Article

Implicit Extragradient-Like Method for Fixed Point Problems and Variational Inclusion Problems in a Banach Space

Sun Young Cho
Department of Liberal Arts, Gyeongnam National University of Science and Technology, Jinju-Si 52725, Gyeongsangnam-do, Korea; sycho@gntech.ac.kr

Received: 7 May 2020; Accepted: 3 June 2020; Published: 11 June 2020

Abstract

In a uniformly convex and q-uniformly smooth Banach space with $q \in(1,2]$, one use VIP to indicate a variational inclusion problem involving two accretive mappings and CFPP to denote the common fixed-point problem of an infinite family of strict pseudocontractions of order q. In this paper, we introduce a composite extragradient implicit method for solving a general symmetric system of variational inclusions (GSVI) with certain VI and CFPP. We then investigate its convergence analysis under some weak conditions. Finally, we consider the celebrated LASSO problem in Hilbert spaces.

Keywords: banach space; implicit method; system of variational inclusions; fixed point problem

1. Introduction-Preliminaries

Throughout this article, one always supposes that H is a real infinite dimensional Hilbert space endowed with norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle$. Let the nonempty subset $C \subset H$ be convex and closed, and let the mapping P_{C} be the nearest point (metric) projection of H onto C. Let $A: C \rightarrow H$ be a nonself mapping. The celebrated variational inequality problem (VIP) is to find an element $x^{*} \in C$ s.t. $\left\langle y-x^{*}, A x^{*}\right\rangle \geq 0$, for all $y \in C$. One denotes by $\mathrm{VI}(C, A)$ the set of all solutions of the VIP. The VIP acts as a unified framework for lots of real industrial and applied problems, such as, machine learning, transportation, image processing and economics; see, e.g., [1-7]. One knows that Korpelevich's extragradient algorithm [8] is now one of the most popular algorithms to numerically solve the VIP. It reads as follows:

$$
\left\{\begin{array}{l}
x_{j+1}=P_{C}\left(x_{j}-\ell A y_{j}\right) \quad \forall j \geq 0 \\
y_{j}=P_{C}\left(x_{j}-\ell A x_{j}\right)
\end{array}\right.
$$

with $\ell \in\left(0, \frac{1}{L}\right)$, where L is the Lipschitz constant of the mapping A. If its solution set is not empty, it was obtained that sequence $\left\{x_{j}\right\}$ is weakly convergent. The price for the weak convergence is that A must be a Lipschitz and monotone mapping. To date, now, the extragradient method and relaxed extragradient methods have received much attention and has been studied extensively; see, e.g., [9-13]. Next, one assumes that B is monotone set-valued mapping defined on H and A is a monotone single-valued mapping defined on H, respectively. The so-called variational inclusion problem is to find an element $x^{*} \in H$ s.t. $0 \in(A+B) x^{*}$ and it has recently been studied by many authors based on splitting-based approximation methods; see, e.g., [14-17]. This model provides a unified framework for a lot of theoretical and practical problems and was investigated via different methods [18-22]. To the best of the authors' knowledge, there are no few associated results obtained in Banach spaces. Next, one will turn our attention to Banach spaces.

Next, E^{*} will be used to present be the dual space of Banach space E. Let $\varnothing \neq C \subset E$ be a convex and closed set. Given a nonlinear mapping T on C, one uses the symbol $\operatorname{Fix}(T)$ to denote the
set of all the fixed points of T. Recall that the mapping T is said to be a Lipschitz mapping if and only if, $\forall x, y \in C,\|T x-T y\| \leq L\|x-y\|$. If the Lipschitz constant L is just one, one say that T is a nonexpansive mapping whose complementary mappings are monotone.

Recall that the duality mapping $J_{q}: E \rightarrow 2^{E^{*}}$ is defined by

$$
J_{q}(x)=\left\{\phi \in E^{*}:\langle x, \phi\rangle=\|x\|^{q},\|\phi\|=\|x\|^{q-1}\right\} .
$$

For a particular case, one uses J to stand for J_{2}, which is commonly called the normalized duality. Recall that a mapping T defined on C is said to be a strict pseudocontraction of order q if, $\forall x, y \in C$, there is $j_{q}(x-y) \in J_{q}(x-y)$ such that the following inequality holds $\left\langle T x-T y, j_{q}(x-y)\right\rangle \leq \| x-$ $y\left\|^{q}-\varsigma\right\|(I-T) x-(I-T) y \|^{q}$ for some $\varsigma>0$.

The convexity modulus of space E, δ_{E}, which maps the interval $(0,2]$ to the interval $[0,1]$, is defined as follows

$$
\delta_{E}(\epsilon)=\inf \left\{\frac{2-\left\|x+x^{\prime}\right\|}{2}: x^{\prime}, x \in E, \epsilon \leq\left\|x^{\prime}-x\right\|,\left\|x^{\prime}\right\|=1=\|x\|\right\} .
$$

The smoothness modulus of space E, ρ_{E}, which maps the interval $[0, \infty)$ to the interval $[0, \infty)$, is defined as follows

$$
\rho_{E}(\tau)=\sup \left\{\frac{\left\|\tau x^{\prime}+x\right\|+\left\|\tau x^{\prime}-x\right\|-2}{2}: x^{\prime}, x \in E,\left\|x^{\prime}\right\|=\|x\|=1\right\}
$$

Recall that a space E is said to be uniformly convex if $\delta_{E}(e)>0, \forall e \in(0,2]$. Recall that a space E is said to be uniformly smooth if $\lim _{\tau \rightarrow 0^{+}} \frac{\rho_{E}(\tau)}{\tau}=0$. Further it is said to be q-uniformly $(q>1)$ smooth if $\exists c>0$ s.t. $c \geq s^{-q} \rho_{E}(s), \forall s>0$. In q-uniformly $(q>1)$ smooth spaces, one has the following celebrated inequality, for some $j_{q}(x+y) \in J_{q}(x+y)$,

$$
\begin{equation*}
\|x+y\|^{q}-\|x\|^{q} \leq q\left\langle y, j_{q}(x+y)\right\rangle \quad \forall x, y \in E \tag{1}
\end{equation*}
$$

One says that an operator $\Pi: C \rightarrow D$, where D is convex and closed subset of C, is said to be a sunny mapping if, $(1-\xi) \Pi(x)+\xi x \in C$ for $\xi \geq 0$ and $x \in C, \Pi(x)=\Pi[\Pi(x)+\xi(x-\Pi(x))]$. If Π is both nonexpansive and sunny, then $\left\langle\bar{x}-x^{\prime}, J\left(\Pi(\bar{x})-\Pi\left(x^{\prime}\right)\right)\right\rangle \geq\left\|\Pi(\bar{x})-\Pi\left(x^{\prime}\right)\right\|^{2}, \forall \bar{x}, x^{\prime} \in C$.

In the setting of q-uniformly smooth spaces, we recall that an operator B is said to be accretive if, for some $j_{q}\left(x^{\prime}-\bar{x}\right) \in J_{q}\left(x^{\prime}-\bar{x}\right),\left\langle u-v, j_{q}\left(x^{\prime}-\bar{x}\right)\right\rangle \geq 0$, for all $u \in B x^{\prime}, v \in B \bar{x}$. An accretive operator B is said to be inverse-strongly of order q if, for each $x^{\prime}, \bar{x} \in C, \exists j_{q}\left(x^{\prime}-\bar{x}\right) \in J_{q}\left(x^{\prime}-\bar{x}\right)$ s.t. $\left\langle u-v, j_{q}\left(x^{\prime}-\bar{x}\right)\right\rangle \geq \alpha\|u-v\|^{q}$, for all $u \in B x^{\prime}, v \in B \bar{x}$ for some $\alpha>0$. An accretive operator B is said to be m-accretive if $(I+\lambda B) C=E$ for all $\lambda>0$. Furthermore, one can define a mapping $J_{\lambda}^{B}:(I+\lambda B) C \rightarrow C$ by $J_{\lambda}^{B}=(I+\lambda B)^{-1}$ for each $\lambda>0$. Such J_{λ}^{B} is called the resolvent of B for $\lambda>0$. In the sequel, we will use the notation $T_{\lambda}:=J_{\lambda}^{B}(I-\lambda A)=(I+\lambda B)^{-1}(I-\lambda A) \quad \forall \lambda>0$. From [9], we have $\operatorname{Fix}\left(T_{\lambda}\right)=(A+B)^{-1} 0 \forall \lambda>0$ and $\left\|y-T_{\lambda} y\right\| \leq 2\left\|y-T_{r} y\right\|$ for $0<\lambda \leq r$ and $y \in C$. From [23], one has $J_{\lambda}^{B} x=J_{\mu}^{B}\left(\frac{\mu}{\lambda} x+\left(1-\frac{\mu}{\lambda}\right) J_{\lambda}^{B} x\right)$ for all $\lambda, \mu>0, x \in E$ and $\operatorname{Fix}\left(J_{\lambda}^{B}\right)=B^{-1} 0$, where $B^{-1} 0=\{x \in C: 0 \in B x\}$.

Let $A_{1}, A_{2}: C \rightarrow E$ and $B_{1}, B_{2}: C \rightarrow 2^{E}$ be nonlinear mappings with $B_{k} x \neq \varnothing \forall x \in C, k=1,2$. Consider the symmetrical system of variational inclusions, which consists of finding the pair $\left(x^{*}, y^{*}\right)$ in $C \times C$ s.t.

$$
\left\{\begin{array}{l}
0 \in \zeta_{1}\left(A_{1} y^{*}+B_{1} x^{*}\right)+x^{*}-y^{*} \tag{2}\\
0 \in \zeta_{2}\left(A_{2} x^{*}+B_{2} y^{*}\right)+y^{*}-x^{*}
\end{array}\right.
$$

where ζ_{k} is a positive constant for $k=1,2$. Ceng, Postolache and Yao [24] obtain the fact that problem (2) is equivalent to a fixed point problem.

Based on the equivalent relation, Ceng et al. [24] suggested a composite viscosity implicit rule for solving the GSVI (2) as follows:

$$
\left\{\begin{array}{l}
y_{j}=J_{\zeta_{2}}^{B_{2}}\left(x_{j}-\zeta_{2} A_{2} x_{j}\right) \\
x_{j}=\alpha_{j} f\left(x_{j-1}\right)+\delta_{j} x_{j-1}+\beta_{j} V x_{j-1}+\gamma_{j}\left[\mu S x_{j}+(1-\mu) J_{\zeta_{1}}^{B_{1}}\left(y_{j}-\zeta_{1} A_{1} y_{j}\right)\right] \quad \forall j \geq 1
\end{array}\right.
$$

where $\mu \in(0,1), S:=(1-\alpha) I+\alpha T$ with $0<\alpha<\min \left\{1, \frac{2 \lambda}{K_{2}}\right\}$, and the sequences $\left\{\alpha_{j}\right\},\left\{\delta_{j}\right\},\left\{\beta_{j}\right\},\left\{\gamma_{j}\right\} \subset(0,1)$ are such that (i) $\alpha_{j}+\delta_{j}+\beta_{j}+\gamma_{j}=1 \forall j \geq 1$; (ii) $\lim _{j \rightarrow \infty} \alpha_{j}=0$, $\lim _{j \rightarrow \infty} \frac{\beta_{j}}{\alpha_{j}}=0$; (iii) $\lim _{j \rightarrow \infty} \gamma_{j}=1$; (iv) $\sum_{j=0}^{\infty} \alpha_{j}=\infty$. They proved that $\left\{x_{j}\right\}$ converges strongly to a point of $\operatorname{Fix}(G) \cap \operatorname{Fix}(T)$, which solves a certain VIP.

In this article, we introduce and investigate an implicitly composite solution method to solve the GSVI (2) with certain VIP and CFPP constraints. We then analyze convergence of the suggested method in the setting of real Hilbert spaces under some mild conditions. An application is also considered.

From now on, one always uses $\kappa_{q}>0$ to denote the smoothness coefficient; see [25,26]. One also lists some essential lemmas for the strong convergence theorem next.

Lemma 1 ([27]). Let E be q-uniformly smooth with $q \in(1,2]$, and $\varnothing \neq C \subset E$ a closed convex set. Let $T: C \rightarrow C$ be a ς-strict pseudocontraction of order q. Given $\alpha \in(0,1)$. Define a single-valued nonlinear mapping $T_{\alpha}: C \rightarrow C$ by $T_{\alpha} x=(1-\alpha) x+\alpha T x$. Then T_{α} is nonexpansive with $\operatorname{Fix}\left(T_{\alpha}\right)=\operatorname{Fix}(T)$ provided $0<\alpha \leq\left(\frac{\varsigma q}{\kappa_{q}}\right)^{\frac{1}{q-1}}$.

Lemma 2 ([28]). Let E be q-uniformly smooth with $q \in(1,2]$. Suppose that $A: C \rightarrow E$ is an α-inverse-strongly accretive mapping of order q. Then, for any given $\lambda \geq 0$,

$$
\lambda\left(\alpha q-\kappa_{q} \lambda^{q-1}\right)\|A x-A y\|^{q}+\|(I-\lambda A) x-(I-\lambda A) y\|^{q} \leq\|x-y\|^{q}, \quad \forall x, y \in C .
$$

Lemma 3 ($[26,28])$. Let $q \in(1,2]$ be a fixed real number and let E be a q-uniformly smooth Banach space. Then $\|x+y\|^{q} \leq q\left\langle y, J_{q}(x)\right\rangle+\|x\|^{q}+\kappa_{q}\|y\|^{q}, \forall x, y \in E$. Let $B_{1}, B_{2}: C \rightarrow 2^{E}$ be two m-accretive operators. Let $A_{i}: C \rightarrow E(i=1,2)$ be σ_{i}-inverse-strongly accretive mapping of order q for each $i=1,2$. Define an operator $G: C \rightarrow C$ by

$$
G:=J_{\zeta_{1}}^{B_{1}}\left(I-\zeta_{1} A_{1}\right) J_{\zeta_{2}}^{B_{2}}\left(I-\zeta_{2} A_{2}\right) .
$$

If $0 \leq \zeta_{i} \leq\left(\frac{\sigma_{i} q}{\kappa_{q}}\right)^{\frac{1}{q-1}}(i=1,2)$, then G is a nonexpansive mapping.
The following lemmas was proved in [29], which is a simple extension of the inequality established in [26].

Lemma 4. In a uniformly convex real Banach space E, there is a convex, strictly increasing, continuous function g, which maps $[0,+\infty)$ to $[0,+\infty)$ with $g(0)=0$ such that

$$
\left\|\lambda x^{\prime}+\mu \bar{x}+v \tilde{x}\right\|^{q} \leq \lambda\left\|x^{\prime}\right\|^{q}+\mu\|\bar{x}\|^{q}+v\|\tilde{x}\|^{q}-W_{q} g(\|\bar{x}-\tilde{x}\|),
$$

where $q>1$ is any real number and W_{q} is a real function associated with μ and v, for all $x^{\prime}, \bar{x}, \tilde{x} \in\{x \in E$: $\|x\| \leq r\}$ (r is some real number) and $\lambda, \mu, v \in[0,1]$ such that $\lambda+v+\mu=1$.

Lemma 5 ([26]). If E be a uniformly convex Banach space, then there exist a convex, strictly increasing, continuous function h, which maps $[0,+\infty)$ to $[0,+\infty)$ with $h(0)=0$ such that

$$
h(\|x-y\|) \leq\|x\|^{q}-q\left\langle x, j_{q}(y)\right\rangle+(q-1)\|y\|^{q},
$$

where x and y are in some bounded subset of E and $j_{q}(y) \in J_{q}(y)$.
Lemma 6 ([30]). Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be a sequence of self-mappings on C such that

$$
\sum_{n=1}^{\infty} \sup _{x \in C}\left\|S_{n} x-S_{n-1} x\right\|<\infty
$$

Then, for each $y \in C,\left\{S_{n} y\right\}$ converges strongly to some point of C. Moreover, let S be the self-mapping on C defined by $S y=\lim _{n \rightarrow \infty} S_{n} y$ for all $y \in C$. Then $\lim _{n \rightarrow \infty} \sup _{x \in C}\left\|S_{n} x-S x\right\|=0$.

Lemma 7 ([31]). Let E be a strictly convex Banach space. Let T_{n} be a nonexpansive mapping defined on a convex and closed subset C of E for each $n \geq 1$. Let $\bigcap_{n=0}^{\infty} \operatorname{Fix}\left(T_{n}\right)$ be nonempty. Let $\left\{\lambda_{n}\right\}$ be a positive sequence such that $\sum_{n=0}^{\infty} \lambda_{n}=1$. Then a mapping S on C defined by $S x=\sum_{n=0}^{\infty} \lambda_{n} T_{n} x \forall x \in C$ is well defined, nonexpansive and $\operatorname{Fix}(S)=\bigcap_{n=0}^{\infty} \operatorname{Fix}\left(T_{n}\right)$ holds.

Lemma 8 ([32]). Let E be a smooth Banach space. Let $T: C \rightarrow C$, where C is convex and closed set in E, be a self-nonexpansive mapping. Suppose that λ is constant in the interval $(0,1)$. Then $\left\{z^{\lambda}\right\}$, where $z^{\lambda}=(1-\lambda) T z^{\lambda}+\lambda u$, converges strongly to a fixed point $x^{*} \in \operatorname{Fix}(T)$, which solves $\left\langle u-x^{*}, J\left(x^{*}-x\right)\right\rangle \geq 0$ for all $x \in \operatorname{Fix}(T)$.

Lemma 9 ([33]). Let $\left\{a_{n}\right\}$ be a sequence in $[0, \infty)$ such that $a_{n+1} \leq\left(1-s_{n}\right) a_{n}+s_{n} v_{n} \forall n \geq 0$, where $\left\{s_{n}\right\}$ and $\left\{v_{n}\right\}$ satisfy the conditions: (i) $\left\{s_{n}\right\} \subset[0,1], \sum_{n=0}^{\infty} s_{n}=\infty$; (ii) $\lim \sup _{n \rightarrow \infty} v_{n} \leq 0$ or $\sum_{n=0}^{\infty}\left|s_{n} v_{n}\right|<\infty$. Then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 10 ([34]). Let $\left\{\Gamma_{n}\right\}$ be a real sequence such that there exists a real sequence $\left\{\Gamma_{n_{i}}\right\}$, which is a subsequence of $\left\{\Gamma_{n}\right\}$ such that $\Gamma_{n_{i}+1}>1 \Gamma_{n_{i}}$ for each integer $i \geq 1$. Let $\{\tau(n)\}_{n \geq n_{0}}$ be a integer Define the sequence defined by $\tau(n)=\max \left\{k \leq n: \Gamma_{k+1}>\Gamma_{k}\right\}$, where the integer $n_{0} \geq 1$ is chosen in such a way that $\left\{k \leq n_{0}: \Gamma_{k+1}\right\}>\Gamma_{k} \neq \varnothing$. (i) $\Gamma_{\tau(n)+1} \geq \Gamma_{\tau(n)}$ and $\Gamma_{\tau(n)+1} \geq \Gamma_{n}$ for each $n \geq n_{0}$; (ii) $\tau\left(n_{0}\right) \leq \tau\left(n_{0}+1\right) \leq \cdots$ and $\tau(n) \rightarrow \infty$.

2. Results

Throughout this section, suppose that C is a convex closed set in a Banach space E, which is both uniformly convex and q-uniformly smooth with $q \in(1,2]$. Let both $B_{1}: C \rightarrow 2^{E}$ and $B_{2}: C \rightarrow 2^{E}$ be m-accretive operators. Let $A_{k}: C \rightarrow E$ be single-valued σ_{k}-inverse strongly accretive mapping for each $k=1$, 2. Further, one assumes that $G: C \rightarrow C$ is a self mapping defined as $G:=J_{\zeta_{1}}^{B_{1}}\left(I-\zeta_{1} A_{1}\right) J_{\zeta_{2}}^{B_{2}}(I-$ $\zeta_{2} A_{2}$) with constants $\zeta_{1}, \zeta_{2}>0$. Let S_{n} be a ς-uniformly strictly pseudocontractive mapping for each $n \geq 1$. Let $A: C \rightarrow E$ and $B: C \rightarrow 2^{E}$ be a σ-inverse-strongly accretive mapping of order q and an m-accretive operator, respectively. Assume that the feasibility set $\Omega:=\bigcap_{n=0}^{\infty} \operatorname{Fix}\left(S_{n}\right) \cap(A+B)^{-1} 0 \cap$ $\operatorname{Fix}(G)$ is nonempty.

Algorithm 1: Composite extragradient implicit method for the GSVI (2) with VIP and CFPP constraints.

Initial Step. Given $\xi \in(0,1), \alpha \in\left(0, \min \left\{1,\left(\frac{\varsigma q}{\kappa_{q}}\right)^{\frac{1}{q-1}}\right\}\right)$. Let $x_{0} \in C$ be an arbitrary initial.
Iteration Steps. Compute x_{n+1} from the current x_{n} as follows:
Step 1. Calculate

$$
\left\{\begin{array}{l}
w_{n}=s_{n}\left((1-\xi) x_{n}+\xi G w_{n}\right)+\left(1-s_{n}\right)\left((1-\alpha) x_{n}+\alpha S_{n} x_{n}\right) \\
u_{n}=J_{\zeta_{1}}^{B_{1}}\left(I-\zeta_{1} A_{1}\right) J_{\zeta_{2}}^{B_{2}}\left(w_{n}-\zeta_{2} A_{2} w_{n}\right)
\end{array}\right.
$$

Step 2. Calculate $y_{n}=J_{\lambda_{n}}^{B}\left(u_{n}-\lambda_{n} A u_{n}\right)$;
Step 3. Calculate $z_{n}=J_{\lambda_{n}}^{B_{n}}\left(u_{n}-\lambda_{n} A y_{n}+r_{n}\left(y_{n}-u_{n}\right)\right)$;
Step 4. Calculate $x_{n+1}=\alpha_{n} u+\beta_{n} u_{n}+\gamma_{n}\left((1-\alpha) z_{n}+\alpha S_{n} z_{n}\right)$, where u is a fixed element in C,
$\left\{r_{n}\right\},\left\{s_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\} \subset(0,1]$ with $\left\{\lambda_{n}\right\} \subset(0, \infty)$ and $\alpha_{n}+\beta_{n}+\gamma_{n}=1$.
Set $n:=n+1$ and go to Step 1 .
Lemma 11. Let the vector sequence $\left\{x_{n}\right\}$ be constructed by Algorithm 1. One has that the sequence $\left\{x_{n}\right\}$ is bounded.

Proof. Putting $v_{n}=J_{\zeta_{2}}^{B_{2}}\left(w_{n}-\zeta_{2} A_{2} w_{n}\right)$ and $S_{\alpha, n}:=(1-\alpha) I+\alpha S_{n} \forall n \geq 0$, we know from Lemma 1 that each $S_{\alpha, n}: C \rightarrow C$ is nonexpansive with $\operatorname{Fix}\left(S_{\alpha, n}\right)=\operatorname{Fix}\left(S_{n}\right)$. Let $p \in \Omega:=\bigcap_{n=0}^{\infty} \operatorname{Fix}\left(S_{n}\right) \cap$ $\operatorname{Fix}(G) \cap(A+B)^{-1} 0$. Then we observe that $p=G p=S_{n} p=J_{\lambda_{n}}^{B}\left(\left(1-r_{n}\right) p+r_{n}\left(p-\frac{\lambda_{n}}{r_{n}} A p\right)\right)$. By use of Lemmas 2 and 3, we deduce that $I-\zeta_{1} A_{1}, I-\zeta_{2} A_{2}$ and $G:=J_{\zeta_{1}}^{B_{1}}\left(I-\zeta_{1} A_{1}\right) J_{\zeta_{2}}^{B_{2}}\left(I-\zeta_{2} A_{2}\right)$ are nonexpansive mappings. It is clear that there is only one element $w_{n} \in C$ satisfying

$$
w_{n}=s_{n}\left((1-\xi) x_{n}+\xi G w_{n}\right)+\left(1-s_{n}\right)\left(\alpha S_{n} x_{n}+(1-\alpha) x_{n}\right)
$$

Since G and $S_{\alpha, n}$ are both nonexpansive mappings, we get

$$
\begin{aligned}
\left\|w_{n}-p\right\| & \leq s_{n}\left((1-\xi)\left\|x_{n}-p\right\|+\xi\left\|G w_{n}-p\right\|\right)+\left(1-s_{n}\right)\left\|S_{\alpha, n} x_{n}-p\right\| \\
& \leq s_{n}\left(\xi\left\|w_{n}-p\right\|+(1-\xi)\left\|x_{n}-p\right\|\right)+\left(1-s_{n}\right)\left\|x_{n}-p\right\|
\end{aligned}
$$

and hence $\left\|w_{n}-p\right\| \leq\left\|x_{n}-p\right\| \forall n \geq 0$. Using the nonexpansivity of G again, we deduce from $u_{n}=G w_{n}$ that $\left\|u_{n}-p\right\| \leq\left\|w_{n}-p\right\| \leq\left\|x_{n}-p\right\|$. By use of Lemmas 2 and 4 , we have

$$
\begin{aligned}
\left\|y_{n}-p\right\|^{q} & \leq\left\|\left(I-\lambda_{n} A\right) p-\left(I-\lambda_{n} A\right) u_{n}\right\|^{q} \\
& \leq\left\|u_{n}-p\right\|^{q}-\lambda_{n}\left(\sigma q-\kappa_{q} \lambda_{n}^{q-1}\right)\left\|A u_{n}-A p\right\|^{q},
\end{aligned}
$$

which leads to $\left\|y_{n}-p\right\| \leq\left\|u_{n}-p\right\|$. On the other hand,

$$
\begin{aligned}
\left\|z_{n}-p\right\|^{q} & =\left\|J_{\lambda_{n}}^{B}\left(\left(1-r_{n}\right) u_{n}+r_{n}\left(y_{n}-\frac{\lambda_{n}}{r_{n}} A y_{n}\right)\right)-J_{\lambda_{n}}^{B}\left(\left(1-r_{n}\right) p+r_{n}\left(p-\frac{\lambda_{n}}{r_{n}} A p\right)\right)\right\|^{q} \\
& \leq r_{n}\left\|\left(I-\frac{\lambda_{n}}{r_{n}} A\right) y_{n}-\left(I-\frac{\lambda_{n}}{r_{n}} A\right) p\right\|^{q}+\left(1-r_{n}\right)\left\|u_{n}-p\right\|^{q} \\
& \leq r_{n}\left[\left\|y_{n}-p\right\|^{q}-\frac{\lambda_{n}}{r_{n}}\left(\sigma q-\frac{\kappa_{q} \lambda_{n}^{q-1}}{r_{n}^{q-1}}\right)\left\|A y_{n}-A p\right\|^{q}\right]+\left(1-r_{n}\right)\left\|u_{n}-p\right\|^{q} \\
& \leq \lambda_{n}\left(\frac{\kappa_{q} \lambda_{n}^{q-1}}{r_{n}^{q-1}}-\sigma q\right)\left\|A y_{n}-A p\right\|^{q}+r_{n} \lambda_{n}\left(\kappa_{q} \lambda_{n}^{q-1}-\sigma q\right)\left\|A u_{n}-A p\right\|^{q}+\left\|u_{n}-p\right\|^{q} .
\end{aligned}
$$

This ensures that $\left\|z_{n}-p\right\| \leq\left\|u_{n}-p\right\|$. So it follows from (3.2) that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & \leq \alpha_{n}\|p-u\|+\beta_{n}\left\|u_{n}-p\right\|+\gamma_{n}\left\|S_{\alpha, n} z_{n}-p\right\| \\
& \leq \alpha_{n}\|p-u\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|
\end{aligned}
$$

which leads to $\left\|x_{n}-p\right\| \leq \max \left\{\|p-u\|,\left\|p-x_{0}\right\|\right\}$.
Theorem 1. Suppose that $\left\{x_{n}\right\}$ is the vector sequence generated/defined by Iterative Algorithm 1. Assume that the parameter sequences satisfy $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ and $\lim _{n \rightarrow \infty} \alpha_{n}=0 ; 0<a \leq \beta_{n} \leq b<1$ and $0<c \leq$ $s_{n} \leq d<1 ; 0<r \leq r_{n}<1$ and $0<\lambda \leq \lambda_{n}<\frac{\lambda_{n}}{r_{n}} \leq \mu<\left(\frac{\sigma q}{\kappa_{q}}\right)^{\frac{1}{q-1}} ; 0<\zeta_{i}<\left(\frac{\sigma_{i} q}{\kappa_{q}}\right)^{\frac{1}{q-1}}, i=1,2$. Suppose $\sum_{n=0}^{\infty} \sup _{x \in D}\left\|S_{n+1} x-S_{n} x\right\|<\infty$, where D is a bounded set in set C. Define the mapping S by $S x=\lim _{n \rightarrow \infty} S_{n} x$ for all $x \in C$. Then the sequence $\left\{x_{n}\right\}$ converges to $x^{*} \in \Omega$ strongly. The solution also uniquely solves $\left\langle x^{*}-u, J\left(x^{*}-\bar{x}\right)\right\rangle \leq 0$ for all $\bar{x} \in \Omega$.

Proof. First, we set $v_{n}=J_{\zeta_{2}}^{B_{2}}\left(w_{n}-\zeta_{2} A_{2} w_{n}\right), x^{*} \in \Omega$ and $y^{*}=J_{\zeta_{2}}^{B_{2}}\left(x^{*}-\zeta_{2} A_{2} x^{*}\right)$. Since $u_{n}=J_{\zeta_{1}}^{B_{1}}(I-$ $\left.\zeta_{1} A_{1}\right) v_{n}$ and $v_{n}=J_{\zeta_{2}}^{B_{2}}\left(I-\zeta_{2} A_{2}\right) w_{n}$, we have $u_{n}=G w_{n}$. Using Lemma 2 yields that

$$
\left\|v_{n}-y^{*}\right\|^{q} \leq \zeta_{2}\left(\kappa_{q} \zeta_{2}^{q-1}-\sigma_{2} q\right)\left\|A_{2} w_{n}-A_{2} x^{*}\right\|^{q}+\left\|w_{n}-x^{*}\right\|^{q}
$$

and

$$
\left\|u_{n}-x^{*}\right\|^{q} \leq \zeta_{1}\left(\kappa_{q} \zeta_{1}^{q-1}-\sigma_{1} q\right)\left\|A_{1} v_{n}-A_{1} y^{*}\right\|^{q}+\left\|v_{n}-y^{*}\right\|^{q}
$$

Combining the last two inequalities, we have

$$
\left\|u_{n}-x^{*}\right\|^{q} \leq \zeta_{2}\left(\kappa_{q} \zeta_{2}^{q-1}-\sigma_{2} q\right)\left\|A_{2} w_{n}-A_{2} x^{*}\right\|^{q}+\zeta_{1}\left(\kappa_{q} \zeta_{1}^{q-1}-\sigma_{1} q\right)\left\|A_{1} v_{n}-A_{1} y^{*}\right\|^{q}+\left\|w_{n}-x^{*}\right\|^{q}
$$

Using (1) and Lemma 4, we obtain that

$$
\begin{align*}
& \left\|x_{n+1}-x^{*}\right\|^{q} \\
& \leq q \alpha_{n}\left\langle u-x^{*}, J_{q}\left(x_{n+1}-x^{*}\right)\right\rangle+\left\|\beta_{n}\left(u_{n}-x^{*}\right)+\gamma_{n}\left(S_{\alpha, n} z_{n}-x^{*}\right)\right\|^{q} \\
& \leq \\
& \beta_{n}\left\|x^{*}-u_{n}\right\|^{q}+\gamma_{n}\left[\left\|u_{n}-x^{*}\right\|^{q}-r_{n} \lambda_{n}\left(\sigma q-\kappa_{q} \lambda_{n}^{q-1}\right)\left\|A u_{n}-A x^{*}\right\|^{q}\right. \tag{3}\\
& \left.\quad-\lambda_{n}\left(\sigma q-\frac{\kappa_{q} \lambda_{n}^{q-1}}{r_{n}^{q-1}}\right)\left\|A y_{n}-A x^{*}\right\|^{q}\right]-W_{q} g\left(\left\|u_{n}-S_{\alpha, n} z_{n}\right\|\right)+q \alpha_{n}\left\langle u-x^{*}, J_{q}\left(x_{n+1}-x^{*}\right)\right\rangle \\
& \leq \\
& \left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{q}-\gamma_{n}\left[\zeta_{2}\left(\sigma_{2} q-\kappa_{q} \zeta_{2}^{q-1}\right)\left\|A_{2} w_{n}-A_{2} x^{*}\right\|^{q}\right. \\
& \quad+\zeta_{1}\left(\sigma_{1} q-\kappa_{q} \zeta_{1}^{q-1}\right)\left\|A_{1} v_{n}-A_{1} y^{*}\right\|^{q}+r_{n} \lambda_{n}\left(\sigma q-\kappa_{q} \lambda_{n}^{q-1}\right)\left\|A u_{n}-A x^{*}\right\|^{q} \\
& \left.\quad+\lambda_{n}\left(\sigma q-\frac{\kappa_{q} \lambda_{n}^{q-1}}{r_{n}^{q-1}}\right)\left\|A x^{*}-A y_{n}\right\|^{q}\right]-W_{q} g\left(\left\|u_{n}-S_{\alpha, n} z_{n}\right\|\right)+\alpha_{n} q\left\langle u-x^{*}, J_{q}\left(x_{n+1}-x^{*}\right)\right\rangle .
\end{align*}
$$

Put

$$
\begin{aligned}
\Gamma_{n}= & \left\|x_{n}-x^{*}\right\|^{q}, \\
\eta_{n}= & \gamma_{n}\left[\zeta_{2}\left(\sigma_{2} q-\kappa_{q} \zeta_{2}^{q-1}\right)\left\|A_{2} w_{n}-A_{2} x^{*}\right\|^{q}+\zeta_{1}\left(\sigma_{1} q-\kappa_{q} \zeta_{1}^{q-1}\right)\left\|A_{1} v_{n}-A_{1} y^{*}\right\|^{q}\right. \\
& \left.-\lambda_{n} r_{n}\left(\kappa_{q} \lambda_{n}^{q-1}-q \sigma\right)\left\|A u_{n}-A x^{*}\right\|^{q}+\left(\sigma q-\frac{\kappa_{q} \lambda_{n}^{-1}}{r_{n}^{q-1}}\right) \lambda_{n}\left\|A y_{n}-A x^{*}\right\|^{q}\right] \\
& -W_{q} g\left(\left\|u_{n}-S_{\alpha, n} z_{n}\right\|\right) \\
\delta_{n}= & \left\langle u-x^{*}, J_{q}\left(x_{n+1}-x^{*}\right)\right\rangle q \alpha_{n} .
\end{aligned}
$$

Then (3) can be rewritten as the following formula:

$$
\begin{equation*}
\Gamma_{n+1}+\eta_{n} \leq\left(1-\alpha_{n}\right) \Gamma_{n}+\delta_{n} \tag{4}
\end{equation*}
$$

We next give two possible cases.
Case 1. We assume that there is an integer $n_{0} \geq 1$ with the restriction that $\left\{\Gamma_{n}\right\}$ is non-increasing. From (4), we get $\eta_{n} \leq \Gamma_{n}-\alpha_{n} \Gamma_{n}-\Gamma_{n+1}+\delta_{n}$. From $\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \delta_{n}=0$, one sees that $\lim _{n \rightarrow \infty} \eta_{n}=0$. It is easy to see from Lemma 4 that $\lim _{n \rightarrow \infty} g\left(\left\|u_{n}-S_{\alpha, n} z_{n}\right\|\right)=0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A_{2} w_{n}-A_{2} x^{*}\right\|=\lim _{n \rightarrow \infty}\left\|A_{1} v_{n}-A_{1} y^{*}\right\|=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A u_{n}-A x^{*}\right\|=\lim _{n \rightarrow \infty}\left\|A y_{n}-A x^{*}\right\|=0 \tag{6}
\end{equation*}
$$

From the fact that g is a strictly increasing, continuous and convex function with $g(0)=0$, one has

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|u_{n}-S_{\alpha, n} z_{n}\right\|=0 \tag{7}
\end{equation*}
$$

By use of Lemma 5, we get

$$
\begin{aligned}
\left\|v_{n}-y^{*}\right\|^{q} \leq & \left\langle w_{n}-\zeta_{2} A_{2} w_{n}-\left(x^{*}-\zeta_{2} A_{2} x^{*}\right), J_{q}\left(v_{n}-y^{*}\right)\right\rangle \\
\leq & \frac{1}{q}\left[\left\|w_{n}-x^{*}\right\|^{q}+(q-1)\left\|v_{n}-y^{*}\right\|^{q}-\tilde{h}_{1}\left(\left\|w_{n}-x^{*}-v_{n}+y^{*}\right\|\right)\right] \\
& +\zeta_{2}\left\langle A_{2} x^{*}-A_{2} w_{n}, J_{q}\left(v_{n}-y^{*}\right)\right\rangle
\end{aligned}
$$

where \tilde{h}_{1} is a convex, strictly increasing, continuous function as in Lemma 5. This hence entails

$$
\left\|v_{n}-y^{*}\right\|^{q} \leq\left\|w_{n}-x^{*}\right\|^{q}-\tilde{h}_{1}\left(\left\|w_{n}-v_{n}-x^{*}+y^{*}\right\|\right)+q \zeta_{2}\left\|A_{2} x^{*}-A_{2} w_{n}\right\|\left\|v_{n}-y^{*}\right\|^{q-1} .
$$

In a similar way, one concludes

$$
\begin{aligned}
\left\|u_{n}-x^{*}\right\|^{q} \leq & \left\langle v_{n}-\zeta_{1} A_{1} v_{n}-\left(y^{*}-\zeta_{1} A_{1} y^{*}\right), J_{q}\left(u_{n}-x^{*}\right)\right\rangle \\
\leq & \frac{1}{q}\left[\left\|v_{n}-y^{*}\right\|^{q}+(q-1)\left\|u_{n}-x^{*}\right\|^{q}-\tilde{h}_{2}\left(\left\|v_{n}-y^{*}-u_{n}+x^{*}\right\|\right)\right] \\
& +\zeta_{1}\left\langle A_{1} y^{*}-A_{1} v_{n}, J_{q}\left(u_{n}-x^{*}\right)\right\rangle
\end{aligned}
$$

which hence entails

$$
\begin{align*}
& \left\|u_{n}-x^{*}\right\|^{q} \\
& \leq\left\|v_{n}-y^{*}\right\|^{q}-\tilde{h}_{2}\left(\left\|v_{n}-y^{*}-u_{n}+x^{*}\right\|\right)+q \zeta_{1}\left\|A_{1} y^{*}-A_{1} v_{n}\right\|\left\|u_{n}-x^{*}\right\|^{q-1} \\
& \leq\left\|x_{n}-x^{*}\right\|^{q}-\tilde{h}_{1}\left(\left\|w_{n}-v_{n}-x^{*}+y^{*}\right\|\right)+q \zeta_{2}\left\|A_{2} x^{*}-A_{2} w_{n}\right\|\left\|v_{n}-y^{*}\right\|^{q-1} \tag{8}\\
& \quad-\tilde{h}_{2}\left(\left\|v_{n}-u_{n}+x^{*}-y^{*}\right\|\right)+q \zeta_{1}\left\|A_{1} y^{*}-A_{1} v_{n}\right\|\left\|u_{n}-x^{*}\right\|^{q-1} .
\end{align*}
$$

Note that

$$
\begin{aligned}
q\left\|y_{n}-x^{*}\right\|^{q} \leq & \left.q\left\langle\left(u_{n}-\lambda_{n} A u_{n}\right)-x^{*}+\lambda_{n} A x^{*}\right), J_{q}\left(y_{n}-x^{*}\right)\right\rangle \\
\leq & \left.\|\left(u_{n}-\lambda_{n} A u_{n}\right)-x^{*}+\lambda_{n} A x^{*}\right) \|^{q}-h_{1}\left(\left\|u_{n}-y_{n}-\lambda_{n}\left(A u_{n}-A x^{*}\right)\right\|\right) \\
& +(q-1)\left\|y_{n}-x^{*}\right\|^{q}
\end{aligned}
$$

which leads us to

$$
\left\|y_{n}-x^{*}\right\|^{q} \leq\left\|u_{n}-x^{*}\right\|^{q}-h_{1}\left(\left\|u_{n}-y_{n}-\lambda_{n}\left(A u_{n}-A x^{*}\right)\right\|\right)
$$

From (8), one has

$$
\begin{aligned}
& \left\|x_{n+1}-x^{*}\right\|^{q} \\
& \leq \\
& \quad \gamma_{n}\left\{\left(1-r_{n}\right)\left\|u_{n}-x^{*}\right\|^{q}+r_{n}\left[\left\|u_{n}-x^{*}\right\|^{q}+\alpha_{n}\left\|x^{*}-u\right\|^{q}\right.\right. \\
& \left.\left.\quad-h_{1}\left(\left\|u_{n}-\lambda_{n}\left(A u_{n}-A x^{*}\right)-y_{n}\right\|\right)\right]\right\}+\beta_{n}\left\|u_{n}-x^{*}\right\|^{q} \\
& \leq \\
& \beta_{n}\left\|x_{n}-x^{*}\right\|^{q}+\alpha_{n}\left\|x^{*}-u\right\|^{q}+\gamma_{n}\left\{\left\|x_{n}-x^{*}\right\|^{q}-\tilde{h}_{1}\left(\left\|w_{n}-v_{n}-x^{*}+y^{*}\right\|\right)\right. \\
& \quad-\tilde{h}_{2}\left(\left\|v_{n}-u_{n}+x^{*}-y^{*}\right\|\right)+q \tau_{1}\left\|A_{1} y^{*}-A_{1} v_{n}\right\|\left\|u_{n}-x^{*}\right\|^{q-1} \\
& \left.\quad+q \tau_{2}\left\|A_{2} x^{*}-A_{2} w_{n}\right\|\left\|v_{n}-y^{*}\right\|^{q-1}-r_{n} h_{1}\left(\left\|u_{n}-\lambda_{n}\left(A u_{n}-A x^{*}\right)-y_{n}\right\|\right)\right\} \\
& \leq\left\|x_{n}-x^{*}\right\|^{q}+\alpha_{n}\left\|x^{*}-u\right\|^{q}-\gamma_{n}\left\{\tilde{h}_{1}\left(\left\|w_{n}-v_{n}-x^{*}+y^{*}\right\|\right)\right. \\
& \left.\quad+\tilde{h}_{2}\left(\left\|v_{n}-u_{n}+x^{*}-y^{*}\right\|\right)+r_{n} h_{1}\left(\left\|u_{n}-\lambda_{n}\left(A u_{n}-A x^{*}\right)-y_{n}\right\|\right)\right\} \\
& \quad+q \zeta_{1}\left\|A_{1} y^{*}-A_{1} v_{n}\right\|\left\|u_{n}-x^{*}\right\|^{q-1}+q \zeta_{2}\left\|A_{2} x^{*}-A_{2} w_{n}\right\|\left\|v_{n}-y^{*}\right\|^{q-1},
\end{aligned}
$$

which immediately yields that

$$
\begin{aligned}
& \gamma_{n}\left\{\tilde{h}_{1}\left(\left\|w_{n}-v_{n}-x^{*}+y^{*}\right\|\right)+\tilde{h}_{2}\left(\left\|v_{n}-u_{n}+x^{*}-y^{*}\right\|\right)\right. \\
& \left.\quad+r_{n} h_{1}\left(\left\|u_{n}-\lambda_{n}\left(A u_{n}-A x^{*}\right)-y_{n}\right\|\right)\right\} \\
& \leq \alpha_{n}\left\|u-x^{*}\right\|^{q}+\Gamma_{n}-\Gamma_{n+1}+q \zeta_{1}\left\|A_{1} y^{*}-A_{1} v_{n}\right\|\left\|u_{n}-x^{*}\right\|^{q-1} \\
& \quad+q \zeta_{2}\left\|A_{2} x^{*}-A_{2} w_{n}\right\|\left\|v_{n}-y^{*}\right\|^{q-1} .
\end{aligned}
$$

Since $\tilde{h}_{1}(0)=\tilde{h}_{2}(0)=h_{1}(0)=0$ and the fact that $\tilde{h}_{1}, \tilde{h}_{2}$ and h_{1} are strictly increasing, continuous and convex functions, one concludes that $\lim _{n \rightarrow \infty}\left\|w_{n}-v_{n}-x^{*}+y^{*}\right\|=\lim _{n \rightarrow \infty}\left\|v_{n}-u_{n}+x^{*}-y^{*}\right\|=$ $\lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|$. This immediately implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n}-u_{n}\right\|=\lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0 \tag{9}
\end{equation*}
$$

Furthermore, borrowing $w_{n}=s_{n}\left((1-\xi) x_{n}+\xi G w_{n}\right)+\left(1-s_{n}\right) S_{\alpha, n} x_{n}$ defined as the first step in the iteration procedure, we obtain that

$$
\begin{aligned}
& \left\|w_{n}-x^{*}\right\|^{q}=\left\langle s_{n}\left((1-\xi) x_{n}+\xi G w_{n}\right)+\left(1-s_{n}\right) S_{\alpha, n} x_{n}-x^{*}, J_{q}\left(w_{n}-x^{*}\right)\right\rangle \\
& =s_{n}\left[(1-\xi)\left\langle x_{n}-x^{*}, J_{q}\left(w_{n}-x^{*}\right)\right\rangle+\xi\left\langle G w_{n}-x^{*}, J_{q}\left(w_{n}-x^{*}\right)\right\rangle\right] \\
& \quad+\left(1-s_{n}\right)\left\langle S_{\alpha, n} x_{n}-x^{*}, J_{q}\left(w_{n}-x^{*}\right)\right\rangle \\
& \leq s_{n}\left[(1-\xi)\left\langle x_{n}-x^{*}, J_{q}\left(w_{n}-x^{*}\right)\right\rangle+\xi\left\|w_{n}-x^{*}\right\|^{q}\right]+\left(1-s_{n}\right)\left\langle S_{\alpha, n} x_{n}-x^{*}, J_{q}\left(w_{n}-x^{*}\right)\right\rangle,
\end{aligned}
$$

which yields

$$
\begin{aligned}
\left\|w_{n}-x^{*}\right\|^{q} \leq & \frac{1}{1-s_{n} \xi}\left[s_{n}(1-\xi)\left\langle x_{n}-x^{*}, J_{q}\left(w_{n}-x^{*}\right)\right\rangle+\left(1-s_{n}\right)\left\langle S_{\alpha, n} x_{n}-x^{*}, J_{q}\left(w_{n}-x^{*}\right)\right\rangle\right] \\
\leq & \frac{1}{q}\left[\left\|x_{n}-x^{*}\right\|^{q}+(q-1)\left\|w_{n}-x^{*}\right\|^{q}\right]-\frac{1}{1-s_{n} \xi}\left[\frac{s_{n}(1-\tilde{\xi})}{q} h_{3}\left(\left\|x_{n}-w_{n}\right\|\right)\right. \\
& \left.+\frac{1-s_{n}}{q} \tilde{h}_{3}\left(\left\|S_{\alpha, n} x_{n}-w_{n}\right\|\right)\right] .
\end{aligned}
$$

This further implies that

$$
\begin{align*}
\left\|u_{n}-x^{*}\right\|^{q} & \leq\left\|w_{n}-x^{*}\right\|^{q} \\
& \leq\left\|x_{n}-x^{*}\right\|^{q}-\frac{1}{1-s_{n} \xi}\left[s_{n}(1-\xi) h_{3}\left(\left\|x_{n}-w_{n}\right\|\right)+\left(1-s_{n}\right) \tilde{h}_{3}\left(\left\|S_{\alpha, n} x_{n}-w_{n}\right\|\right)\right] \tag{10}
\end{align*}
$$

In a similar way, one further concludes

$$
\begin{aligned}
\left\|z_{n}-x^{*}\right\|^{q} \leq & \left\|\left(x^{*}-\lambda_{n} A x^{*}\right)-\left(u_{n}-\lambda_{n} A y_{n}+r_{n}\left(y_{n}-u_{n}\right)\right)\right\|^{q} \\
& -h_{2}\left(\left\|u_{n}+\left(r_{n} y_{n}-r_{n} u_{n}\right)-\left(\lambda_{n} A y_{n}-\lambda_{n} A x^{*}\right)-z_{n}\right\|\right) \\
\leq & \left\|u_{n}-x^{*}\right\|^{q}-h_{2}\left(\left\|u_{n}+\left(r_{n} y_{n}-r_{n} u_{n}\right)-\left(\lambda_{n} A y_{n}-\lambda_{n} A x^{*}\right)-z_{n}\right\|\right) .
\end{aligned}
$$

Using (10) leads us to

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{q} \leq & \gamma_{n}\left[\left\|u_{n}-x^{*}\right\|^{q}+\beta_{n}\left\|u_{n}-x^{*}\right\|^{q}\right. \\
& \left.-h_{2}\left(\left\|u_{n}+\left(r_{n} y_{n}-r_{n} u_{n}\right)-\left(\lambda_{n} A y_{n}-\lambda_{n} A x^{*}\right)-z_{n}\right\|\right)\right]+\alpha_{n}\left\|x^{*}-u\right\|^{q} \\
\leq & \left\|x_{n}-x^{*}\right\|^{q}-\gamma_{n}\left\{\frac { 1 } { 1 - s _ { n } \xi } \left[s_{n}(1-\xi) h_{3}\left(\left\|x_{n}-w_{n}\right\|\right)\right.\right. \\
& \left.\left.+\left(1-s_{n}\right) \tilde{h}_{3}\left(\left\|S_{\alpha, n} x_{n}-w_{n}\right\|\right)\right]+h_{2}\left(\left\|u_{n}+\left(r_{n} y_{n}-r_{n} u_{n}\right)-\left(\lambda_{n} A y_{n}-\lambda_{n} A x^{*}\right)-z_{n}\right\|\right)\right\} \\
& +\alpha_{n}\left\|x^{*}-u\right\|^{q} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \gamma_{n}\left\{\frac{1}{1-s_{n} \xi}\left[s_{n}(1-\xi) h_{3}\left(\left\|x_{n}-w_{n}\right\|\right)+\left(1-s_{n}\right) \tilde{h}_{3}\left(\left\|S_{\alpha, n} x_{n}-w_{n}\right\|\right)\right]\right. \\
& \left.\quad+h_{2}\left(\left\|u_{n}+\left(r_{n} y_{n}-r_{n} u_{n}\right)-\left(\lambda_{n} A y_{n}-\lambda_{n} A x^{*}\right)-z_{n}\right\|\right)\right\} \\
& \leq \Gamma_{n}+\alpha_{n}\left\|u-x^{*}\right\|^{q}-\Gamma_{n+1} .
\end{aligned}
$$

Note that $h_{2}(0)=h_{3}(0)=\tilde{h}_{3}(0)=0$ and the fact that h_{2}, h_{3} and \tilde{h}_{3} are strictly increasing, continuous and convex functions. From (6) and (9) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-w_{n}\right\|=\lim _{n \rightarrow \infty}\left\|S_{\alpha, n} x_{n}-w_{n}\right\|=\lim _{n \rightarrow \infty}\left\|u_{n}-z_{n}\right\|=0 \tag{11}
\end{equation*}
$$

By using (9) and (11), one concludes $\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0$. It follows that

$$
\begin{align*}
\left\|x_{n}-G x_{n}\right\| & \leq\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-G x_{n}\right\| \\
& \leq\left\|x_{n}-u_{n}\right\|+\left\|w_{n}-x_{n}\right\| \rightarrow 0 \quad(n \rightarrow \infty) . \tag{12}
\end{align*}
$$

Thanks to (11), we get $\lim _{n \rightarrow \infty}\left\|S_{\alpha, n} x_{n}-x_{n}\right\|=0$, which, together with $S_{\alpha, n} x_{n}-x_{n}=\alpha\left(S_{n} x_{n}-x_{n}\right)$, leads to

$$
\begin{equation*}
\left\|S_{n} x_{n}-x_{n}\right\|=\frac{1}{\alpha}\left\|S_{\alpha, n} x_{n}-x_{n}\right\| \rightarrow 0 \quad(n \rightarrow \infty) \tag{13}
\end{equation*}
$$

From the boundedness of $\left\{x_{n}\right\}$ and setting $D=\overline{\operatorname{conv}}\left\{x_{n}: n \geq 0\right\}$, we have $\sum_{n=1}^{\infty} \sup _{x \in D} \| S_{n} x-$ $S_{n-1} x \|<\infty$. Lemma 6 yields that $\lim _{n \rightarrow \infty} \sup _{x \in D}\left\|S_{n} x-S x\right\|=0$. So, $\lim _{n \rightarrow \infty}\left\|S_{n} x_{n}-S x_{n}\right\|=0$. Further, from (13), we have

$$
\begin{equation*}
\left\|x_{n}-S x_{n}\right\| \leq\left\|x_{n}-S_{n} x_{n}\right\|+\left\|S_{n} x_{n}-S x_{n}\right\| \rightarrow 0 \quad(n \rightarrow \infty) \tag{14}
\end{equation*}
$$

Letting $S_{\alpha} x:=(1-\alpha) x+\alpha S x \forall x \in C$, we deduce from Lemma 1 that $S_{\alpha}: C \rightarrow C$ is a nonexpansive mapping. It is easy to see from (14) that $\lim _{n \rightarrow \infty}\left\|x_{n}-S_{\alpha} x_{n}\right\|=0$. For each $n \geq 0$, set $T_{\lambda_{n}}:=$ $J_{\lambda_{n}}^{B}\left(I-\lambda_{n} A\right)$. It follows that

$$
\begin{aligned}
\left\|x_{n}-T_{\lambda_{n}} x_{n}\right\| & \leq\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-T_{\lambda_{n}} u_{n}\right\|+\left\|T_{\lambda_{n}} u_{n}-T_{\lambda_{n}} x_{n}\right\| \\
& \leq 2\left\|x_{n}-u_{n}\right\|+\left\|u_{n}-y_{n}\right\| \rightarrow 0 \quad(n \rightarrow \infty) .
\end{aligned}
$$

In light of $0<\lambda \leq \lambda_{n}$ for all $n \geq 0$, we obtain

$$
\begin{equation*}
\left\|T_{\lambda} x_{n}-x_{n}\right\| \leq 2\left\|T_{\lambda_{n}} x_{n}-x_{n}\right\| \rightarrow 0 \quad(n \rightarrow \infty) \tag{15}
\end{equation*}
$$

We define a mapping $\Psi: C \rightarrow C$ by $\Psi x:=\theta_{1} S_{\alpha} x+\theta_{2} G x+\left(1-\theta_{1}-\theta_{2}\right) T_{\lambda} x \forall x \in C$ with $\theta_{1}+\theta_{2}<1$ for constants $\theta_{1}, \theta_{2} \in(0,1)$. Lemma 7 guarantees that Ψ is nonexpansive and

$$
\operatorname{Fix}(\Psi)=\operatorname{Fix}\left(S_{\alpha}\right) \cap \operatorname{Fix}(G) \cap \operatorname{Fix}\left(T_{\lambda}\right)=\bigcap_{n=0}^{\infty} \operatorname{Fix}\left(S_{n}\right) \cap \operatorname{Fix}(G) \cap(A+B)^{-1} 0 \quad(=: \Omega)
$$

Taking into account that

$$
\left\|\Psi x_{n}-x_{n}\right\| \leq \theta_{1}\left\|S_{\alpha} x_{n}-x_{n}\right\|+\theta_{2}\left\|G x_{n}-x_{n}\right\|+\left(1-\theta_{1}-\theta_{2}\right)\left\|T_{\lambda} x_{n}-x_{n}\right\|
$$

we deduce from (12) and (15) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\Psi x_{n}-x_{n}\right\|=0 \tag{16}
\end{equation*}
$$

Let $z^{\lambda}=\lambda u+(1-\lambda) \Psi z^{\lambda}, \forall \lambda \in(0,1)$. Lemma 8 guarantees that $\left\{z^{\lambda}\right\}$ converges to a point $x^{*} \in$ $\operatorname{Fix}(\Psi)=\Omega$ in norm, and x^{*} further solves the VIP: $\left\langle x^{*}-u, J\left(x^{*}-p\right)\right\rangle \leq 0, \forall p \in \Omega$. From (1), we have

$$
\begin{aligned}
\left\|z^{\lambda}-x_{n}\right\|^{q} & \leq \lambda q\left\|z^{\lambda}-x_{n}\right\|^{q}+(1-\lambda)^{q}\left(\left\|\Psi z^{\lambda}-\Psi x_{n}\right\|+\left\|\Psi x_{n}-x_{n}\right\|\right)^{q}+\lambda q\left\langle u-z^{\lambda}, J_{q}\left(z^{\lambda}-x_{n}\right)\right\rangle \\
& \leq \lambda q\left\|z^{\lambda}-x_{n}\right\|^{q}+(1-\lambda)^{q}\left(\left\|\Psi x_{n}-x_{n}\right\|+\left\|z^{\lambda}-x_{n}\right\|\right)^{q}+\lambda q\left\langle u-z^{\lambda}, J_{q}\left(z^{\lambda}-x_{n}\right)\right\rangle .
\end{aligned}
$$

Further, from (16), one has

$$
\limsup _{n \rightarrow \infty}\left\langle u-z_{t}, J_{q}\left(x_{n}-z_{t}\right)\right\rangle \leq M \frac{(q t-1)+(1-t)^{q}}{q t}
$$

where M is a constant such that $\left\|z_{t}-x_{n}\right\|^{q} \leq M$ for all $n \geq 0$ and $t \in(0,1)$. From the properties of J_{q} and the fact that $z_{t} \rightarrow x^{*}$ as $t \rightarrow 0$, one gets $\lim _{t \rightarrow 0}\left\|J_{q}\left(x_{n}-x^{*}\right)-J_{q}\left(x_{n}-z_{t}\right)\right\|=0$. A simple calculation indicates that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-x^{*}, J_{q}\left(x_{n}-x^{*}\right)\right\rangle \leq 0 \tag{17}
\end{equation*}
$$

and then

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\| & \leq \alpha_{n}\left\|u-x_{n}\right\|+\beta_{n}\left\|u_{n}-x_{n}\right\|+\gamma_{n}\left(\left\|S_{\alpha, n} z_{n}-u_{n}\right\|+\left\|u_{n}-x_{n}\right\|\right) \\
& \leq \alpha_{n}\left\|u-x_{n}\right\|+\left\|u_{n}-x_{n}\right\|+\left\|S_{\alpha, n} z_{n}-u_{n}\right\| \rightarrow 0 \quad(n \rightarrow \infty) .
\end{aligned}
$$

Using (17), we have $\lim \sup _{n \rightarrow \infty}\left\langle u-x^{*}, J_{q}\left(x_{n+1}-x^{*}\right)\right\rangle \leq 0$. An application of Lemma 9 yields that $\Gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus, $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.

Case 2. We assume that there is $\left\{\Gamma_{k_{i}}\right\} \subset\left\{\Gamma_{k}\right\}$ s.t. $\Gamma_{k_{i}}<\Gamma_{k_{i}+1} \forall i \in N$, where N is the set of all positive integers. We now give a new mapping $\tau: N \rightarrow N$ by $\tau(k):=\max \left\{i \leq k: \Gamma_{i}<\Gamma_{i+1}\right\}$. Using Lemma 10, one concludes

$$
\Gamma_{\tau(k)+1} \geq \Gamma_{\tau(k)} \quad \text { and } \quad \Gamma_{\tau(k)+1} \geq \Gamma_{k}
$$

Putting $\Gamma_{k}=\left\|x_{k}-x^{*}\right\|^{q} \forall k \in \mathbf{N}$ and using the same reasoning as in Case 1 we can obtain

$$
\begin{gather*}
\lim _{k \rightarrow \infty}\left\|x_{\tau(k)}-x_{\tau(k)+1}\right\|=0 \tag{18}\\
\limsup _{k \rightarrow \infty}\left\langle u-x^{*}, J_{q}\left(x_{\tau(k)+1}-x^{*}\right)\right\rangle \leq 0 \tag{19}
\end{gather*}
$$

In view of $\alpha_{\tau(k)}>0$ and $\Gamma_{\tau(k)+1} \geq \Gamma_{\tau(k)}$, we conclude that

$$
\frac{q}{1-\delta}\left\langle u-x^{*}, J_{q}\left(x_{\tau(k)+1}-x^{*}\right)\right\rangle \geq\left\|x_{\tau(k)}-x^{*}\right\|^{q} .
$$

Consequently, $\lim _{k \rightarrow \infty}\left\|x_{\tau(k)}-x^{*}\right\|^{q}=0$. Using Lemma 3, we have that

$$
\begin{aligned}
& \left\|x_{\tau(k)+1}-x^{*}\right\|^{q}-\left\|x^{*}-x_{\tau(k)}\right\|^{q} \\
& \leq q\left\langle x_{\tau(k)+1}-x_{\tau(k)}, J_{q}\left(x_{\tau(k)}-x^{*}\right)\right\rangle+\kappa_{q}\left\|x_{\tau(k)+1}-x_{\tau(k)}\right\|^{q} \\
& \leq q\left\|x_{\tau(k)}-x^{*}\right\|^{q-1}\left\|x_{\tau(k)+1}-x_{\tau(k)}\right\|+\kappa_{q}\left\|x_{\tau(k)+1}-x_{\tau(k)}\right\|^{q} \rightarrow 0 \quad(k \rightarrow \infty) .
\end{aligned}
$$

Thanks to $\Gamma_{k} \leq \Gamma_{\tau(k)+1}$, we get

$$
\left\|x_{k}-x^{*}\right\|^{q} \leq\left\|x_{\tau(k)}-x^{*}\right\|^{q}+q\left\|x_{\tau(k)+1}-x_{\tau(k)}\right\|\left\|x_{\tau(k)}-x^{*}\right\|^{q-1}+\kappa_{q}\left\|x_{\tau(k)+1}-x_{\tau(k)}\right\|^{q}
$$

It is easy to see from (18) that $x_{k} \rightarrow x^{*}$ as $k \rightarrow \infty$. This completes the proof.
It is well known that $\kappa_{2}=1$ in Hilbert spaces. From Theorem 1, we derive the following conclusion.

Corollary 1. Let $\varnothing \neq C \subset H$ be a closed convex set. Let $\left\{S_{n}\right\}_{n=0}^{\infty}$ be a family of ς-uniformly strict pseudocontraction mappings defined on C. Suppose that $B_{1}, B_{2}: C \rightarrow 2^{H}$ are both maximal monotone operators and $A_{k}: C \rightarrow H$ is σ_{k}-inverse-strongly monotone mapping for $k=1,2$. Define the mapping $G: C \rightarrow C$ by $G:=J_{\zeta_{1}}^{B_{1}}\left(I-\zeta_{1} A_{1}\right) J_{\zeta_{2}}^{B_{2}}\left(I-\zeta_{2} A_{2}\right)$ for constants $\zeta_{1}, \zeta_{2}>0$. Let $A: C \rightarrow H$ and $B: C \rightarrow 2^{H}$ be a σ-inverse-strongly monotone mapping and a maximal monotone operator, respectively. For any given $x_{0} \in C, \xi \in(0,1)$ and $\alpha \in(0, \min \{1,2 \zeta\})$, let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be the sequence generated by

$$
\left\{\begin{array}{l}
w_{n}=s_{n}\left((1-\xi) x_{n}+\xi G w_{n}\right)+\left(1-s_{n}\right)\left((1-\alpha) x_{n}+\alpha S_{n} x_{n}\right) \\
u_{n}=J_{\zeta_{1}}^{B_{1}}\left(I-\zeta_{1} A_{1}\right) J_{\zeta_{2}}^{B_{2}}\left(w_{n}-\zeta_{2} A_{2} w_{n}\right) \\
y_{n}=J_{\lambda_{n}}^{B}\left(u_{n}-\lambda_{n} A u_{n}\right) \\
z_{n}=J_{\lambda_{n}}^{B}\left(u_{n}-\lambda_{n} A y_{n}+r_{n}\left(y_{n}-u_{n}\right)\right) \\
x_{n+1}=\alpha_{n} u+\beta_{n} u_{n}+\gamma_{n}\left((1-\alpha) z_{n}+\alpha S_{n} z_{n}\right) \quad \forall n \geq 0
\end{array}\right.
$$

where the sequences $\left\{r_{n}\right\},\left\{s_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are sequences in $(0,1]$ with the additional restrictions $\alpha_{n}+\beta_{n}+\gamma_{n}=1$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ are such that $\sum_{n=0}^{\infty} \alpha_{n}=\infty, \lim _{n \rightarrow \infty} \alpha_{n}=0$ as $n \rightarrow \infty ; 0<$ $a \leq \beta_{n} \leq b<1$ and $0<c \leq s_{n} \leq d<1 ; 0<r \leq r_{n}<1$ and $0<\lambda \leq \lambda_{n}<\frac{\lambda_{n}}{r_{n}} \leq \mu<2 \sigma$; $0<\zeta_{k}<2 \sigma_{k}$ for $k=1,2$. Assume that $\sum_{n=0}^{\infty} \sup _{x \in D}\left\|S_{n+1} x-S_{n} x\right\|<\infty$, where D is a bounded subset of C. Define a self mapping S by $S x=\lim _{n \rightarrow \infty} S_{n} x \forall x \in C$, and further assume that $\bigcap_{n=0}^{\infty} \operatorname{Fix}\left(S_{n}\right)=\operatorname{Fix}(S)$. If $\Omega:=\bigcap_{n=0}^{\infty} \operatorname{Fix}\left(S_{n}\right) \cap \operatorname{Fix}(G) \cap(A+B)^{-1} 0 \neq \varnothing$, then $\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|=0$, where $x^{*} \in \Omega$ uniquely solves $\left\langle x^{*}-u, p-x^{*}\right\rangle \geq 0 \forall p \in \Omega$.

Next, we recall the least absolute shrinkage and selection operator (LASSO) [35], which can be formulated as a convex constrained optimization problem:

$$
\begin{equation*}
\min _{y \in H} \frac{1}{2}\|T y-b\|_{2}^{2} \quad \text { subject to }\|y\|_{1} \leq s \tag{20}
\end{equation*}
$$

where T is a bounded operator on H, b is a fixed vector in H, and $s>0$ is a real number. In this section, Λ is employed to denote the set of solutions of LASSO (20). LASSO, which acts as a unified model for a number of real problems, has been investigated in different settings. Ones know that a solution to (20) is a minimizer to the following minimization problem: $\min _{y \in H} g(y)+h(y)$, where $g(y):=\frac{1}{2}\|T y-b\|_{2}^{2}, h(y):=\lambda\|y\|_{1}$. It is known that $\nabla g(y)=T^{*}(T y-b)$ is $\frac{1}{\left\|T^{*} T\right\|}$-inverse-strongly monotone. Hence, we have that z solves the LASSO iff z solves the problem, which consists of finding $z \in H$ s.t.

$$
\begin{aligned}
0 \in \partial h(z)+\nabla g(z) & \Leftrightarrow z-\lambda \nabla g(z) \in z+\lambda \partial h(z) \\
& \Leftrightarrow z=\operatorname{prox}_{h}(z-\lambda \nabla g(z)),
\end{aligned}
$$

where $\lambda>0$ is real, and $\operatorname{prox}_{h}(y)$ is the proximal of $h(y):=\lambda\|y\|_{1}$ defined as follows

$$
\operatorname{prox}_{h}(y)=\operatorname{argmin}_{u \in H}\left\{\lambda\|u\|_{1}+\frac{1}{2}\|u-y\|_{2}^{2}\right\} \quad \forall y \in H .
$$

This is separable in indices. So, $y \in H$, for $i=1,2, \ldots, n, \operatorname{prox}_{h}(y)=\operatorname{prox}_{\lambda\|\cdot\|_{1}}(y)=\left(\operatorname{prox}_{\lambda|\cdot|}\left(y_{1}\right)\right.$, $\left.\operatorname{prox}_{\lambda|\cdot|}\left(y_{2}\right), \ldots, \operatorname{prox}_{\lambda|\cdot|}\left(y_{n}\right)\right)$, with $\operatorname{prox}_{\lambda|\cdot|}\left(y_{i}\right)=\operatorname{sgn}\left(y_{i}\right) \max \left\{\left|y_{i}\right|-\lambda, 0\right\}$.

By putting $C=H, A=\nabla g, B=\partial h$ and $\sigma=\frac{1}{\left\|T^{*} T\right\|}$ in Corollary 1, we obtain the following result immediately.

Corollary 2. Let $A_{k}, B_{k}(k=1,2)$ and $\left\{S_{n}\right\}_{n=0}^{\infty}$ be the same as in Corollary 1 with $C=H$. Assume that $\Omega:=\cap_{n=0}^{\infty} \operatorname{Fix}\left(S_{n}\right) \cap \operatorname{Fix}(G) \cap \Lambda \neq \varnothing$. For any given $x_{0} \in H, \xi \in(0,1)$ and $\alpha \in(0, \min \{1,2 \zeta\})$, let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be the sequence generated by

$$
\left\{\begin{array}{l}
w_{n}=s_{n}\left((1-\xi) x_{n}+\xi G w_{n}\right)+\left(1-s_{n}\right)\left((1-\alpha) x_{n}+\alpha S_{n} x_{n}\right) \\
u_{n}=J_{\zeta_{1}}^{B_{1}}\left(I-\zeta_{1} A_{1}\right) J_{\zeta_{2}}^{B_{2}}\left(w_{n}-\zeta_{2} A_{2} w_{n}\right) \\
y_{n}=\operatorname{prox}_{h}\left(u_{n}-\lambda_{n} T^{*}\left(T u_{n}-b\right)\right), \\
z_{n}=\operatorname{prox}_{h}\left(u_{n}-\lambda_{n} T^{*}\left(T y_{n}-b\right)+\left(r_{n} y_{n}-r_{n} u_{n}\right)\right), \\
x_{n+1}=\alpha_{n} u+(1-\alpha) \gamma_{n} z_{n}+\alpha \gamma_{n} S_{n} z_{n}+\beta_{n} u_{n} \quad \forall n \geq 0,
\end{array}\right.
$$

where the sequences $\left\{r_{n}\right\},\left\{s_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\} \subset(0,1], \alpha_{n}+\beta_{n}+\gamma_{n}=1$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ are such that the conditions presented in Corollary 3.1 hold where $\sigma=\frac{1}{\left\|T^{*} T\right\|}$. Then $x_{n} \rightarrow x^{*} \in \Omega$ as $n \rightarrow \infty$.

Funding: This work was supported by Gyeongnam National University of Science and Technology Grant in 2020.3.1-2022.2.28.

Acknowledgments: The author thanks to the referees for useful suggestions which improved the presentation of this manuscript.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Qin, X.; An, N.T. Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets. Comput. Optim. Appl. 2019, 74, 821-850. [CrossRef]
2. Sahu, D.R.; Yao, J.C.; Verma, M.; Shukla, K.K. Convergence rate analysis of proximal gradient methods with applications to composite minimization problems. Optimization 2020. [CrossRef]
3. Nguyen, L.V.; Qin, X. The Minimal time function associated with a collection of sets. ESAIM Control Optim. Calc. Var. 2020. [CrossRef]
4. Ansari, Q.H.; Islam, M.; Yao, J.C. Nonsmooth variational inequalities on Hadamard manifolds. Appl. Anal. 2020, 99, 340-358. [CrossRef]
5. An, N.T. Solving k-center problems involving sets based on optimization techniques. J. Global Optim. 2020, 76, 189-209. [CrossRef]
6. Nguyen, L.V.; Qnsari, Q.H.; Qin, X. Weak sharpness and finite convergence for solutions of nonsmooth variational inequalities in Hilbert spaces. Appl. Math. Optim. 2020. [CrossRef]
7. Nguyen, L.V.; Ansair, Q.H.; Qin, X. Linear conditioning, weak sharpness and finite convergence for equilibrium problems. J. Global Optim. 2020, 77, 405-424. [CrossRef]
8. Korpelevich, G.M. The extragradient method for finding saddle points and other problems. Ekon. i Mat. Metod. 1976, 12, 747-756.
9. Dehaish, B.A.B. Weak and strong convergence of algorithms for the sum of two accretive operators with applications. J. Nonlinear Convex Anal. 2015, 16, 1321-1336.
10. Takahahsi, W.; Yao, J.C. The split common fixed point problem for two finite families of nonlinear mappings in Hilbert spaces. J. Nonlinear Convex Anal. 2019, 20, 173-195.
11. Qin, X.; Wang, L.; Yao, J.C. Inertial splitting method for maximal monotone mappings. J. Nonlinear Convex Anal. 2020, in press.
12. Takahashi, W.; Wen, C.F.; Yao, J.C. The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space. Fixed Point Theory 2018, 19, 407-419. [CrossRef]
13. Qin, X.; Yao, J.C. A viscosity iterative method for a split feasibility problem. J. Nonlinear Convex Anal. 2019, 20, 1497-1506.
14. Liu, L. A hybrid steepest descent method for solving split feasibility problems involving nonexpansive mappings. J. Nonlinear Convex Anal. 2019, 20, 471-488.
15. Liu, L.; Qin, X.; Agarwal, R.P. Iterative methods for fixed points and zero points of nonlinear mappings with applications. Optimization 2019. doi: 10.1080/02331934.2019.1613404. [CrossRef]
16. Chang, S.S. Common zero point for a finite family of inclusion problems of accretive mappings in Banach spaces. Optimization 2018, 67, 1183-1196. [CrossRef]
17. Qin, X.; Yao, J.C. Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators. J. Inequal. Appl. 2016, 2016, 232. [CrossRef]
18. Abbas, H.A.; Aremu, K.O.; Jolaoso, L.O.; Mewomo, O.T. An inertial forward-backward splitting method for approximating solutions of certain optimization problem. J. Nonlinear Funct. Anal. 2020, 2020, 6.
19. Kimura, Y.; Nakajo, K. Strong convergence for a modified forward-backward splitting method in Banach spaces. J. Nonlinear Var. Anal. 2019, 3, 5-18.
20. Ceng, L.C. Asymptotic inertial subgradient extragradient approach for pseudomonotone variational inequalities with fixed point constraints of asymptotically nonexpansive mappings. Commun. Optim. Theory 2020, 2020, 2.
21. Gibali, A. Polyak's gradient method for solving the split convex feasibility problem and its applications. J. Appl. Numer. Optim. 2019, 1, 145-156.
22. Tong, M.Y.; Tian, M. Strong convergence of the Tseng extragradient method for solving variational inequalities. Appl. Set-Valued Anal. Optim. 2020, 2, 19-33.
23. Barbu, V. Nonlinear Semigroups and Differential Equations in Banach Spaces; Noordhoff: Amsterdam, The Netherlands, 1976.
24. Ceng, L.C.; Postolache, M.; Yao, Y. Iterative algorithms for a system of variational inclusions in Banach spaces. Symmetry 2019, 11, 811. [CrossRef]
25. Aoyama, K.; Iiduka, H.; Takahashi, W. Weak convergence of an iterative sequence for accretive operators in Banach spaces. Fixed Point Theory Appl. 2006, 2006, 35390. [CrossRef]
26. $\mathrm{Xu}, \mathrm{H} . \mathrm{K}$. Inequalities in Banach spaces with applications. Nonlinear Anal. 1991, 16, 1127-1138. [CrossRef]
27. Zhang, H.; Su, Y. Convergence theorems for strict pseudocontractions in q-uniformly smooth Banach spaces. Nonlinear Anal. 2009, 71, 4572-4580. [CrossRef]
28. Lopez, G.; Martin-Marquez, V.; Wang, F.; Xu, H.K. Forward-backward splitting methods for accretive operators in Banach spaces. Abst. Anal. Appl. 2012, 2012, 109236. [CrossRef]
29. Qin, X.; Cho, S.Y.; Yao, J.C. Weak and strong convergence of splitting algorithms in Banach spaces. Optimization 2020, 69, 243-267. [CrossRef]
30. Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M. Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 2007, 67, 2350-2360. [CrossRef]
31. Bruck, R.E. Properties of fixed-point sets of nonexpansive mappings in Banach spaces. Trans. Am. Math. Soc. 1973, 179, 51-262. [CrossRef]
32. Reich, S. Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 1980, 75, 287-292. [CrossRef]
33. Xue, Z.; Zhou, H.; Cho, Y.J. Iterative solutions of nonlinear equations for m-accretive operators in Banach spaces. J. Nonlinear Convex Anal. 2000, 1, 313-320.
34. Maingé, P.E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 2008, 16, 899-912. [CrossRef]
35. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267-288. [CrossRef]
