Sα,nzn − x∗)‖q

≤ βn‖x∗ − un‖q + γn[‖un − x∗‖q − rnλn(σq− κqλ
q−1
n )‖Aun − Ax∗‖q

− λn(σq− κqλ
q−1
n

rq−1
n

)‖Ayn − Ax∗‖q]−Wqg(‖un − Sα,nzn‖) + qαn〈u− x∗, Jq(xn+1 − x∗)〉

≤ (1− αn)‖xn − x∗‖q − γn[ζ2(σ2q− κqζ
q−1
2 )‖A2wn − A2x∗‖q

+ ζ1(σ1q− κqζ
q−1
1 )‖A1vn − A1y∗‖q + rnλn(σq− κqλ

q−1
n )‖Aun − Ax∗‖q

+ λn(σq− κqλ
q−1
n

rq−1
n

)‖Ax∗ − Ayn‖q]−Wqg(‖un − Sα,nzn‖) + αnq〈u− x∗, Jq(xn+1 − x∗)〉.

(3)

Put
Γn = ‖xn − x∗‖q,
ηn = γn[ζ2(σ2q− κqζ

q−1
2 )‖A2wn − A2x∗‖q + ζ1(σ1q− κqζ

q−1
1 )‖A1vn − A1y∗‖q

− λnrn(κqλ
q−1
n − qσ)‖Aun − Ax∗‖q + (σq− κqλ

q−1
n

rq−1
n

)λn‖Ayn − Ax∗‖q]

−Wqg(‖un − Sα,nzn‖)
δn = 〈u− x∗, Jq(xn+1 − x∗)〉qαn.

Then (3) can be rewritten as the following formula:

Γn+1 + ηn ≤ (1− αn)Γn + δn. (4)

We next give two possible cases.

Case 1. We assume that there is an integer n0 ≥ 1 with the restriction that {Γn} is non-increasing.
From (4), we get ηn ≤ Γn − αnΓn − Γn+1 + δn. From limn→∞ αn = limn→∞ δn = 0, one sees that
limn→∞ ηn = 0. It is easy to see from Lemma 4 that limn→∞ g(‖un − Sα,nzn‖) = 0,

lim
n→∞

‖A2wn − A2x∗‖ = lim
n→∞

‖A1vn − A1y∗‖ = 0 (5)

and
lim

n→∞
‖Aun − Ax∗‖ = lim

n→∞
‖Ayn − Ax∗‖ = 0. (6)

From the fact that g is a strictly increasing, continuous and convex function with g(0) = 0, one has

lim
n→∞

‖un − Sα,nzn‖ = 0. (7)

By use of Lemma 5, we get

‖vn − y∗‖q ≤ 〈wn − ζ2 A2wn − (x∗ − ζ2 A2x∗), Jq(vn − y∗)〉
≤ 1

q [‖wn − x∗‖q + (q− 1)‖vn − y∗‖q − h̃1(‖wn − x∗ − vn + y∗‖)]
+ ζ2〈A2x∗ − A2wn, Jq(vn − y∗)〉,

where h̃1 is a convex, strictly increasing, continuous function as in Lemma 5. This hence entails

‖vn − y∗‖q ≤ ‖wn − x∗‖q − h̃1(‖wn − vn − x∗ + y∗‖) + qζ2‖A2x∗ − A2wn‖‖vn − y∗‖q−1.
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In a similar way, one concludes

‖un − x∗‖q ≤ 〈vn − ζ1 A1vn − (y∗ − ζ1 A1y∗), Jq(un − x∗)〉
≤ 1

q [‖vn − y∗‖q + (q− 1)‖un − x∗‖q − h̃2(‖vn − y∗ − un + x∗‖)]
+ ζ1〈A1y∗ − A1vn, Jq(un − x∗)〉,

which hence entails

‖un − x∗‖q

≤ ‖vn − y∗‖q − h̃2(‖vn − y∗ − un + x∗‖) + qζ1‖A1y∗ − A1vn‖‖un − x∗‖q−1

≤ ‖xn − x∗‖q − h̃1(‖wn − vn − x∗ + y∗‖) + qζ2‖A2x∗ − A2wn‖‖vn − y∗‖q−1

− h̃2(‖vn − un + x∗ − y∗‖) + qζ1‖A1y∗ − A1vn‖‖un − x∗‖q−1.

(8)

Note that

q‖yn − x∗‖q ≤ q〈(un − λn Aun)− x∗ + λn Ax∗), Jq(yn − x∗)〉
≤ ‖(un − λn Aun)− x∗ + λn Ax∗)‖q − h1(‖un − yn − λn(Aun − Ax∗)‖)
+(q− 1)‖yn − x∗‖q,

which leads us to

‖yn − x∗‖q ≤ ‖un − x∗‖q − h1(‖un − yn − λn(Aun − Ax∗)‖).

From (8), one has

‖xn+1 − x∗‖q

≤ γn{(1− rn)‖un − x∗‖q + rn[‖un − x∗‖q + αn‖x∗ − u‖q

− h1(‖un − λn(Aun − Ax∗)− yn‖)]}+ βn‖un − x∗‖q

≤ βn‖xn − x∗‖q + αn‖x∗ − u‖q + γn{‖xn − x∗‖q − h̃1(‖wn − vn − x∗ + y∗‖)
− h̃2(‖vn − un + x∗ − y∗‖) + qζ1‖A1y∗ − A1vn‖‖un − x∗‖q−1

+ qζ2‖A2x∗ − A2wn‖‖vn − y∗‖q−1 − rnh1(‖un − λn(Aun − Ax∗)− yn‖)}
≤ ‖xn − x∗‖q + αn‖x∗ − u‖q − γn{h̃1(‖wn − vn − x∗ + y∗‖)
+ h̃2(‖vn − un + x∗ − y∗‖) + rnh1(‖un − λn(Aun − Ax∗)− yn‖)}
+ qζ1‖A1y∗ − A1vn‖‖un − x∗‖q−1 + qζ2‖A2x∗ − A2wn‖‖vn − y∗‖q−1,

which immediately yields that

γn{h̃1(‖wn − vn − x∗ + y∗‖) + h̃2(‖vn − un + x∗ − y∗‖)
+ rnh1(‖un − λn(Aun − Ax∗)− yn‖)}
≤ αn‖u− x∗‖q + Γn − Γn+1 + qζ1‖A1y∗ − A1vn‖‖un − x∗‖q−1

+ qζ2‖A2x∗ − A2wn‖‖vn − y∗‖q−1.

Since h̃1(0) = h̃2(0) = h1(0) = 0 and the fact that h̃1, h̃2 and h1 are strictly increasing, continuous and
convex functions, one concludes that limn→∞ ‖wn − vn − x∗ + y∗‖ = limn→∞ ‖vn − un + x∗ − y∗‖ =
limn→∞ ‖un − yn‖. This immediately implies that

lim
n→∞

‖wn − un‖ = lim
n→∞

‖un − yn‖ = 0. (9)
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Furthermore, borrowing wn = sn((1− ξ)xn + ξGwn) + (1− sn)Sα,nxn defined as the first step in the
iteration procedure, we obtain that

‖wn − x∗‖q = 〈sn((1− ξ)xn + ξGwn) + (1− sn)Sα,nxn − x∗, Jq(wn − x∗)〉
= sn[(1− ξ)〈xn − x∗, Jq(wn − x∗)〉+ ξ〈Gwn − x∗, Jq(wn − x∗)〉]
+ (1− sn)〈Sα,nxn − x∗, Jq(wn − x∗)〉
≤ sn[(1− ξ)〈xn − x∗, Jq(wn − x∗)〉+ ξ‖wn − x∗‖q] + (1− sn)〈Sα,nxn − x∗, Jq(wn − x∗)〉,

which yields

‖wn − x∗‖q ≤ 1
1−snξ [sn(1− ξ)〈xn − x∗, Jq(wn − x∗)〉+ (1− sn)〈Sα,nxn − x∗, Jq(wn − x∗)〉]

≤ 1
q [‖xn − x∗‖q + (q− 1)‖wn − x∗‖q]− 1

1−snξ [
sn(1−ξ)

q h3(‖xn − wn‖)
+ 1−sn

q h̃3(‖Sα,nxn − wn‖)].

This further implies that

‖un − x∗‖q ≤ ‖wn − x∗‖q

≤ ‖xn − x∗‖q − 1
1− snξ

[sn(1− ξ)h3(‖xn − wn‖) + (1− sn)h̃3(‖Sα,nxn − wn‖)].
(10)

In a similar way, one further concludes

‖zn − x∗‖q ≤ ‖(x∗ − λn Ax∗)− (un − λn Ayn + rn(yn − un))‖q

− h2(‖un + (rnyn − rnun)− (λn Ayn − λn Ax∗)− zn‖)
≤ ‖un − x∗‖q − h2(‖un + (rnyn − rnun)− (λn Ayn − λn Ax∗)− zn‖).

Using (10) leads us to

‖xn+1 − x∗‖q ≤ γn[‖un − x∗‖q + βn‖un − x∗‖q

− h2(‖un + (rnyn − rnun)− (λn Ayn − λn Ax∗)− zn‖)] + αn‖x∗ − u‖q

≤ ‖xn − x∗‖q − γn{ 1
1−snξ [sn(1− ξ)h3(‖xn − wn‖)

+ (1− sn)h̃3(‖Sα,nxn − wn‖)] + h2(‖un + (rnyn − rnun)− (λn Ayn − λn Ax∗)− zn‖)}
+αn‖x∗ − u‖q.

Hence,
γn{ 1

1−snξ [sn(1− ξ)h3(‖xn − wn‖) + (1− sn)h̃3(‖Sα,nxn − wn‖)]
+ h2(‖un + (rnyn − rnun)− (λn Ayn − λn Ax∗)− zn‖)}
≤ Γn + αn‖u− x∗‖q − Γn+1.

Note that h2(0) = h3(0) = h̃3(0) = 0 and the fact that h2, h3 and h̃3 are strictly increasing, continuous
and convex functions. From (6) and (9) we have

lim
n→∞

‖xn − wn‖ = lim
n→∞

‖Sα,nxn − wn‖ = lim
n→∞

‖un − zn‖ = 0. (11)

By using (9) and (11), one concludes limn→∞ ‖xn − un‖ = limn→∞ ‖xn − zn‖ = 0. It follows that

‖xn − Gxn‖ ≤ ‖xn − un‖+ ‖un − Gxn‖
≤ ‖xn − un‖+ ‖wn − xn‖ → 0 (n→ ∞).

(12)

Thanks to (11), we get limn→∞ ‖Sα,nxn − xn‖ = 0, which, together with Sα,nxn − xn = α(Snxn − xn),
leads to

‖Snxn − xn‖ =
1
α
‖Sα,nxn − xn‖ → 0 (n→ ∞). (13)
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From the boundedness of {xn} and setting D = conv{xn : n ≥ 0}, we have ∑∞
n=1 supx∈D ‖Snx −

Sn−1x‖ < ∞. Lemma 6 yields that limn→∞ supx∈D ‖Snx − Sx‖ = 0. So, limn→∞ ‖Snxn − Sxn‖ = 0.
Further, from (13), we have

‖xn − Sxn‖ ≤ ‖xn − Snxn‖+ ‖Snxn − Sxn‖ → 0 (n→ ∞). (14)

Letting Sαx := (1− α)x + αSx ∀x ∈ C, we deduce from Lemma 1 that Sα : C → C is a nonexpansive
mapping. It is easy to see from (14) that limn→∞ ‖xn − Sαxn‖ = 0. For each n ≥ 0, set Tλn :=
JB
λn
(I − λn A). It follows that

‖xn − Tλn xn‖ ≤ ‖xn − un‖+ ‖un − Tλn un‖+ ‖Tλn un − Tλn xn‖
≤ 2‖xn − un‖+ ‖un − yn‖ → 0 (n→ ∞).

In light of 0 < λ ≤ λn for all n ≥ 0, we obtain

‖Tλxn − xn‖ ≤ 2‖Tλn xn − xn‖ → 0 (n→ ∞). (15)

We define a mapping Ψ : C → C by Ψx := θ1Sαx + θ2Gx + (1− θ1 − θ2)Tλx ∀x ∈ C with θ1 + θ2 < 1
for constants θ1, θ2 ∈ (0, 1). Lemma 7 guarantees that Ψ is nonexpansive and

Fix(Ψ) = Fix(Sα) ∩ Fix(G) ∩ Fix(Tλ) =
∞⋂

n=0
Fix(Sn) ∩ Fix(G) ∩ (A + B)−10 (=: Ω).

Taking into account that

‖Ψxn − xn‖ ≤ θ1‖Sαxn − xn‖+ θ2‖Gxn − xn‖+ (1− θ1 − θ2)‖Tλxn − xn‖,

we deduce from (12) and (15) that
lim

n→∞
‖Ψxn − xn‖ = 0. (16)

Let zλ = λu + (1− λ)Ψzλ, ∀λ ∈ (0, 1). Lemma 8 guarantees that {zλ} converges to a point x∗ ∈
Fix(Ψ) = Ω in norm, and x∗ further solves the VIP: 〈x∗− u, J(x∗− p)〉 ≤ 0, ∀p ∈ Ω. From (1), we have

‖zλ − xn‖q ≤ λq‖zλ − xn‖q + (1− λ)q(‖Ψzλ −Ψxn‖+ ‖Ψxn − xn‖)q + λq〈u− zλ, Jq(zλ − xn)〉
≤ λq‖zλ − xn‖q + (1− λ)q(‖Ψxn − xn‖+ ‖zλ − xn‖)q + λq〈u− zλ, Jq(zλ − xn)〉.

Further, from (16), one has

lim sup
n→∞

〈u− zt, Jq(xn − zt)〉 ≤ M
(qt− 1) + (1− t)q

qt
,

where M is a constant such that ‖zt − xn‖q ≤ M for all n ≥ 0 and t ∈ (0, 1). From the properties
of Jq and the fact that zt → x∗ as t → 0, one gets limt→0 ‖Jq(xn − x∗)− Jq(xn − zt)‖ = 0. A simple
calculation indicates that

lim sup
n→∞

〈u− x∗, Jq(xn − x∗)〉 ≤ 0 (17)

and then

‖xn+1 − xn‖ ≤ αn‖u− xn‖+ βn‖un − xn‖+ γn(‖Sα,nzn − un‖+ ‖un − xn‖)
≤ αn‖u− xn‖+ ‖un − xn‖+ ‖Sα,nzn − un‖ → 0 (n→ ∞).

Using (17), we have lim supn→∞〈u− x∗, Jq(xn+1 − x∗)〉 ≤ 0. An application of Lemma 9 yields that
Γn → 0 as n→ ∞. Thus, xn → x∗ as n→ ∞.
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Case 2. We assume that there is {Γki
} ⊂ {Γk} s.t. Γki

< Γki+1 ∀i ∈ N, where N is the set of
all positive integers. We now give a new mapping τ : N → N by τ(k) := max{i ≤ k : Γi < Γi+1}.
Using Lemma 10, one concludes

Γτ(k)+1 ≥ Γτ(k) and Γτ(k)+1 ≥ Γk.

Putting Γk = ‖xk − x∗‖q ∀k ∈ N and using the same reasoning as in Case 1 we can obtain

lim
k→∞
‖xτ(k) − xτ(k)+1‖ = 0 (18)

lim sup
k→∞

〈u− x∗, Jq(xτ(k)+1 − x∗)〉 ≤ 0. (19)

In view of ατ(k) > 0 and Γτ(k)+1 ≥ Γτ(k), we conclude that

q
1− δ

〈u− x∗, Jq(xτ(k)+1 − x∗)〉 ≥ ‖xτ(k) − x∗‖q.

Consequently, limk→∞ ‖xτ(k) − x∗‖q = 0. Using Lemma 3, we have that

‖xτ(k)+1 − x∗‖q − ‖x∗ − xτ(k)‖q

≤ q〈xτ(k)+1 − xτ(k), Jq(xτ(k) − x∗)〉+ κq‖xτ(k)+1 − xτ(k)‖q

≤ q‖xτ(k) − x∗‖q−1‖xτ(k)+1 − xτ(k)‖+ κq‖xτ(k)+1 − xτ(k)‖q → 0 (k→ ∞).

Thanks to Γk ≤ Γτ(k)+1, we get

‖xk − x∗‖q ≤ ‖xτ(k) − x∗‖q + q‖xτ(k)+1 − xτ(k)‖‖xτ(k) − x∗‖q−1 + κq‖xτ(k)+1 − xτ(k)‖q.

It is easy to see from (18) that xk → x∗ as k→ ∞. This completes the proof.
It is well known that κ2 = 1 in Hilbert spaces. From Theorem 1, we derive the

following conclusion.

Corollary 1. Let ∅ 6= C ⊂ H be a closed convex set. Let {Sn}∞
n=0 be a family of ς-uniformly strict

pseudocontraction mappings defined on C. Suppose that B1, B2 : C → 2H are both maximal monotone
operators and Ak : C → H is σk-inverse-strongly monotone mapping for k = 1, 2. Define the mapping
G : C → C by G := JB1

ζ1
(I − ζ1 A1)JB2

ζ2
(I − ζ2 A2) for constants ζ1, ζ2 > 0. Let A : C → H and B : C → 2H

be a σ-inverse-strongly monotone mapping and a maximal monotone operator, respectively. For any given
x0 ∈ C, ξ ∈ (0, 1) and α ∈ (0, min{1, 2ς}), let {xn}∞

n=0 be the sequence generated by

wn = sn((1− ξ)xn + ξGwn) + (1− sn)((1− α)xn + αSnxn),
un = JB1

ζ1
(I − ζ1 A1)JB2

ζ2
(wn − ζ2 A2wn),

yn = JB
λn
(un − λn Aun),

zn = JB
λn
(un − λn Ayn + rn(yn − un)),

xn+1 = αnu + βnun + γn((1− α)zn + αSnzn) ∀n ≥ 0,

where the sequences {rn}, {sn}, {αn}, {βn}, {γn} are sequences in (0, 1] with the additional restrictions
αn + βn + γn = 1 and {λn} ⊂ (0, ∞) are such that ∑∞

n=0 αn = ∞, limn→∞ αn = 0 as n → ∞; 0 <

a ≤ βn ≤ b < 1 and 0 < c ≤ sn ≤ d < 1; 0 < r ≤ rn < 1 and 0 < λ ≤ λn < λn
rn
≤ µ < 2σ;

0 < ζk < 2σk for k = 1, 2. Assume that ∑∞
n=0 supx∈D ‖Sn+1x− Snx‖ < ∞, where D is a bounded subset of

C. Define a self mapping S by Sx = limn→∞ Snx ∀x ∈ C, and further assume that
⋂∞

n=0 Fix(Sn) = Fix(S).
If Ω :=

⋂∞
n=0 Fix(Sn) ∩ Fix(G) ∩ (A + B)−10 6= ∅, then limn→∞ ‖xn − x∗‖ = 0, where x∗ ∈ Ω uniquely

solves 〈x∗ − u, p− x∗〉 ≥ 0 ∀p ∈ Ω.
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Next, we recall the least absolute shrinkage and selection operator (LASSO) [35], which can be
formulated as a convex constrained optimization problem:

min
y∈H

1
2
‖Ty− b‖2

2 subject to ‖y‖1 ≤ s, (20)

where T is a bounded operator on H, b is a fixed vector in H, and s > 0 is a real number. In this
section, Λ is employed to denote the set of solutions of LASSO (20). LASSO, which acts as a unified
model for a number of real problems, has been investigated in different settings. Ones know that a
solution to (20) is a minimizer to the following minimization problem: miny∈H g(y) + h(y), where
g(y) := 1

2‖Ty− b‖2
2, h(y) := λ‖y‖1. It is known that ∇g(y) = T∗(Ty− b) is 1

‖T∗T‖ -inverse-strongly
monotone. Hence, we have that z solves the LASSO iff z solves the problem, which consists of finding
z ∈ H s.t.

0 ∈ ∂h(z) +∇g(z) ⇔ z− λ∇g(z) ∈ z + λ∂h(z)
⇔ z = proxh(z− λ∇g(z)),

where λ > 0 is real, and proxh(y) is the proximal of h(y) := λ‖y‖1 defined as follows

proxh(y) = argminu∈H{λ‖u‖1 +
1
2
‖u− y‖2

2} ∀y ∈ H.

This is separable in indices. So, y ∈ H, for i = 1, 2, ..., n, proxh(y) = proxλ‖·‖1
(y) = (proxλ|·|(y1),

proxλ|·|(y2),..., proxλ|·|(yn)), with proxλ|·|(yi) = sgn(yi)max{|yi| − λ, 0}.
By putting C = H, A = ∇g, B = ∂h and σ = 1

‖T∗T‖ in Corollary 1, we obtain the following
result immediately.

Corollary 2. Let Ak, Bk (k = 1, 2) and {Sn}∞
n=0 be the same as in Corollary 1 with C = H. Assume that

Ω :=
⋂∞

n=0 Fix(Sn) ∩ Fix(G) ∩ Λ 6= ∅. For any given x0 ∈ H, ξ ∈ (0, 1) and α ∈ (0, min{1, 2ς}),
let {xn}∞

n=0 be the sequence generated by

wn = sn((1− ξ)xn + ξGwn) + (1− sn)((1− α)xn + αSnxn),
un = JB1

ζ1
(I − ζ1 A1)JB2

ζ2
(wn − ζ2 A2wn),

yn = proxh(un − λnT∗(Tun − b)),
zn = proxh(un − λnT∗(Tyn − b) + (rnyn − rnun)),
xn+1 = αnu + (1− α)γnzn + αγnSnzn + βnun ∀n ≥ 0,

where the sequences {rn}, {sn}, {αn}, {βn}, {γn} ⊂ (0, 1], αn + βn + γn = 1 and {λn} ⊂ (0, ∞) are such
that the conditions presented in Corollary 3.1 hold where σ = 1

‖T∗T‖ . Then xn → x∗ ∈ Ω as n→ ∞.
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