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Abstract: Modeling the context of a target word is of fundamental importance in predicting the
semantic label for slot filling task in Spoken Language Understanding (SLU). Although Recurrent
Neural Network (RNN) has shown to successfully achieve the state-of-the-art results for SLU,
and Bidirectional RNN is capable of obtaining further improvement by modeling information not
only from the past, but also from the future, they only consider limited contextual information
of the target word. In order to make the network deeper and hence obtain longer contextual
information, we propose to use a multi-layer Time Delay Neural Network (TDNN), which is
prevalent in current large vocabulary continuous speech recognition tasks. In particular, we use
a TDNN with symmetric time delay offset. To make the stacked TDNN easily trained, residual
structures and skip concatenation are adopted. In addition, we further improve the model by
introducing ResTDNN-BiLSTM, which combines the advantages of both the residual TDNN and
BiLSTM. Experiments on slot filling tasks on the Air Travel Information System (ATIS) and Snips
benchmark datasets show the proposed SC-TDNN-C achieves state-of-the-art results without any
additional knowledge and data resources. Finally, we review and compare slot filling results by using
a variety of existing models and methods.

Keywords: Spoken Language Understanding; Time Delay Neural Network; residual network;
skip concatenation

1. Introduction

Spoken Language Understanding (SLU) refers to converting Automatic Speech Recognition (ASR)
outputs into the predefined semantic output format. The role of SLU is of great significance to a modern
human–machine spoken dialog system. The purpose of SLU is to convert the user’s conversational
text into a way that the computer can understand, typically a machine-interpretable and actionable
sequence of labels [1]. Therefore, the computer can perform the next correct operation based on the
extracted information to help the user to meet his or her demands. The main task of SLU is generally
divided into two parts: to identify the intent of the user’s command and to extract the semantic slot
value in the utterance, which is, respectively, referred to as intent detection and slot filling. The intent
detection task is typically treated as a semantic utterance classification problem in which contiguous
sequences of words are assigned with semantic class labels. Slot filling can be treated as sequence
labeling problem, which assigns jointly labels of each word in the sequence.

Even after years of research, the slot filling task for SLU is still a challenging problem [2,3].
Theoretically, the approaches to solve the two problems include generative models such as hidden
markov models (HMM) [4], discriminative methods [5], such as Conditional Random Fields
(CRFs) [6,7], Support Vector Machines (SVMs) [8], and probabilistic context-free grammars [9].
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In recent years, neural network models such as RNN [10] and Convolutional Neural Network
(CNN) [11] have also been successfully applied to this task [5,12,13].

In some research areas such as ASR, although RNN and its variants have been successfully
applied, they are more recently replaced by TDNN which is capable of processing wider context inputs.
In early years, TDNN has been applied in small scale speech recognition tasks [14,15] and recently has
shown to obtain better speech recognition results over DNN [16] and unfolded RNN [17]. In Kaldi [18],
perhaps the most prevalent speech recognition toolkit nowadays, the TDNN-BiLSTM framework,
has been implemented as a standard recipe.

In Natural Language Processing (NLP) research, word context modeling is crucial to the
performance of many sequence labeling tasks including SLU. RNN models the word contexts by
indirectly learning relative positions of the target words in the sentences according to the input order
of the words, which makes the current output of RNN largely depend on the last input rather than
the previous input [19]. It is difficult for RNN to capture the positional information of the current
word when processing long word sequences. Although we can use context word splicing as the inputs
to the RNN, this technique only provides limited contextual information. In order to improve the
performance of slot filling task, we focus on modeling the context information of the target word.

Based on the above, we explore the use of TDNN instead of RNN for slot filling. TDNN is a
precursor of the convolutional network, also known as one-dimensional convolution. Especially,
we used TDNN with symmetric delay offset, which can predict semantic labels by considering the
same number of words before and after the target word. TDNN is a multi-layer neural network,
with each layer having a strong ability for feature extraction, and also takes into account the long-term
contexts. Unlike RNN, which inputs words in sentence order, TDNN is capable of simultaneously
processing words that surround the target word. Moreover, TDNN is able to make use of arbitrary
word contexts by setting different time delays rather than successive words with a context window.
TDNN can get the contextual information of adjacent words surrounding the target word in sentence
by context window and delay offsets.

To model even longer word contexts, it is straightforward to simply stack several TDNN layers to
obtain a multi-layer TDNN due to its hierarchical multi-resolution nature. Particularly, the low layers
of stacked TDNN deal with a narrow time context, which expands as information flows to higher
layers [20]. Therefore, multi-layer TDNN can extract the context information of the target word from
the sentence level instead of word level to predict the semantic label. However, with the deepening of
the network, the gradient vanishing or exploding is an inevitable problem. Residual connection and
gradient clip are two main methods to solve this problem. The residual CNN has shown to achieve
good results on image classification tasks [21] and it has been proved that the residual structure can
alleviate the gradient vanishing or exploding problems through skip connections. Therefore, we apply
the residual structure to TDNN, which is named as ResTDNN. ResTDNN can fuse features which from
different TDNN layers and strengthen feature propagation. Slot filling results show the superiority of
ResTDNN to conventional RNN and its variants.

Inspired by the successful application of TDNN-BiLSTM to speech processing tasks, we combine
a ResTDNN-based feature extractor with RNN (plain RNN, LSTM, GRU, and their bidirectional
forms)-based classifier, to further improve the performance. Experimental results show that the
combinations ResTDNN with back-end RNN achieve further improvement over the ResTDNN and
RNN alone.

Recently, densely connected convolutional network (DenseNet) was proposed in [22],
which connects each layer to every other layer in a feedforward fashion. DenseNet obtained significant
improvements over the state-of-the-art on four highly competitive object recognition benchmark tasks,
while requiring less computation to achieve high performance in image classification tasks. DenseNets
have shown several remarkable advantages: alleviate the vanishing-gradient problem, strengthen
feature propagation, encourage feature reuse, and enormously reduce the number of parameters.
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Inspired by the DenseNets, we connect specific layers instead of every other layer in a feedforward
fashion, which referred to as SC-TDNN later. Instead of using the skip connections that sums up the
outputs of different TDNN layers in ResTDNN, the SC-TDNN reuses the feature from different TDNN
layers, by which the representation of the target word conveys richer contextual information. Thus,
the slot filling experiments yield comparable and even better performance through this method.

Similar to the aforementioned ResTDNN-RNN framework, we also experiment with the
combination of SC-TDNN and RNN (and its variants as well). It is also seen that the combination
of SC-TDNN with RNN achieves better results compared with those from SC-TDNN or RNN alone.
In the final part of the paper, we compare the proposed models and methods with those from other
literatures. We hope the experimental analysis and comparison provide useful insight for researchers
in this area.

The remainder of the paper is organized as follows. Section 2 describes the related works, Section 3
shows the ResTDNN model, Section 4 presents the experimental results and analysis, and Section 5
draws the comparisons of previous results and summarizes our work.

2. Related Works

Neural network models, such as RNN and CNN, have been widely used in natural language
processing (NLP) tasks. RNNs or their variants, such as LSTMs or GRUs, have been successfully
applied in many different NLP tasks such as language modeling [23] or machine translation [24].
Deep learning has also been applied to intent detection and slot filling tasks of SLU [25,26].
Another important step forward is the invention of word embeddings [27,28], which transforms
high-dimensional sparse vectors for word representations into low-dimensional dense vector
representations in several natural language tasks [29,30]. RNN-EM [10] used RNN with external
memory architecture and got a better slot filling result than pure RNN. Using CNNs is another
trend for sequence labeling [29,30] or modeling larger units such as phrases [31] or sentences [32,33].
Distributed representations of words [27,28] are used as inputs for both models. Promising results were
showed in the previous study [11], which combines CNN and CRF for sentence-level optimization.

RNN-LSTM architecture was proposed in [34] for joint modeling of slot filling, intent
determination, and domain classification. They built a joint multi-domain model and investigated
alternative architectures for modeling lexical context in spoken language understanding. The authors
of [35] proposed a RNN based encoder–decoder model, which sums all of the encoded hidden states
through an attention weight for predicting the utterance intent. A slot-gated mechanism [36] was
proposed in order to focus on learning the relationship between intent and slot values. They obtained
better semantic frame results by the global optimization. A capsule-based neural network model
was proposed in [37] for accomplishing slot filling and intent detection. They proposed a dynamic
routing-by-agreement schema for the SLU task. MPT-RNN [38] used triplets as an additional loss
function based RNN model. They updated context window representation in order to make dissimilar
samples more distant and similar samples close, and they got better classification results through this
method. Although some pre-training models with external knowledge have worked well for many
NLP tasks such as BERT-based model, large amounts of external data are often difficult to obtain and
it also need large computing resources. In this paper, we study slot filling task under the single model
framework and harness the time delay neural network to learn the feature representation of target
word. Unlike pre-training model, our work is to conduct slot filling experiments without adding any
external knowledge and additional resources. We only study the slot filling task in this work and
conduct experiments with Air Travel Information System (ATIS) and SNIPS datasets.
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3. The Proposed Model (ResTDNN)

3.1. Task Description

As mentioned, slot filling is a sequence labeling problem. Given a word sequence, the main
purpose of slot filling is to predict slot tag for each word in the sentence. Table 1 gives a commonly
used slot filling example in the ATIS [39] dataset. The sentence is a flight booking query Show me flights
from Boston to New York today. The goal is to mark the word Boston as the beginning departure city
(B-dept), New is marked as the beginning of the arrival city (B-arr) and York the ending of the arrival
city (I-arr). today is tagged as the slot for the date (B-date). Other words in the sentence convey no
meaning for the flight booking intention and are marked as slot O.

Table 1. Examples of ATIS sentence and the annotated slots.

Sentence Show me flights from Boston to New York today

Slots O O O O B-dept O B-arr I-arr B-date

Sentence Tell me about ground transportation in St. Petersburg airport

Slots O O O O O O B-airport_name I-airport_name I-airport_name

3.2. Time Delay Neural Networks

TDNN was first introduced in [15] for phoneme recognition. It is a multi-layer feedforward
network. Figure 1 demonstrates the network structure of a basic TDNN. As shown, each output node
of one layer depends on several adjacent nodes of its input. The input range is defined by a context
delay offset [d1, d2], where d1 and d2 represent the delay offsets. Dash lines of the same style [20]
represent weight shared in each layer of TDNN, that is, the result of one-dimensional convolution
is obtained by sliding the same convolution kernel. Specifically in the first input layer of Figure 1,
when the delay offset is set to [−2,+2], the five consecutive frames are weighted by a layer-wise shared
weight F as inputs to the activation function and the results are then normalized before fed into the
next TDNN layer. For our task, each small rectangle of the input is a spliced m-dimensional word
vectors corresponding to several successive words in the sentence. If the dimension of spliced word
vectors is m, and the delay offset is [d1, d2], the kernel size of the TDNN layer is (d2 − d1 + 1)× m.
In the later experiments, we can also use multiple kernels to extract subspace information.

Figure 1. Structure of Time Delay Neural Network (TDNN).
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3.3. Residual Time Delay Neural Network

Here, we provide the model descriptions of the proposed ResTDNN. The model structural
diagram of ResTDNN is described as follows and shown in Figure 2 .

Figure 2. Structure of Residual Time Delay Neural Network (ResTDNN).

3.3.1. Embedding Layer

As in many NLP tasks, each of the input words is converted into a D-dimensional real-valued
vector, namely, word embedding. We splice successive W word embeddings together where W is the
splicing context size. Let w be the splicing context offset, the size of context window is W = 2w + 1.
If there are not enough words before or after the target word for splicing, we fill there with padded
word embeddings. Thus, the input at position t is

Vt = [vt−w, · · · vt−1, vt, vt+1, · · · vt+w]. (1)

For a sentence that contains N words, the vector representation of the entire sequence can be an
input matrix s ∈ RN×(W×D)

s = [V1, V2, V3, · · · , VN ]. (2)

3.3.2. Time Delay Neural Network

Thus, for each target word, we form an embedding matrix Mt ∈ R(d2−d1+1)×(W×D) as the input to
each TDNN hidden layer. In this paper, we use one-dimensional filter F (with width |F| = d2 − d1 + 1)
spanning all context embedding dimensions (W × D). As described by the following equation

x(`)t = M(`)
t ∗ F(`), (3)

where ∗ represents the convolution operation, x(`)t is the convolutional result of the corresponding
matrix Mt from all words in the sentence. The number of filters is corresponding to the number of
hidden layers in each TDNN’s layer.

3.3.3. ReLU and Batch Normalization

We use the Rectified Linear Unit (ReLU) [40] as the activation function to the output x(`)t of the

each TDNN layer. z(`)t is the result of batch normalization [41] after the ReLU activation over the
t-th input

z(`)t = BatchNorm(ReLU(x(`)t )). (4)
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3.3.4. Residual Block

A residual operation can be represented as the follows,

x(B+1)
t = F (x(B)

t ) + z(B)
t , (5)

where x(B)
t and x(B+1)

t are the input and the output of the B-th residual block in the network,
respectively, and F is the function of the residual network.

3.3.5. Dropout

To avoid overfitting when training the model, dropout [42] is adopted. The output of dropout
layer for the t-th word is described as

gt = Dropout(z(`)t ). (6)

3.3.6. Softmax Layer

The softmax function is applied to the network to obtain the probability distribution yt of the
t-th word:

yt = Softmax(Wsgt + b), (7)

where Ws and b are, respectively, the weight and bias of the softmax layer.

3.4. ResTDNN-RNN Combination

ResTDNN can extract the contextual information of the target word, whereas the recurrent
structure of RNN and its variants is able to capture the temporal change, which complements
with ResTDNN. Thus, we superimpose ResTDNN onto RNN (including its variants) to check the
improvement to the original model. As shown in Figure 3, we use ResTDNN followed by RNN (or its
variants) to get a series of new model structures, which are named as ResTDNN-RNNs.

Figure 3. Structure of ResTDNN-RNNs.

3.5. Objective Function

We use the softmax activation function as the last layer to obtain the normalized probability
distribution, and the objective function used in this paper is based on cross-entropy [43],

L = − 1
N

N

∑
t=1

C

∑
c=1

yt,c log ŷt,c, (8)
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where ŷt,c is the predicted probability of the c-th semantic tag of the t-th word and yt,c is the true
probability of c-th semantic tag of t-th word in the sample. N is the number of words in the sample
and C is the number of semantic tag categories.

4. Experiments

We carried out various experiments to demonstrate the performance of the TDNN. We hereby
describe the experimental set-up, datasets, evaluation metrics, residual TDNN, skip concatenation
TDNN, the combination of TDNN with RNNs (its variants), and the experimental results on ATIS and
SNIPS datasets.

4.1. Experimental Setup

All the networks in the experiments were implemented using the TensorFlow deep learning
toolkit. In model training, Stochastic Gradient Descent (SGD) was used in parameter optimization.
The learning rate (Lr) was initialized with a value of 0.5 unless otherwise specified and decreased
to 0.9 times of the previous learning rate after every 10 epochs. We used a batch size of 1, L2
regularization [44] with λ = 1e−5 and the dropout probability was set to p = 0.5 during model
training. Unless otherwise stated, the dimension of the word embedding was set to E = 100. Model
specific parameters were presented in the table with the results. In order to avoid the gradient problem
[45,46], gradient clipping with maximum L2-norm of 1 was applied when updated the parameters of
model. To keep the length of the sentence constant after the delay operation, we set “padding=same”
and “stride=1” when we used the one-dimensional convolution in the TensorFlow library. The weight
parameters in the softmax layer and the word embeddings were initialized randomly with a uniform
distribution in [−0.2, 0.2].

4.2. Datasets

The proposed models and methods are evaluated on the widely used ATIS SLU dataset [47]
and SNIPS NLU dataset [48]. The ATIS SLU dataset was collected from the air travel domain and
consists of audio recordings of speakers making travel reservations. The training data consists
of 3983 sentences with 56,590 words. The test data consists of 893 sentences with 9198 words.
There are in total 127 semantic labels, including the label of the class O. There are a total of 25,509 slot
occurrences in the training and test set. The SNIPS NLU dataset is a benchmark dataset to evaluate
the performance of voice assistants. SNIPS NLU dataset includes 13,084 training sentences, 700 test
sentences, and 700 validation sentences. There are 72 semantic labels and 112,421 words in SNIPS
NLU dataset.

4.3. Evaluation Metrics

The slot filling results from the the proposed models are evaluated in terms of F1-score which
has been widely used in many NLP tasks. F1-score is the harmonic average of Precision and Recall.
As described by the following equation,

F1 =
2× Precision× Recall

Precision + Recall
× 100%, (9)

where

Precision =
NWW
ND

× 100%, (10)

Recall =
NWW
NW

× 100%. (11)
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NWW is the number of tokens where the machine marks in consistence with the ground-truth.
ND is the total number of slots labeled by the machine, and NW is the number of slots annotated by
human in the transcriptions.

4.4. Results and Discussion

4.4.1. Results of RNN and its Variants

Here we present the slot filling results using traditional RNN and the commonly used variants
(LSTM and GRU) and their bidirectional form (BiLSTM and BiGRU). To show the influence of context
window size W, we first present the slot filling results from BiLSTM with different context window
sizes. From Figure 4, we can see that the F1-score peaks at 95.32% when we increase the context
window size W from 1 to 3, indicating that using longer word contexts benefits slot filling results.
However, further increase W leads to degradation of F1. We may think that a shorter window size
cannot fully utilize contextual semantic information, while a excessively long context window will
potentially introduces additional noise to the model.

Figure 4. Results on ATIS dataset of different context window sizes in BiLSTM SLU model.

The slot filling results on two real-word datasets are presented in Table 2 along with the
corresponding network configurations that achieves the best results. As shown in Table 2, RNN
with LSTM or GRU cells achieves better F1-score than conventional RNN. It is observed that BiLSTM
and BiGRU obtain better results than the unidirectional models, indicating the non-causal model which
takes into account the future word information yields much better results. The BiGRU achieves the best
F1-score (95.34%) among single RNN based models. Noted that in speech recognition, bidirectional
models usually introduce unpleasant decoding latency, whereas in slot filling, the problem does not
matter too much.
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Table 2. Slot filling results on two real-word datasets using RNN and its variants.

Model [W, E, H, Lr] SNIPS (F1) ATIS (F1)

RNN [3, 100, 50, 0.1] 87.42 94.50

LSTM [3, 100, 100, 0.5] 89.79 94.87

GRU [3, 100, 100, 0.5] 90.23 95.03

BiRNN [7, 100, 100, 0.5] 89.36 94.94

BiLSTM [3, 100, 100, 0.5] 91.71 95.32

BiGRU [3, 50, 100, 0.6] 91.80 95.34

W = Splicing windows size; E = Word embedding vector dimension; H = Hidden layer size; Lr = Initial
learning rate.

4.4.2. Results From Single Layer TDNN

Tables 3–5 present the results obtained by single layer TDNN with different time delay steps
D, splicing window size W and the number of filters K. Results show that long splicing window
size is beneficial to semantic label prediction. As shown in Table 3, when 32 filters are used, the best
performance can be obtained by using a splicing window size W = 5 and delay offset D = [−4,+4].
When we increase the number of filters to 64, a better F1-score can be obtained by using W = 7 and
D = [−3,+3]. When we separately increase the splicing context size W and the delay offset D to
a optimal, the performance of the one-layer TDNN model improves. As for the number of filters
K, increasing the number of filters to 128 show similar results to those from using 64 filters. In the
subsequent set of experiments, we only evaluate TDNN with K = 64 and K = 128. It is also shown
that results of TDNN with a single layer are comparable to those of RNN models, while the parameters
of the former are much less.

Table 3. Slot filling results on ATIS dataset using single-layer TDNN with 32 filters.

Delay Offsets
W = 3 5 7 9

P R F1 P R F1 P R F1 P R F1

[−1,+1] 91.19 92.32 91.75 92.50 93.09 92.80 93.29 93.62 93.46 93.94 94.57 94.26

[−2,+2] 92.32 93.23 92.77 93.34 93.87 93.60 93.96 94.40 94.18 93.79 94.71 94.25

[−3,+3] 93.42 94.08 93.75 93.93 94.40 94.16 94.28 94.78 94.53 94.38 94.64 94.51

[−4,+4] 93.67 94.43 94.05 94.23 95.03 94.63 94.18 94.71 94.45 94.18 94.64 94.41

Table 4. Slot filling results on ATIS dataset using single-layer TDNN with 64 filters.

Delay Offsets
W = 3 5 7 9

P R F1 P R F1 P R F1 P R F1

[−1,+1] 91.42 92.45 91.88 92.68 93.34 93.01 93.28 93.97 93.63 93.98 94.68 94.33

[−2,+2] 92.39 93.34 92.86 93.71 94.08 93.90 94.09 94.36 94.23 94.05 94.75 94.40

[−3,+3] 93.51 94.01 93.76 93.94 94.61 94.27 94.69 94.99 94.84 94.34 95.10 94.72

[−4,+4] 94.28 94.71 94.50 94.62 94.78 94.70 94.60 95.03 94.81 94.49 94.89 94.69
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Table 5. Slot filling results on ATIS dataset using single-layer TDNN with 128 filters.

Delay Offsets
W = 3 5 7 9

P R F1 P R F1 P R F1 P R F1

[−1,+1] 91.18 92.60 91.89 92.71 93.69 93.20 93.35 94.04 93.70 94.54 94.64 94.59

[−2,+2] 92.39 93.23 92.81 93.57 93.94 93.76 94.46 94.36 94.41 94.76 94.89 94.82

[−3,+3] 93.39 93.58 93.49 94.20 94.54 94.37 94.82 94.85 94.84 94.45 94.82 94.64

[−4,+4] 94.50 94.43 94.46 94.25 94.75 94.50 94.78 94.68 94.73 94.58 94.71 94.65

4.4.3. Results From Multi-layer TDNN

Figure 5 presents slot filling results using multi-layer TDNN. The delay offset D, the number
of filters K and the splicing window size W are set to values that have yielded the best results in
the previous experiments. We increase the number of TDNN layers from 1 to 5 to check how the
number of TDNN layers influence the results. As shown in Figure 5, network only one layer TDNN
shows an F1-score of 94.84%. As we increase the number of layers from 1 to 5, the F1-score dropped
monotonically to 93.82%. It can be seen to capture longer dependencies by simply increasing the
number of TDNN layers fails to improve the performance. Model with deep network structure is
difficult to train and may lead to gradient problem as well.

Figure 5. Slot filling results on ATIS dataset using multi-layer TDNN.

4.4.4. Results from ResTDNN

As shown from Figure 2, ResTDNN consists of sequentially stacked residual blocks. Each residual
block contains two TDNN layers, two ReLU and normalization operations, and a shortcut that enforces
the network to learn the residual content in each block. As aforementioned, by using residual structure,
we can stack more TDNN layers and hence the performance of the models might be improved.
We evaluate four network configurations, namely, ResTDNN-A to ResTDNN-D, with different numbers
of TDNN layers and residual connections. The network configurations and the slot filling results are
presented in Table 6. K`

d means the `-th TDNN layer of the ResTDNN has a delay offset [−d,+d] and
the number of filters K. For example, 641

4 denotes the first TDNN layer of ResTDNN has 64 filters and
the delay offset is [−4,+4]. In Table 6, A(`1,`2) denotes the skip connection between the `1-th and the
`2-th TDNN layer. For example, A(1,3) represents the summation of the outputs of the first TDNN
layer and the third TDNN layer. The ResTDNN outperforms the multi-layer TDNN, indicating the
effectiveness of the residual structure. The structure can strengthen feature propagation, alleviate the
vanishing-gradient problem, and fuse the low-layer feature with the high-layer feature. The context
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information of feature which expands the wide as ResTDNN goes deep. As shown from experimental
results, increasing the number of ResTDNN layers helps to improve the performance.

Table 6. Results on two real-word datasets using residual TDNN.

Models {[K`
d], A(`1,`2)} SNIPS (F1) ATIS (F1)

ResTDNN-A {[641
4, 1282

4, 643
3], A(1,3)} 91.40 95.02

ResTDNN-B +{[1284
2, 645

4], A(3,5)} 92.84 95.49

ResTDNN-C +{[1286
3, 647

4], A(5,7)} 92.23 95.51

ResTDNN-D +{[1288
3, 649

4], A(7,9)} 92.14 95.17

ResTDNN-B to ResTDNN-D are derived from ResTDNN-A by incrementally adding an additional residual
block. The additional block configurations are denoted as a ’+’ for ResTDNN-B to ResTDNN-D.

As shown in Table 6, the performance of ResTDNN-A with one residual block is 95.02% on ATIS
dataset. When we increase the number of residual blocks, the performance of ResTDNN-B reaches
95.49% using two residual blocks and the best F1-score 95.51% is achieved using three residual blocks,
which outperform the best one of RNNs. The F1-score of ResTDNN drops to 95.17% when we using
the 9-layer TDNN. The performance of ResTDNN-B reachs 92.84% on the SNIPS NLU dataset.

4.4.5. Combining ResTDNN with RNN and Its Variants

In the previous sections we have conducted comparative experiments using RNN and its variants.
Here, we conduct experiments to show the effect of the performance of ResTDNN followed by RNN
and its variants (LSTM, GRU, and bidirectional forms). The network configurations and corresponding
results are presented in Table 7. The ResTDNN used here contains multi-layer TDNN with residual
structure, which fuses features from different TDNN layers.

Table 7. Results on combination ResTDNN with RNN and its variants of two real-word datasets.

Models [W, E, H, Lr] SNIPS (F1) ATIS (F1)

ResTDNN-RNN [3, 50, 100, 0.5] 90.49 95.11

ResTDNN-LSTM [3, 100, 100, 0.5] 91.71 95.18

ResTDNN-GRU [3, 50, 100, 0.5] 91.47 95.23

ResTDNN-BiRNN [3, 100, 100, 0.45] 91.27 95.37

ResTDNN-BiLSTM [3, 100, 100, 0.5] 92.15 95.62

ResTDNN-BiGRU [3, 50, 100, 0.65] 92.17 95.55

By comparing the results presented in Tables 2 and 7, we can see that the combination of ResTDNN
with RNNs (LSTM, GRU, and bidirectional variants) effectively improves the slot filling performance
than those of original RNN and its variants. It is seen ResTDNN-BiLSTM achieved an result of 95.62%
in terms of F1-score on ATIS dataset, an improvement of 0.3% compared with BiLSTM only. As can be
seen from Tables 2 and 7, the performance of RNN and its variants also get significantly improvements
on SNIPS dataset after combining with ResTDNN. These results indicate that the ResTDNN, as a
feature extraction model, gets better representation of the input words. By comparing the result of
ResTDNN-BiLSTM (95.62%) with that of ResTDNN (95.51%), the BiLSTM shows better capability of
capturing the temporal change of the inputs.
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4.4.6. Stacked TDNN with Skip Concatenation

Figure 6 shows the diagram block of the SC-TDNN. As shown, SC-TDNN consists of sequentially
skip concatenation of the outputs of different TDNN blocks. The structure of SC-TDNN is similar to
ResTDNN and they have the same number of layers, despite that the features from different layers
are spliced instead of being summed together in ResTDNN. The number of filters and kernel size in
each layer of SC-TDNN are also identical to those in the corresponding layers of ResTDNN. Table 8
presents the network structure and the results. Four network configurations denoted as SC-TDNN-A
to SC-TDNN-D are evaluated, each with different number of layers and skip concatenation operation.
It is shown that SC-TDNN outperforms the multi-layer TDNN and also obtains a better F1 result than
pure ResTDNN, indicating the effectiveness of feature reuse.

As shown in Table 8, the performance of SC-TDNN-A with one skipped concatenation is 95.10%.
By increasing the number of layers and the number of skip concatenations, SC-TDNN-C reaches best
F1-score of 95.73% on ATIS dataset. SC-TDNN-C obtains 92.94% F1-score on SNIPS NLU dataset. It is
also observed that SC-TDNN gets better result over ResTDNN only. When we further adding TDNN
blocks from SC-TDNN-C, the performance of the model decreases afterwards.

Figure 6. Structure of SC-TDNN-C.

Table 8. Results on two real-word datasets using SC-TDNN.

Models {[K`
d], S(`1,`2)} SNIPS (F1) ATIS (F1)

SC-TDNN-A {[641
4, 1282

4], S(1,2)} 91.35 95.10

SC-TDNN-B {[641
4, 1282

4, 643
3], S(1,3)} 92.27 95.52

SC-TDNN-C +{[1284
2, 645

4], S(3,5)} 92.94 95.73

SC-TDNN-D +{[1286
3, 647

4], S(5,7)} 92.47 95.27

S represents operation that splicing together the activated normalization output of `1-th TDNN layer and
output of `2-th TDNN layer. SC-TDNN-C and SC-TDNN-D are derived from SC-TDNN-B by incrementally
adding an skip concatenation block. The block configurations are denoted as a ’+’ for SC-TDNN-C to
SC-TDNN-D. S(`1 ,`2) denotes the skip concatenation between the `1-th and the `2-th TDNN layer.
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4.4.7. Combining SC-TDNN with RNNs

Similar to ResTDNN-RNN, we also experiment with the combination of SC-TDNN with RNN
(including its variants), namely, SC-TDNN-RNN. The structure of SC-TDNN-RNN is shown in
Figure 7. We use SC-TDNN as the feature extractor for RNN-based sequence classifier. The network
configurations and results are presented in Table 9. The SC-TDNN used here is multi-layer TDNN
with skip concatenation, which reuse feature from different TDNN layer.

By comparing the results in Table 9 of SC-TDNN and the results in Table 2 obtained by single RNN
(or its variants), the slot filling performance has been effectively improved by combining the SC-TDNN
front-end with RNN (or its variants) back-end. It is also observed that SC-TDNN-BiGRU achieves a
result of 95.66% in terms of F1-score, an absolute improvement of 0.32% compared with BiGRU only.
SC-TDNN-BiLSTM obtains a 92.91% F1-score on the SNIPS NLU dataset, and gets a 1.2% improvement
than the performance of model which use BiLSTM only. It shows that the difference of performance
between the unidirectional and bidirectional structures of the model become marginal after the
combination, i.e., the unidirectional RNN and its variants get similar results with the bidirectional
ones when combined with SC-TDNN. These indicate that SC-TDNN, as a feature extraction model,
is underlying a uncausal model for learning representations of the input word sequence.

Figure 7. Structure of SC-TDNN-RNNs.

Table 9. ATIS and SNIPS results on combination of SC-TDNN and RNNs.

Model [W, E, H, Lr] SNIPS (F1) ATIS (F1)

SC-TDNN-RNN [3, 100, 100, 0.5] 92.07 95.37

SC-TDNN-LSTM [3, 100, 100, 0.5] 92.81 95.60

SC-TDNN-GRU [3, 100, 100, 0.5] 92.50 95.54

SC-TDNN-BiRNN [3, 100, 100, 0.5] 92.06 95.38

SC-TDNN-BiLSTM [3, 100, 100, 0.5] 92.91 95.59

SC-TDNN-BiGRU [3, 100, 100, 0.5] 92.80 95.66
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5. Comparisons and Conclusions

5.1. Comparisons of Previous Results

Finaly, in Table 10, we present several previous slot filling results on ATIS and SNIPS datasets
reported in literature including our best results.The previous best result was achieved by using
mining polysemous triplets with Recurrent Neural Networks (MPT-RNN). According to Table 10,
our SC-TDNN-C outperforms the previous best models without any additional features or data sources.
Finally, we combined our proposed models with RNNs to observe the performance gains of models
to the RNNs. The experimental results show that the combination futher improves the performance
of RNNs. Experiment results on ATIS and SNIPS datasets for slot filling task show that the semantic
label of target word is largely depended on its adjacent words. Using ResTDNN and SC-TDNN can
fuse the feature representation of target word and its adjacent words, thus proposed models get better
performance than the RNN model, which directly inputs the representation of target word.

Table 10. ATIS benchmark results reported in literature.

Methods SNIPS (F1) ATIS (F1)

CNN [11] - 94.35

LSTM [13] - 94.85

Attention BiRNN [35] 87.80 94.20

Joint Seq. [34] 87.30 94.20

Slot-Gated Full Atten. [36] 88.80 94.80

RNN-EM [10] - 95.25

CAPSULE-NLU[37] 91.80 95.20

MPT-RNN [38] 88.01 95.66

ResTDNN-B 92.84 95.49

ResTDNN-BiLSTM 92.15 95.62

SC-TDNN-C 92.94 95.73

SC-TDNN-BiGRU 92.80 95.66

5.2. Conclusions

We have investigated the use of TDNN in the slot filling task in spoken language understanding,
with particular attention to modeling the contexts of input words. Based on the fact that directly
stacking several TDNN layers does not lead to better results, we proposed the residual TDNN
(ResTDNN) and skip concatenation TDNN (SC-TDNN), which are inspired by the ResCNNs and
DenseNet respectively. The ResTDNN used skip connections between different layers and the
SC-TDNN concatenated the outputs of different layers. The proposed network structures can either
fuse the features from different TDNN layers or allow feature reuse through the networks, and hence
consequently learned more complex contextual information. Slot filling experimental results showed
the effectiveness of the proposed method. We further improved the network by combining the TDNN
networks with followed RNNs and observed consistent performance gain over single RNN.
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