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Abstract: In this paper, we introduce the Euclidean, Hamming, and generalized distance measures
for the generalized intuitionistic fuzzy soft sets (GIFSSs). We discuss the properties of the presented
distance measures. The numerical example of decision making and pattern recognition is discussed
based on the proposed distance measures. We develop a remoteness index-based VlseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) method for GIFSSs. The displaced and fixed ideals
intuitionistic fuzzy values (IFVs) are defined. The novel concept of displaced and fixed remoteness
indexes for IFVs are discussed. We discuss the methods to obtain the precise and intuitionistic fuzzy
(IF) weights. The several displaced and fixed ranking indexes are defined based on the precise and IF
weights. The remoteness indexes based VIKOR methods are proposed in the form of four algorithms.
In the end, the selection of renewable energy sources problem is solved by using the four remoteness
index-based VIKOR methods.

Keywords: VIKOR method; generalized intuitionistic fuzzy soft set; distance measures; multi-attribute
decision making; pattern recognition; renewable energy source

1. Introduction

In the fuzzy sets theory, the membership function is used to represents the information [1].
Real-life uncertainties handle effectively by fuzzy set theory. In Reference [2], Molodtsov defines the
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soft set which is a new logical instrument for dealing with uncertainties. Molodtsov soft set theory
deals with uncertainties effectively by considering the parametric point of view, that is, each element
is judged by some criteria of attributes. Atanassove defined the intuitionistic fuzzy set (IFS), which
is the generalization of the fuzzy set theory [3]. The information in IFS is represented in the form of
membership (favor) and non-membership functions (against). The membership and non-membership
functions assign the values from the unit interval [0, 1] with the condition that their sum is less than
or equal to one, i.e., if we represent the membership and non-membership functions by ξ and ν,
respectively, than 0 ≤ ξ + ν ≤ 1. This condition specifies a range of ξ and ν. The range of membership
and non-membership functions increases in Yager’s Pythagorean fuzzy sets [4], i.e., the experts make their
judgments more freely in Pythagorean fuzzy environment. The condition 0 ≤ ξ2 + ν2 ≤ 1 specifies the
range of membership and non-membership functions. Further, improvement continues by defining the
more general environment, the q-rung orthopair fuzzy sets by Yager [5]. The condition 0 ≤ ξq + νq ≤ 1,
where q > 1 is any real number, specifies the range of membership and non-membership functions.

Many researchers work on the hybridization of soft sets with fuzzy sets and extensions of fuzzy
sets. In References [6,7], the fuzzy soft set, and intuitionistic fuzzy soft set were defined, respectively.
The vague soft set [8], the interval-valued fuzzy soft set [9], the trapezoidal fuzzy soft set [10], the soft
rough set [11], the neutrosophic soft set [12], and the q-rung orthopair fuzzy soft sets [13] were defined.
Feng et al. [14] clarified and redefined the concept of Agarwal model of GIFSS [15] and apply to
decision-making problems. For more about decision making, we refer to [16–21].

Keeping in mind the importance of distance measure and application in data mining, medical
diagnosis, decision making, and pattern recognition many authors work on this topic. A wide theory
of distance measures of fuzzy sets and intuitionistic fuzzy sets is presented in the literature [22–24].

Review of VIKOR Method

For determining the compromise solution and ameliorate the standard of the decision-making
process, the VlseKriterijumska Optimizacija I Kompromisno Resenje (i.e., multicriteria optimization
and compromise solution) (VIKOR) method is used [25–27]. The VIKOR method balancing the
majority’s maximum group utility and opponent’s individual regret. Therefore, the VIKOR method
has been widely used in different areas [28–30].

A literature review paper about the VIKOR method by Gul et al. [31], which described the
application of the VIKOR method in different areas until 2016. Many authors continuing to use VIKOR
methodology for decision making and it’s applications in different areas. Hafezalkotob et al. [32]
discussed the machine selection problem by using target-based VIKOR in an interval environment.
Wang et al. [33] used a projection-based VIKOR method for risk evaluation of construction projects
using picture fuzzy set (PFS). Zhao et al. [34] used extended VIKOR method for supplier selection
using IFSs and combination weights. Li et al. [35] proposed a decision making procedure based on the
VIKOR method and dynamic IFSs with time preferences and discussed its applications in innovation
alliance partner selection. The potential evaluation of emerging technology commercialization was
discussed by Wang et al. [36] using the VIKOR method in triangular fuzzy neutrosophic numbers.
An application of multi-criteria decision-making (MCDM) process in health care service was discussed
by Chen using the novel VIKOR method [37]. Meksavang et al. [38] explored the VIKOR method for
sustainable supplier selection using PFS and discuss its application in the beef industry.

The VIKOR method based on the fuzzy entropy for linguistic D numbers was extended by
Liu et al. [39]. Zhou [40] discussed the extended VIKOR method for the health-care industry. Li et al.
explained the VIKOR method for linguistic intuitionistic fuzzy numbers based on entropy and
operational laws [41]. The decision-making problem was discussed by Wei [42], using the 2-tuple
linguistic neutrosophic VIKOR method. Kaya et al. [43] defined the VIKOR method for renewable
energy planning. The failure risk assessment problem was discussed by Mohsen et al. [44] with a case
study of the geothermal power plant.
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The remoteness index-based VIKOR method for Pythagorean fuzzy sets was proposed by Chen.
Chen applies the proposed method to evaluation of service quality among domestic airlines, investment
in Internet stocks, practical applications in the criteria satisfaction problem, evaluation of Internet stock
performance, and the investment in R and D projects [45].

Feng et al. [14] redefined and clarified the concept of GIFSS. This higher model of IFS is important
in decision making because it further allows the experts to check or evaluate the process of decision
making or evaluation of alternatives against criterion and express their preferences in the form of an
extra IFS called primary IFS. Feng redefined the operators and operations of GIFSS. He applies it to
the university appointment problem which is the multi-attribute decision making (MADM) problems.
Khan et al. [46] used the discernibility matrix approach for GIFSS and apply it to the decision-making
problems. The discernibility matrix approach is important when you have to start the process with
predefined conditions on membership functions, i.e., threshold values.

The motivation of this research is to develop another technique to solve MADM problems using
GIFSS by using the VIKOR method. The VIKOR method is important because it used to determine the
compromise solution and ameliorate the standard of the decision-making process. The VIKOR method
is balancing the majority’s maximum group utility and opponent’s minimum individual regret. In the
VIKOR method, the best and worst solutions serve as the point of reference and the distance between
the best solution and evaluative ratings don’t have an upper bound. The novel concept of remoteness
index is important because it provides the upper bounds by dividing the distance between the best
solution and evaluative ratings by the distance between the best solution and the worst solution.
The new ranking indexes based on the novel concept of remoteness indexes are discussed to provide
the more effective compromise rankings. Therefore, a remoteness index-based VIKOR method for
GIFSS is developed and apply it to the selection of renewable energy source problem.

This paper aims to discuss the selection of renewable energy sources for under developing
countries using the remoteness index-based VIKOR method for GIFSS.

Major contributions of our work are:

1. The Hamming distance measures are defined for GIFSS.
2. The Euclidean distance measures are defined for GIFSS.
3. The generalized distance measures are defined for GIFSS.
4. The pattern recognition and decision-making problem is discussed by using the proposed distance

measures for GIFSS.
5. The displaced and fixed ideal are defined for intuitionistic fuzzy values (IFVs) which are helpful

to move towards ideal alternative and move away from an undesired alternative.
6. The displaced and fixed remoteness indexes are defined for IFVs.
7. Two types of weights called precise weights and intuitionistic fuzzy (IF) weights are defined and

discuss their methods of generation.
8. Four groups of ranking indexes are defined based on displaced and fixed ideals and

remoteness indexes.
9. Four algorithms are proposed which representing the VIKOR procedures with four

different environments.
10. The problem of selection of renewable energy sources is discussed with the proposed remoteness

based VIKOR method.

Rest of the paper is designed as follows: Section 2 contains the basic definitions. In Section 3,
the Euclidean, Hamming, and the generalized distance measures for GIFSS are defined and their
application in pattern recognition problem and decision making are discussed. The displaced and
fixed ideal, the displaced and fixed remoteness indexes, precise and IF weights, displaced and fixed
ranking indexes, and VIKOR procedures are defined in Section 3. An application of the proposed
method in renewable energy source selection is discussed in Section 5. The comparison analysis and
conclusion are discussed in Sections 6 and 7.
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2. Preliminaries

The definitions of IFS, soft set, IFSs, and GIFSS are written in this section.

Definition 1 ([3]). An IFS R on a universal set Ŷ is defined as

R = {(ξR(y), νR(y)) | y ∈ Ŷ},

where ξR and νR are the membership and non-membership functions from the universal set Ŷ to the unit interval
[0, 1], respectively. For IFSs, the sum of the membership and non-membership functions is less than or equal
to one, i.e., ξR(y) + νR(y) ≤ 1. The quantity πR(y) = 1− (ξR(y) + νR(y)) is called the hesitancy degree of
the element y ∈ Ŷ. For any y ∈ Ŷ, the value (ξR(y), νR(y)) is called is the intuitionistic fuzzy value (IFV) or
intuitionistic fuzzy number (IFN).

Definition 2 ([3]). For two IFSs R and S in Ŷ, the following notions are defined as follows:

1. R ∩ S = {(y, min{ξR(y), ξS(y)}, max{νR(y), νS(y)}) | y ∈ Ŷ}
2. R ∪ S = {(y, max{ξR(y), ξS(y)}, min{νR(y), νS(y)}) | y ∈ Ŷ}
3. R ⊂ S ⇔ ξR(y) ≤ ξS(y) and νR(y) ≥ νS(y), ∀ y ∈ Ŷ
4. Rc = {(y, νR(y), ξR(y)) | y ∈ Ŷ}.

Molodtsov soft set theory deals uncertainty effectively by considering parametric point of view [2],
that is, each element is judged by some criteria of attributes (characteristics).

Definition 3 ([2]). Let universal space and parametric space are represented by Ŷ and C, respectively. Let Â ⊂ C
be a parametric set and power set of Ŷ is represented by P(Ŷ). A pair (F̂, Â) is called a soft set over Ŷ, where F̂
is a set valued mapping given by F̂ : Â→ P(Ŷ).

In [7], Maji defines the IFSs as follows.

Definition 4 ([7]). Let universal space and parametric space are represented by Ŷ and C, respectively.
Let Â ⊂ C be a parametric set and IF(Ŷ) the set of all IFSs of Ŷ. A pair (F̂, Â) is called an IFSs over Ŷ,
where F̂ is a set valued mapping given by F̂ : Â→ IF(Ŷ).

Wang and He [47], as well as, Deschrijver and Kerre [48] showed that IFSs can be viewed as
L-fuzzy sets with respect to complete lattice (K∗,�K∗), where K∗ = {(r1, r2) ∈ [0, 1]2 | r1 + r2 ≤ 1},
and the corresponding partial order �K∗ is defined as

(r1, r2) �K∗ (s1, s2)⇔ (r1 ≤ s1) ∧ (r2 ≥ s2), ∀(r1, r2), (s1, s2) ∈ K∗

Any ordered pair (r1, r2) ∈ K∗ is called an IFV in [49–51]. According to this point of view, the IFS

R = {(ξR(y), νR(y)) | y ∈ Ŷ},

can be identified with the L-fuzzy set R : Ŷ → K∗ such that for all y ∈ Ŷ

R(y) = (ξR(y), νR(y)).

The elements (1, 0) and (0, 1) are considered as the top and bottom or largest and smallest IFVs,
respectively, in (K∗,�K∗).

The idea of GIFSS is constructive in decision-making since it considers how to take advantage
of an extra intuitionistic fuzzy input from the director to decrease any possible distortion in the data
provided by evaluating experts.
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Definition 5 ([14]). Let universal space and parametric space are represented by Ŷ and C, respectively.
Let Â ⊂ C be a parametric subset. We call (F̂, Â, ρ̂) a GIFSS, where (F̂, Â) is an IFSs over Ŷ and ρ̂ : Â→ K∗

is an IFS in Â.
Where (F̂, Â) is called basic intuitionistic fuzzy soft set (BIFSS) and ρ̂ is called the parametric intuitionistic

fuzzy set (PIFS).

Example 1. Suppose Ŷ = {y1, y2, y3, y4} be a set of universe and C = {e1, e2, e3, e4, e5} represents the
parametric space. Let Â = {e1, e2, e3} ⊂ C be a parametric set and F̂ : Â→ IF(Ŷ) be a mapping such that

F̂(e1) = {(0.7, 0.2)/y1, (0.9, 0.0)/y2, (0.6, 0.2)/y3, (0.7, 0.1)/y4},

F̂(e2) = {(0.5, 0.4)/y1, (0.7, 0.2)/y2, (0.4, 0.5)/y3, (0.6, 0.3)/y4}

and
F̂(e3) = {(0.2, 0.7)/y1, (0.4, 0.6)/y2, (0.5, 0.3)/y3, (0.7, 0.2)/y4}.

This constitute the BIFSS (F̂, Â), where each F̂(ej) represents an IFS. In addition, suppose that the PIFS ρ̂

is given by
ρ̂ = {(0.3, 0.5)/e1, (0.5, 0.3)/e2, (0.3, 0.4)/e3}.

All the above information in BIFSS and PIFS can be summarized in GIFSS (F̂, Â, ρ̂), whose tabular
representation is shown in Table 1.

Table 1. A GIFSS (F̂, Â, ρ̂).

Ŷ e1 e2 e3

y1 (0.7, 0.2) (0.5, 0.4) (0.2, 0.7)
y2 (0.9, 0.0) (0.7, 0.2) (0.4, 0.6)
y3 (0.6, 0.2) (0.4, 0.5) (0.5, 0.3)
y4 (0.7, 0.1) (0.6, 0.3) (0.7, 0.2)
ρ̂ (0.3, 0.5) (0.5, 0.3) (0.3, 0.4)

Definition 6 ([14]). The expectation score function δ for an IFV a = (ξa, νa) is defined as follows:

δ(a) =
1 + ξa − νa

2
∈ [0, 1]. (1)

3. Distance and Similarity Measures

This section contains the Hamming, Euclidean and generalized distance measures for GIFSSs.
Some properties of distance measures are discussed. A numerical example of decision making and
pattern recognition is discussed in this section.

Definition 7. A distance measure between two GIFSSs Γ1 and Γ2 is a mapping D : GIFSS×GIFSS→ [0, 1],
which satisfies the following properties:

(D1) 0 ≤ D(Γ1, Γ2) ≤ 1
(D2) D(Γ1, Γ2) = 0⇐⇒ Γ1 = Γ2

(D3) D(Γ1, Γ2) = D(Γ2, Γ1)

(D4) If Γ1 ⊆ Γ2 ⊆ Γ3 then D(Γ1, Γ3) ≥ D(Γ1, Γ2) and D(Γ1, Γ3) ≥ D(Γ2, Γ3).

Definition 8. A similarity measure between two GIFSSs Γ1 and Γ2 is a mapping D : GIFSS×GIFSS→ [0, 1],
which satisfies the following properties:

(S1) 0 ≤ S(Γ1, Γ2) ≤ 1
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(S2) S(Γ1, Γ2) = 1⇐⇒ Γ1 = Γ2

(S3) S(Γ1, Γ2) = S(Γ2, Γ1)

(S4) If Γ1 ⊆ Γ2 ⊆ Γ3 then S(Γ1, Γ3) ≤ S(Γ1, Γ2) and S(Γ1, Γ3) ≤ S(Γ2, Γ3).

Definition 9. For two GIFSSs Γ1 = (F̂, Â, ρ̂) and Γ2 = (Ĝ, B̂, σ̂) in Ŷ, the Hamming distance measures
between Γ1 and Γ2 are defined as follows:

D?
h(Γ1, Γ2) =

1
4mn

n

∑
j=1

m

∑
i=1

[ (∣∣ξ F̂(ej)
(yi)− ξĜ(ej)

(yi)
∣∣+ ∣∣νF̂(ej)

(yi)− νĜ(ej)
(yi)

∣∣)

+
(∣∣ξ ρ̂(ej)

− ξσ̂(ej)

∣∣+ ∣∣νρ̂(ej)
− νσ̂(ej)

∣∣) ] (2)

D◦h(Γ1, Γ2) =
1

4mn

n

∑
j=1

m

∑
i=1

[ (∣∣ξ F̂(ej)
(yi)− ξĜ(ej)

(yi)
∣∣+ ∣∣νF̂(ej)

(yi)− νĜ(ej)
(yi)

∣∣)
+
(∣∣ξ ρ̂(ej)

− ξσ̂(ej)

∣∣+ ∣∣νρ̂(ej)
− νσ̂(ej)

∣∣)
+
(∣∣h̄F̂(ej)

(yi)− h̄Ĝ(ej)
(yi)

∣∣+ ∣∣h̄ρ̂(ej)
− h̄σ̂(ej)

∣∣) ] (3)

Definition 10. Let Γ1 = (F̂, Â, ρ̂) and Γ2 = (Ĝ, B̂, σ̂) be two GIFSSs in Ŷ, the Euclidean distance measures
between Γ1 and Γ2 are defined as follows:

D?
e (Γ1, Γ2) =

(
1

4mn

n

∑
j=1

m

∑
i=1

[ (
ξ F̂(ej)

(yi)− ξĜ(ej)
(yi)

)2
+
(

νF̂(ej)
(yi)− νĜ(ej)

(yi)
)2

+
(

ξ ρ̂(ej)
− ξσ̂(ej)

)2
+
(

νρ̂(ej)
− νσ̂(ej)

)2
]) 1

2

(4)

D◦e (Γ1, Γ2) =

(
1

4mn

n

∑
j=1

m

∑
i=1

[ (
ξ F̂(ej)

(yi)− ξĜ(ej)
(yi)

)2
+
(

νF̂(ej)
(yi)− νĜ(ej)

(yi)
)2

+
(

ξ ρ̂(ej)
− ξσ̂(ej)

)2
+
(

νρ̂(ej)
− νσ̂(ej)

)2

+
(

h̄F̂(ej)
(yi)− h̄Ĝ(ej)

(yi)
)2

+
(

h̄ρ̂(ej)
− h̄σ̂(ej)

)2
]) 1

2

. (5)

Definition 11. For two GIFSSs Γ1 = (F̂, Â, ρ̂) and Γ2 = (Ĝ, B̂, σ̂) in Ŷ, the generalized distance measures
between Γ1 and Γ2 are defined as follows:

D?
p(Γ1, Γ2) =

(
1

4mn

n

∑
j=1

m

∑
i=1

[ (∣∣ξ F̂(ej)
(yi)− ξĜ(ej)

(yi)
∣∣p + ∣∣νF̂(ej)

(yi)− νĜ(ej)
(yi)

∣∣p)

+
(∣∣ξ ρ̂(ej)

− ξσ̂(ej)

∣∣p + ∣∣νρ̂(ej)
− νσ̂(ej)

∣∣p) ]) 1
p

(6)

D◦p(Γ1, Γ2) =

(
1

4mn

n

∑
j=1

m

∑
i=1

[ (∣∣ξ F̂(ej)
(yi)− ξĜ(ej)

(yi)
∣∣p + ∣∣νF̂(ej)

(yi)− νĜ(ej)
(yi)

∣∣p)
+
(∣∣ξ ρ̂(ej)

− ξσ̂(ej)

∣∣p + ∣∣νρ̂(ej)
− νσ̂(ej)

∣∣p)
+
(∣∣h̄F̂(ej)

(yi)− h̄Ĝ(ej)
(yi)

∣∣p + ∣∣h̄ρ̂(ej)
− h̄σ̂(ej)

∣∣p) ]) 1
p

(7)

Remark 1. The generalized distance measures D?
p and D◦p are reduced to Hamming distances D?

h and D◦h ,
respectively, for p = 1. Also, the Euclidean distances D?

e and D◦e are obtained from D?
p and D◦p, respectively,

for p = 2.

Theorem 1. The mappings in Equations (2)–(7) satisfies the axioms of distance measures (Definition 7).

Proof. The proof is straightforward from the [22,52,53].
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Theorem 2. The distance measures in Equations (2)–(7) between two GIFSSs Γ1 = (F̂, Â, ρ̂) and Γ2 =

(Ĝ, B̂, σ̂) holds the following properties:

(1) D(Γ1, Γ2) = D(Γ1 ∪ Γ2, Γ1 ∩ Γ2), where D = D?
h , D?

e , D?
p

(2) D(Γ1, Γ2) = D(Γc
1, Γc

2), where D = D?
h , D◦h , D?

e , D◦e , D?
p, D◦p

Proof. (1) The distance between two GIFSSs Γ1 = (F̂, Â, ρ̂) and Γ2 = (Ĝ, B̂, σ̂) can be written
as follows:

D(Γ1, Γ2) = D
(
(ξ F̂(ej)

, νF̂(ej)
, ξρ̂(ej)

, νρ̂(ej)
), (ξĜ(ej)

, νĜ(ej)
, ξσ̂(ej)

, νσ̂(ej)
)
)

(8)

From Definition 2, we have

Γ1 ∪ Γ2 =
(

max(ξ F̂(ej)
, ξĜ(ej)

), min(νF̂(ej)
, νĜ(ej)

), max(ξρ̂(ej)
, ξσ̂(ej)

), min(νρ̂(ej)
, νσ̂(ej)

)
)

(9)

Γ1 ∩ Γ2 =
(

min(ξ F̂(ej)
, ξĜ(ej)

), max(νF̂(ej)
, νĜ(ej)

), min(ξ ρ̂(ej)
, ξσ̂(ej)

), max(νρ̂(ej)
, νσ̂(ej)

)
)

(10)

From Equations (9) and (10), we have seen that it may possible that the positions of the memberships
and non-memberships degrees alters but the values remains unchanged. Therefore, the distance
between Γ1 ∪ Γ2 and Γ1 ∩ Γ2 is same as the distance between Γ1 and Γ2.

(2) The distance between two GIFSSs Γ1 = (F̂, Â, ρ̂) and Γ2 = (Ĝ, B̂, σ̂) can be written as follows:

D(Γ1, Γ2) = D
(
(ξ F̂(ej)

, νF̂(ej)
, ξρ̂(ej)

, νρ̂(ej)
), (ξĜ(ej)

, νĜ(ej)
, ξσ̂(ej)

, νσ̂(ej)
)
)

(11)

From Definition 2, we have

D(Γc
1, Γc

2) =
(
(νF̂(ej)

, ξ F̂(ej)
, νρ̂(ej)

, ξρ̂(ej)
), (νĜ(ej)

, ξĜ(ej)
, νσ̂(ej)

, ξĜ(ej)
)
)

(12)

From Equation (12), we have seen that the position of the membership and non-membership
degrees have changed but the corresponding between the membership and non-membership
degrees remain same, i.e., the membership degrees of Γc

1 relates with the membership degrees
of Γc

2 and the non-membership degrees of Γc
1 relates with the non-membership degrees of Γc

2.
Therefore, the distance between Γ1 and Γ2 is same as the distance between Γc

1 and Γc
2.

Example 2. Suppose two GIFSSs Γ1 = (F̂, Â, ρ̂) and Γ2 = (Ĝ, B̂, σ̂) be given in Table 2. We find the distance
between Γ1 and Γ2 by using above mentioned distance measures.

Table 2. Two generalized intuitionistic fuzzy soft sets (GIFSSs) Γ1 and Γ1.

Γ1 = (F̂, Â, ρ̂) Γ2 = (Ĝ, B̂, σ̂)

Ŷ e1 e2 e3 Ŷ e1 e2 e3

y1 (0.7, 0.2) (0.5, 0.4) (0.2, 0.7) y1 (0.3, 0.5) (0.7, 0.2) (0.5, 0.4)
y2 (0.9, 0.0) (0.7, 0.2) (0.4, 0.6) y2 (0.4, 0.5) (0.6, 0.3) (0.4, 0.5)
ρ̂ (0.3, 0.5) (0.5, 0.3) (0.3, 0.4) σ̂ (0.5, 0.2) (0.7, 0.3) (0.8, 0.1)
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D?
h(Γ1, Γ2) =

1
24

[
(|0.7− 0.3|+ |0.2− 0.5|+ |0.9− 0.4|+ |0.0− 0.5|+ |0.3− 0.5|+ |0.5− 0.2|)

+ (|0.5− 0.7|+ |0.4− 0.2|+ |0.7− 0.6|+ |0.2− 0.3|+ |0.5− 0.7|+ |0.3− 0.3|)

+ (|0.2− 0.5|+ |0.7− 0.4|+ |0.4− 0.4|+ |0.6− 0.5|+ |0.3− 0.8|+ |0.4− 0.1|)
]

= 0.1875

Similarly, we can find distance by remaining distance measures and the results are D◦h(Γ1, Γ2) = 0.216667,
D?

e (Γ1, Γ2) = 0.254133 and D◦e (Γ1, Γ2) = 0.262996. The distance by using generalized distances for p = 3
are D?

p(Γ1, Γ2) = 0.293857 and D◦p(Γ1, Γ2) = 0.296881.

Definition 12. For two GIFSSs Γ1 = (F̂, Â, ρ̂) and Γ2 = (Ĝ, B̂, σ̂) in Ŷ, the weighted Hamming distance
measures between Γ1 and Γ2 are defined as follows

D?ω
h (Γ1, Γ2) =

1
4mn

n

∑
j=1

m

∑
i=1

ωj

[ (∣∣ξ F̂(ej)
(yi)− ξĜ(ej)

(yi)
∣∣+ ∣∣νF̂(ej)

(yi)− νĜ(ej)
(yi)

∣∣)

+
(∣∣ξρ̂(ej)

− ξσ̂(ej)

∣∣+ ∣∣νρ̂(ej)
− νσ̂(ej)

∣∣) ] (13)

D◦ωh (Γ1, Γ2) =
1

4mn

n

∑
j=1

m

∑
i=1

ωj

[ (∣∣ξ F̂(ej)
(yi)− ξĜ(ej)

(yi)
∣∣+ ∣∣νF̂(ej)

(yi)− νĜ(ej)
(yi)

∣∣)
+
(∣∣ξ ρ̂(ej)

− ξσ̂(ej)

∣∣+ ∣∣νρ̂(ej)
− νσ̂(ej)

∣∣)
+
(∣∣h̄F̂(ej)

(yi)− h̄Ĝ(ej)
(yi)

∣∣+ ∣∣h̄ρ̂(ej)
− h̄σ̂(ej)

∣∣) ] (14)

where ω = {ω1, ω2, ..., ωn}T is the weight vector with 0 ≤ ωj ≤ 1 and ∑n
j=1 ωj = 1.

Definition 13. Let Γ1 = (F̂, Â, ρ̂) and Γ2 = (Ĝ, B̂, σ̂) be two GIFSSs in Ŷ, the weighted Euclidean distances
between Γ1 and Γ2 are defined as follows:

D?ω
e (Γ1, Γ2) =

(
1

4mn

n

∑
j=1

m

∑
i=1

ωj

[ (
ξ F̂(ej)

(yi)− ξĜ(ej)
(yi)

)2
+
(

νF̂(ej)
(yi)− νĜ(ej)

(yi)
)2

+
(

ξρ̂(ej)
− ξσ̂(ej)

)2
+
(

νρ̂(ej)
− νσ̂(ej)

)2
]) 1

2

(15)

D◦ωe (Γ1, Γ2) =

(
1

4mn

n

∑
j=1

m

∑
i=1

ωj

[ (
ξ F̂(ej)

(yi)− ξĜ(ej)
(yi)

)2
+
(

νF̂(ej)
(yi)− νĜ(ej)

(yi)
)2

+
(

ξρ̂(ej)
− ξσ̂(ej)

)2
+
(

νρ̂(ej)
− νσ̂(ej)

)2

+
(

h̄F̂(ej)
(yi)− h̄Ĝ(ej)

(yi)
)2

+
(

h̄ρ̂(ej)
− h̄σ̂(ej)

)2
]) 1

2

(16)

where ω = {ω1, ω2, ..., ωn}T is the weight vector with 0 ≤ ωj ≤ 1 and ∑n
j=1 ωj = 1.
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Definition 14. For two GIFSSs Γ1 = (F̂, Â, ρ̂) and Γ2 = (Ĝ, B̂, σ̂) in Ŷ, the weighted generalized distances
between Γ1 and Γ2 are defined as follows

D?ω
p (Γ1, Γ2) =

(
1

4mn

n

∑
j=1

m

∑
i=1

ωj

[ (∣∣ξ F̂(ej)
(yi)− ξĜ(ej)

(yi)
∣∣p + ∣∣νF̂(ej)

(yi)− νĜ(ej)
(yi)

∣∣p)

+
(∣∣ξρ̂(ej)

− ξσ̂(ej)

∣∣p + ∣∣νρ̂(ej)
− νσ̂(ej)

∣∣p) ]) 1
p

(17)

D◦ωp (Γ1, Γ2) =

(
1

4mn

n

∑
j=1

m

∑
i=1

ωj

[ (∣∣ξ F̂(ej)
(yi)− ξĜ(ej)

(yi)
∣∣p + ∣∣νF̂(ej)

(yi)− νĜ(ej)
(yi)

∣∣p)
+
(∣∣ξρ̂(ej)

− ξσ̂(ej)

∣∣p + ∣∣νρ̂(ej)
− νσ̂(ej)

∣∣p)
+
(∣∣h̄F̂(ej)

(yi)− h̄Ĝ(ej)
(yi)

∣∣p + ∣∣h̄ρ̂(ej)
− h̄σ̂(ej)

∣∣p) ]) 1
p

(18)

where ω = {ω1, ω2, ..., ωn}T is the weight vector with 0 ≤ ωj ≤ 1 and ∑n
j=1 ωj = 1.

Theorem 3. The similarity measures for two GIFSSs Γ1 and Γ2 are obtained from above distance measures by
S(Γ1, Γ2) = 1− D(Γ1, Γ2).

Proof. The proof is straightforward from the proof of Theorem 1.

Application in Decision Making and Pattern Recognition

In this subsection, the selection of a brilliant student for scholarship in a technological institute,
which is classical decision making and pattern recognition problem.

A technological institute have some scholarships for their students. The scholarships awarded to
the best students. To specify a criteria for selecting students. A committee is established, which decide
the criteria for evaluation of student performance in the institute. The director of the institute is the
head of the committee. For example, five students are shortlisted for further evaluation. The committee
set up the criteria for evaluation which consist of: e1, e2, e3 and e4 which stand for knowledge and
understanding, practical applications of their work, lab work and performance in the test, respectively.
The committee evaluate the students according to the predefined criteria and their evaluation are
saved in the form of BIFSS. The head of the committee judged the evaluation of the students by the
committee and carefully monitored the whole procedure of evaluation and give their preferences in the
form of PIFS which completes the formation of GIFSS. For comparison, an ideal student performance
according to the prescribed criteria is set by the committee and all the data is presented in the Table 3.

To select best candidate for scholarship, the distance measures is used. The distance between
the evaluated values and the ideal performance set by the committee is calculated by using above
proposed distance measures.

The candidate y2 has the minimum distance with the ideal candidate (for Hamming and Euclidean
distances). Therefore, y2 selected for scholarship. But for higher values of p, the y3 alternative chosen
for scholarship. It means, the values of the parameter p effect the order of alternatives. The calculations
are summarized in Table 4.
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Table 3. The GIFSS.

Ŷ e1 e2 e3 e4

y1 (0.7, 0.2) (0.5, 0.4) (0.2, 0.7) (0.8, 0.1)
y2 (0.9, 0.0) (0.7, 0.2) (0.4, 0.6) (0.6, 0.3)
y3 (0.5, 0.5) (0.8, 0.2) (0.5, 0.4) (0.5, 0.1)
y4 (0.4, 0.5) (0.6, 0.3) (0.4, 0.5) (0.7, 0.3)
ρ̂ (0.3, 0.5) (0.5, 0.3) (0.3, 0.4) (0.7, 0.1)

yideal (0.9, 0.1) (0.8, 0.1) (0.9, 0.0) (0.8, 0.2)
ρ̂ideal (0.9, 0.1) (0.8, 0.1) (0.9, 0.0) (0.8, 0.2)

Table 4. The Distance Between GIFSSs.

D(y1, yideal) D(y2, yideal) D(y3, yideal) D(y4, yideal) Ranking

D?
h 0.31875 0.275 0.3 0.325 y2 � y3 � y1 � y4

D◦h 0.375 0.3375 0.38125 0.375 y2 � y1 � y4 � y3

D?
e 0.388104 0.342783 0.34821 0.37081 y2 � y3 � y4 � y1

D◦e 0.4 0.357071 0.376663 0.382426 y2 � y3 � y4 � y1

D?
3 0.438278 0.390123 0.380583 0.403869 y3 � y2 � y4 � y1

D◦3 0.441187 0.393918 0.394053 0.407163 y2 � y3 � y4 � y1

D?
4 0.475581 0.423443 0.405125 0.42798 y3 � y2 � y4 � y1

D◦4 0.47632 0.424509 0.412467 0.428973 y3 � y2 � y4 � y1

D?
5 0.503959 0.447813 0.425125 0.446336 y3 � y4 � y2 � y1

D◦5 0.504151 0.448123 0.429449 0.446644 y3 � y4 � y2 � y1

D?
10 0.057991 0.051076 0.048988 0.049909 y3 � y4 � y2 � y1

D◦10 0.057991 0.051076 0.049028 0.049909 y3 � y4 � y2 � y1

4. The Remoteness Index-Based VIKOR Method for GIFSSs

In this section, we define the displaced positive ideal IFV (dpi-IFV) and the displaced negative
ideal IFV (dni-IFV) which help to define the concept of displaced remoteness index. The fixed
remoteness index is defined based on the fixed positive ideal IFV (fpi-IFV) and the fixed negative ideal
IFV (fni-IFV). The displaced and fixed group utility, individual regret and compromise indexes are
defined as a new multiple criteria ranking indexes. These indexes based on the two types of weights:
the precise importance and intuitionistic fuzzy (IF) importance weights. The extra parameter PIFS
in GIFSS, which given by the head or director of the decision-making committee, is used to define
the precise importance and IF importance weights. The four algorithms are proposed in this section.
Each algorithm shows the complete procedure of the remoteness based VIKOR method based on the
displaced and fixed terminologies.

4.1. The Displaced and Fixed Ideal IF Values

The dpi-IFV a+j and the dni-IFV a−j are the largest and smallest IFVs in the given data, respectively.
Similarly, the fixed positive ideal IFV (fpi-IFV) a+̂j and the fixed negative ideal IFV (fni-IFV) a−̂j are
are the largest and smallest IFVs on the given lattice, respectively. The dpi-IFV and dni-IFV provided
as the reference points because, in subjective decision making, it can easily form anchored judgments.
The dpi-IFV and dni-IFV are dependent on the given data and can be displaced easily by changing the
evaluation values. The dpi-IFV is the largest value and helps to meet our target alternative (favorite),
while dni-IFV is the smallest value and helps to avoid the unwanted alternative. The dpi-IFV and
dni-IFV for the IFV decision matrix are defined as follows.
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Definition 15. The displaced positive ideal IFV (dpi-IFV) a+j and the displaced negative ideal IFV (dni-IFV)
a−j for a IFV decision matrix a = [aij]m×n with respect to each criteria ej ∈ C (C = Cb ∪ Cc, where
Cb ∩ Cc = Φ) are defined as follows:

a+j = (ξ+j, ν+j) =

{
(maxm

i=1 ξij, minm
i=1 νij), if ej ∈ Cb

(minm
i=1 ξij, maxm

i=1 νij), if ej ∈ Cc
(19)

a−j = (ξ−j, ν−j) =

{
(minm

i=1 ξij, maxm
i=1 νij), if ej ∈ Cb

(maxm
i=1 ξij, minm

i=1 νij), if ej ∈ Cc
(20)

Moreover, h̄+j and h̄−j represents the hesitancy degrees of dpi-IFV and dni-IFV, respectively and defined
as follows:

h̄+j = 1− (ξ+j + ν+j) (21)

h̄−j = 1− (ξ−j + ν−j). (22)

The fpi-IFV and fni-IFV are also formed the anchored judgments for subjective decision making.
The (1, 0) and (0, 1) are specified for fpi-IFV and fni-IFV, respectively, for benefit criteria. While, for cost
criteria, (0, 1) and (1, 0) are used for fpi-IFV and fni-IFV, respectively. These are bounds on the lattice,
i.e., the highest and lowest values on the lattice.

Definition 16. The fixed positive ideal IFV (fpi-IFV) a+̂j and the fixed negative ideal IFV (fni-IFV) a−̂j for a
IFV decision matrix a = [aij]m×n with respect to each criteria ej ∈ C (C = Cb ∪ Cc, where Cb ∩ Cc = Φ) are
defined as follows:

a+̂j = (ξ+̂j, ν+̂j) =

{
(1, 0), if ej ∈ Cb

(0, 1), if ej ∈ Cc
(23)

a−̂j = (ξ−̂j, ν−̂j) =

{
(0, 1), if ej ∈ Cb

(1, 0), if ej ∈ Cc
(24)

Moreover, h̄+̂j and h̄−̂j represents the hesitancy degrees of fpi-IFV and fni-IFV, respectively and
h̄+̂j = h̄−̂j = 0.

4.2. The Displaced and Fixed Remoteness Indexes

In general, the dpi-IFV is the favorable ideal alternative and dni-IFV is the avoidable alternative.
So, if the distance between evaluative value aij and dpi-IFV a+j, i.e., D(aij, a+j) is decreases,
the favorability of aij increases and vice versa. Similarly, for fpi-IFV. But D(aij, a+j) don’t have an
upper bound because dpi-IFVs are the largest values in the evaluating data for each criterion and thus
frequently changed among criterion. The distance between the dpi-IFV a+j and dni-IFV a−j D(a+j, a−j)

provides the upper bound for D(aij, a+j) for each criteria. So instead of considering D(aij, a+j), we
consider the ratio of D(aij, a+j) to D(a+j, a−j). But when we consider fpi-IFVs, the lacking of upper
bound problem is insignificant because D(a+̂j, a−̂j) = 1 for all criterion.

Now, we define the displaced remoteness index RId as follows:

Definition 17. The displaced remoteness index RId(aij) of (aij) based on the above proposed distance measures
D is defined as follows:

RId(aij) =
D(aij, a+j)

D(a−j, a+j)
, (25)
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where aij, a+j and a−j are the evaluative value, dpi-IFV and dni-IFVs, respectively, in the decision matrix
a = [aij]m×n.

Theorem 4. Let aij, ai1j and ai2j be three assessment values in the IF decision matrix a. The RId satisfies the
following properties:

1. RId(aij) = 0 ⇔ aij = a+j

2. RId(aij) = 1 ⇔ aij = a−j

3. 0 ≤ RId(aij) ≤ 1

4. For each ej ∈ Cb, RId(ai′′ j) ≤ RId(ai′ j) if ai′ j ⊆ ai′′ j

5. For each ej ∈ Cc, RId(ai′ j) ≤ RId(ai′′ j) if ai′ j ⊆ ai′′ j

Proof. The proof of the theorem is based on the properties of distance measures (Definition 7) and
Equation (25).

1. From Equation (25), we have RId(aij) = 0 iff D(aij, a+j) = 0, where D is distance measure.
The distance D(aij, a+j) = 0 iff aij = a+j.

2. From Equation (25), if RId(aij) = 1 then D(aij, a+j) = D(a−j, a+j). This implies that aij = a−j.

3. Since a−j and a+j are the smallest and largest elements in the given data, i.e., a−j ⊆ aij ⊆ a+j.
Therefore, the distance between a−j and a+j is greater than the distance between a+j and aij,
i.e., D(aij, a+j) ≤ D(a−j, a+j). This implies that RId(aij) ≤ 1. The non negativity of the displaced
remoteness index is trivial.

4. For each ej ∈ Cb, ai′ j ⊆ ai′′ j iff ξai′ j ≤ ξai′′ j and νai′ j ≥ νai′′ j . Since a+j is the largest element in
the given data, therefore, ξai′ j ≤ ξai′′ j ≤ ξa+j and νai′ j ≥ νai′′ j ≥ νa+j . This implies D(ai′ j, a+j) ≥
D(ai′′ j, a+j) and hence RId(ai′′ j) ≤ RId(ai′ j).

5. The proof is analogous to the proof of part 4.

Example 3. Consider Ŷ = {y1, y2, y3} be the set of alternatives to be assessed under the criteria Ĉ = {e1, e2}.
This is the classical MADM problem, where e1 ∈ Cb and e2 ∈ Cc. Assume that the IF decision matrix is given by

a = [aij]3×2 =

e1 e2 y1 (0.7, 0.3) (0.4, 0.5)
y2 (0.5, 0.4) (0.3, 0.5)
y3 (0.6, 0.2) (0.6, 0.2)

1. According to the Definition 15, the dpi-IFVs are a+1 = (0.7, 0.2) and a+2 = (0.3, 0.5). Moreover, the dni-IFVs
are a−1 = (0.5, 0.4) and a−2 = (0.6, 0.2).

2. Since, we consider here the BIFSS and calculate the distance between two IFVs therefore the Formula (5)
takes the form

D◦e (aij, a+j) =

(
1
2

(∣∣ξaij − ξa+j

∣∣2 + ∣∣νaij − νa+j

∣∣2 + ∣∣h̄aij − h̄a+j

∣∣2)) 1
2

(26)

We obtain D◦e (a+1, a−1) = 0.244949 and D◦e (a+2, a−2) = 0.367423. The displaced remoteness
index are obtain by using Definition 17 as follows: RId(a11) = D◦e (a11, a+1)/D◦e (a+1, a−1) =

0.141421/0.244949 = 0.57735, RId(a21) = 1, RId(a31) = 0.5, RId(a12) = 0.333333, RId(a22) =

0.544331 and RId(a32) = 0.638285.
3. We observe that a11 ⊆ a21 and a12 ⊆ a32. From above calculations, we have RId(a11) ≤ RId(a21) and

RId(a12) ≤ RId(a32), which are consistent with fourth and fifth property of Theorem 4.
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Now, we define the fixed remoteness index RI f as follows:

Definition 18. The fixed remoteness index RI f (aij) of (aij) based on the above proposed distance measures D
is defined as follows:

RI f (aij) =
D(aij, a+̂j)

D(a−̂j, a+̂j)

= D(aij, a+̂j), (27)

because D(a−̂j, a+̂j) = 1 for fpi-IFV and fni-IFVs.

Theorem 5. Let aij, ai1j and ai2j be three assessment values in the IF decision matrix a. The RI f satisfies the
following properties:

1. RI f (aij) = 0 ⇔ aij = a+̂j

2. RI f (aij) = 1 ⇔ aij = a−̂j

3. 0 ≤ RI f (aij) ≤ 1

4. For each ej ∈ Cb, RI f (ai′′ j) ≤ RI f (ai′ j) if ai′ j ⊆ ai′′ j

5. For each ej ∈ Cc, RI f (ai′ j) ≤ RI f (ai′′ j) if ai′ j ⊆ ai′′ j

Proof. The proof of the theorem is based on the properties of distance measures (Definition 7) and
Equation (27).

1. From Equation (27), we have RI f (aij) = 0 iff D(aij, a+̂j) = 0, where D is distance measure.
The distance D(aij, a+̂j) = 0 iff aij = a+̂j.

2. From Equation (27), if RI f (aij) = 1 then D(aij, a+̂j) = D(a−̂j, a+̂j). This implies that aij = a−̂j.

3. Since a−̂j and a+̂j are the smallest and largest elements in the given data, i.e., a−̂j ⊆ aij ⊆ a+̂j.
Therefore, the distance between a−̂j and a+̂j is greater than the distance between a+̂j and aij,
i.e., D(aij, a+̂j) ≤ D(a−̂j, a+̂j). This implies that RI f (aij) ≤ 1. The non negativity of the fixed
remoteness index is trivial.

4. For each ej ∈ Cb, ai′ j ⊆ ai′′ j iff ξai′ j ≤ ξai′′ j and νai′ j ≥ νai′′ j . Since a+̂j is the largest element in
the given data, therefore, ξai′ j ≤ ξai′′ j ≤ ξa+̂j and νai′ j ≥ νai′′ j ≥ νa+̂j . This implies D(ai′ j, a+̂j) ≥
D(ai′′ j, a+̂j) and hence RI f (ai′′ j) ≤ RI f (ai′ j).

5. The proof is analogous to the proof of part 4.

Example 4. We continues Example 3 for fixed ideal and remote index.

1. Since e1 ∈ Cb and e2 ∈ Cc. Therefore, according to the Definition 16, the dpi-IFVs are a+1 = (1, 0) and
a+2 = (0, 1). Moreover, the dni-IFVs are a−1 = (0, 1) and a−2 = (1, 0).

2. We use Formula (26) for calculating distance between IFVs. The distance between a+̂j and a−̂j,
(j = 1, 2) is 1. The fixed remoteness index are obtain by using Definition 18 as follows: RI f (a11) =

D◦e (a11, a+1)/D◦e (a+̂1, a−̂1) = 0.367423/1 = 0.367423, RI f (a21) = 0.543139, RI f (a31) = 0.4,
RI f (a12) = 0.583095, RI f (a22) = 0.578792 and RI f (a32) = 0.927362.

3. We observe that a11 ⊆ a21 and a12 ⊆ a32. From above calculations, we have RI f (a11) ≤ RI f (a21) and
RI f (a12) ≤ RI f (a32), which are consistent with fourth and fifth property of Theorem 5.

4.3. Precise and IF Importance Weights

In real-life situations, all the attributes are not of equal importance in the decision making (DM)
process. Some are more important than others. In the DM process, we handle this issue by assigning the
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weights to the attributes. In this paper, we use two types of weights. The precise importance weights
and IF importance weights. We calculate the importance weights by PIFS given by the director or head
of the DM committee. The two methods are discussed to obtained precise importance weights. In the
first method, the expectation score function is used to calculate the weights [14]. In the second method,
we use already proposed entropy measures to calculates the precise weights. The IF importance
weights are directly assigned to the attributes. The IFVs in PIFS are used as an IF importance weights.

In the DM process, let Ŷ = {y1, y2, ..., ym} be the m alternatives which are assessed against n
attributes represented as C = {e1, e2, ..., en}. Each alternative evaluated with respect to each criteria
and the aim of DM process to select the optimal alternative on the basis of the criterion.

1. Precise Importance Weights by Expectation Score Function [14]:

In this method for obtaining precise importance weights are based on the expectation score
function and PIFS in the GIFSS. Let ρ̂ = {(ej, ξ ρ̂(ej)

, νρ̂(ej)
) | ej ∈ Ĉ} be the PIFS and aj =

(ξ ρ̂(ej)
, νρ̂(ej)

) represents the IFVs in PIFS. Then the expectation score value of IFV is calculated by
using Equation (1) as follows:

S(aj) =
1 + ξ ρ̂(ej)

− νρ̂(ej)

2
. (28)

If we represents the sum of all expected score values by d = ∑n
j=1 S(aj) then the precise importance

weights are calculated as follows:

ωj =
S(aj)

d
. (29)

Example 5. Let ρ̂ = {a1 = (e1, 0.3, 0.5), a2 = (e2, 0.5, 0.3), a3 = (e3, 0.3, 0.4), a4 = (e4, 0.7, 0.1)} be
the PIFS. The expectation scores of IFVs are calculated by using Equation (28). The results are: S(a1) = 0.4,
S(a2) = 0.6, S(a3) = 0.45 and S(a4) = 0.8. The sum of expectation scores is d = ∑4

j=1 S(aj) = 2.25.
The precise importance weights are: ω1 = 0.177778, ω2 = 0.266667, ω3 = 0.2 and ω4 = 0.355556.

2. Precise Importance Weights by Entropy Measures for IFSs:

Motivated by Chen’s technique of getting precise importance weights by using entropy measures
for IFSs [54]. The Burillo and Bustince [52] entropy measure for IFSs is used. Many authors
defined the entropy measure for IFSs and one can use any entropy measure for getting precise
weights. The one of the entropy measure from the Burillo and Bustince paper for IFS R in Ŷ is
defined as

Ê(R) =
m

∑
i=1

(
1−

(
(ξR(yi) + νR(yi))× sin

(π

2
(ξR(yi) + νR(yi)

)))
. (30)

Let ρ̂ = {(ej, ξρ̂(ej)
, νρ̂(ej)

) | ej ∈ Ĉ} be the PIFS and aj = (ξρ̂(ej)
, νρ̂(ej)

) represents the IFVs in PIFS.
Then the entropy measure of IFV is calculated by using Equation (30) as follows:

Ê(aj) = 1−
(
(ξρ̂(ej)

+ νρ̂(ej)
)× sin

(π

2
(ξρ̂(ej)

+ νρ̂(ej)
)
))

. (31)

If we represents the sum of all entropy measures by L, i.e., L = ∑n
j=1 Ê(aj), then the precise

importance weights are calculated as follows:

ωj =
1

n− L
(1− Ê(aj)). (32)

The weights obtained by the Equation (32) satisfies the condition of normalization, i.e., ωj ∈ [0, 1]
and ∑n

j=1 ωj = 1.
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Example 6. We continues the Example 5 for calculating weights by using the entropy method. The entropy
measures of IFVs are calculated by using Equation (31). The results are: Ê(a1) = 0.239155, Ê(a2) = 0.239155,
Ê(a3) = 0.376295 and Ê(a4) = 0.239155. The sum of the entropy measures is L = ∑4

j=1 Ê(aj) = 1.09376.
The precise importance weights are calculating by Equation (32) and the results are: ω1 = 0.261797,
ω2 = 0.261797, ω3 = 0.214609 and ω4 = 0.261797.

3. The IF Importance Weights:

The IF importance weights of criteria ej ∈ Ĉ is displaced as the IFV vj = (v̄j, ¯
vj), where v̄j and

¯
vj represents the importance and unimportance degrees of the criteria ej ∈ Ĉ, respectively. In the
DM process, the head or director of the committee is seeking the whole process keenly. At the end
of the process, he gave his evaluation in the form of PIFS. These PIFS provided by the head are
serving as an IF importance weights.

The proposed VIKOR methods, consider both the precise and IF importance weights in decision

making process. The new ranking indexes Ŝ
d
, R̂

d
and Q̂

d
based on the displaced ideals and precise

importance weights of attributes are presented as follows.

Definition 19. For each alternative yi the displaced remoteness based (DRB) group utility index Ŝ
d
(yi) is

defined as follows:

Ŝ
d
(yi) =

n

∑
j=1

(RId(aij) . ωj), (33)

where aij ∈ [aij]m×n and ωj are the IFVs and precise importance weights, respectively.

The DRB individual regret index R̂
d
(yi) of yi is defined as follows:

R̂
d
(yi) =

n
max
j=1
{RId(aij) . ωj}. (34)

The DRB compromise index Q̂
d
(yi) of yi is defined as follows:

Q̂
d
(yi) = λ.

Ŝ
d
(yi)−minm

i′=1
Ŝ

d
(yi′ )

maxm
i′=1

Ŝ
d
(yi′ )−minm

i′=1
Ŝ

d
(yi′ )

+ (1− λ).
R̂

d
(yi)−minm

i′=1
R̂

d
(yi′ )

maxm
i′=1

R̂
d
(yi′ )−minm

i′=1
R̂

d
(yi′ )

, (35)

where λ ∈ [0, 1].

The new ranking indexes Ŝ
f
, R̂

f
and Q̂

f
based on the fixed ideals and precise weights of attributes

are presented as follows.

Definition 20. For each alternative yi the fixed remoteness based FRB group utility index Ŝ
f
(yi) is defined

as follows:

Ŝ
f
(yi) =

n

∑
j=1

(RI f (aij) . ωj) (36)

where aij ∈ [aij]m×n and ωj are the IFVs and precise weights, respectively.

The FRB individual regret index R̂
f
(yi) of yi is defined as follows:

R̂
f
(yi) =

n
max
j=1
{RI f (aij) . ωj} (37)
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The FRB compromise index Q̂
f
(yi) of yi is defined as follows:

Q̂
f
(yi) = λ.

Ŝ
f
(yi)−minm

i′=1
Ŝ

f
(yi′ )

maxm
i′=1

Ŝ
f
(yi′ )−minm

i′=1
Ŝ

f
(yi′ )

+ (1− λ).
R̂

f
(yi)−minm

i′=1
R̂

f
(yi′ )

maxm
i′=1

R̂
f
(yi′ )−minm

i′=1
R̂

f
(yi′ )

(38)

where λ ∈ [0, 1].

The decision mechanism coefficient is represented by the parameter λ. One can modify the
decision making strategy by changing the value of the parameter λ. The value of the parameter
λ represents the importance of maximum group utility while 1− λ represents the importance of
individual regrets. In the classical VIKOR method, the higher the value of the parameter λ (when
λ > 0.5), the compromise ranking procedure is categorized as the procedure with “voting by majority”.
The compromise ranking procedure is categorized as the procedure with “veto” when λ < 0.5.
The consensus is achieved in the compromise ranking procedure at λ = 0.5.

The new ranking indexes Sd, Rd and Qd based on the displaced ideals and IF importance weights
of attributes are presented.

Definition 21. For each alternative yi the DRB group utility index Sd(yi) with a set of IF importance weights
vj = (v̄j, ¯

vj) for all cj ∈ C is defined as follows:

Sd(yi) =
n

∑
j=1

δ(RId(aij) . vj)

=
n

∑
j=1

[
1
2

(
2− (1− v̄j)

RId(aij) −
¯
v

RId(aij)

j

)]
(39)

where aij ∈ [aij]m×n are the IFVs and δ is an expectation score function defined in Equation (1).
The DRB individual regret index Rd(yi) of (yi) is defined as follows:

Rd(yi) =
n

max
j=1

δ(RId(aij) . vj)

=
n

max
j=1

{
1
2

(
2− (1− v̄j)

RId(aij) −
¯
v

RId(aij)

j

)}
. (40)

The DRB compromise index Qd(yi) of (yi) is defined as follows:

Qd(yi) = λ.
Sd(yi)−minm

i′=1
Sd(yi′ )

maxm
i′=1

Sd(yi′ )−minm
i′=1

Sd(yi′ )
+ (1− λ).

Rd(yi)−minm
i′=1

Rd(yi′ )

maxm
i′=1

Rd(yi′ )−minm
i′=1

Rd(yi′ )
(41)

The new ranking indexes S f , R f and Q f based on the displaced ideals and IF importance weights
of attributes are presented as follows.

Definition 22. For each alternative yi the FRB group utility index S f (yi) with a set of IF importance weights
vj = (v̄j, ¯

vj) for all cj ∈ C is defined as follows:

S f (yi) =
n

∑
j=1

δ(RI f (aij) . vj)

=
n

∑
j=1

[
1
2

(
2− (1− v̄j)

RI f (aij) −
¯
v

RI f (aij)

j

)]
(42)

where aij ∈ [aij]m×n are the IFVs and δ is an expectation score function defined in Equation (1).
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The FRB individual regret index R f (yi) of (yi) is defined as follows:

R f (yi) =
n

max
j=1

δ(RI f (aij) . vj)

=
n

max
j=1

{
1
2

(
2− (1− v̄j)

RI f (aij) −
¯
v

RI f (aij)

j

)}
(43)

The FRB compromise index Q f (yi) of (yi) is defined as follows:

Q f (yi) = λ.
S f (yi)−minm

i′=1
S f (yi′ )

maxm
i′=1

S f (yi′ )−minm
i′=1

S f (yi′ )
+ (1− λ).

R f (yi)−minm
i′=1

R f (yi′ )

maxm
i′=1

R f (yi′ )−minm
i′=1

R f (yi′ )
(44)

5. Selection of Renewable Energy Resources in under Developing Countries

Some examples of renewable energy sources are solar energy, wind energy, hydropower,
geothermal energy, and biomass energy. These types of energy sources are different from fossil
fuels, such as coal, oil, and natural gas. The people are using fossil fuels very quickly. The world will
be facing the problem of deficiency of energy because the resources of fossil fuels are decreasing very
quickly. Nowadays, most countries depend on electricity generated from fossil fuels. About 64.5% of
the worldwide electricity generated from fossil fuels according to 2017 statistics which is higher than
the 1990’s statistics when fossil fuels generated 61.9% of the worldwide electricity. These results are
dangerous because the electricity generated from fossil fuels pollute the environment and cost heavily.

Therefore, it’s very important to consider renewable energy sources. Comparatively, renewable
energy sources are very much less harmful to non-renewable energy resources. For under developing
countries, it is much important to consider renewable energy and sustainable sources which are
less effective for the environment. For under developing countries, it’s important to choose the best
renewable source for their country which minimum effects the environment, budget, and economy.
Minimum number of peoples are effected from this project. The maintenance, reliability, yields are
important parameters to evaluate the suitable energy sources.

In this section, we discuss a factious problems of selecting a renewable energy source for under
developing countries. Let Ŷ = {y1, y2, y3, y4, y5} represents the set of renewable energy sources
(alternative), where y1, y2, y3, y4 and y5 stands for solar energy, wind energy, geothermal energy,
hydro power and biomass energy, respectively. These sources are evaluated against the six parameters
(criteria). Let Ĉ = {e1, e2, e3, e4, e5, e6} represents the set of criterion, where e1, e2, e3, e4 , e5 and e6

stands for cost, environmental friendly, yields, maintenance, reliability and less number of peoples are
effected from this project, respectively.

A committee consists of engineers, economists, managers, government servants, and some other
policymakers. The committee assessed the proposed five renewable energy resources according to
six criteria. The committee give their judgments based on their knowledge and previous statistical
measures. The committee preferences are stored in the form of BIFSS. The head of the committee who
supervised the whole procedure. He gave their judgments in the form of PIFS. Which completes the
formation of GIFSS. The results are summarized in Table 5. This represents the IF decision matrix with
m = 5 rows and n = 6 columns. Suppose the IF decision matrix represented by a = [aij]m×n, where aij
shows the evaluation of ith alternative with respect to jth criteria.
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Table 5. The GIFSS (F̂, Â, ρ̂).

Ŷ e1 e2 e3 e4 e5 e6

y1 (0.1,0.8) (0.6,0.2) (0.4,0.4) (0.7,0.2) (0.6,0.1) (0.7,0.3)
y2 (0.2,0.6) (0.7,0.2) (0.4,0.5) (0.5,0.1) (0.6,0.2) (0.5,0.3)
y3 (0.3,0.7) (0.8,0.1) (0.6,0.3) (0.7,0.1) (0.2,0.5) (0.7,0.1)
y4 (0.1,0.8) (0.9,0.1) (0.6,0.2) (0.5,0.3) (0.7,0.2) (0.6,0.2)
y5 (0.4,0.5) (0.6,0.3) (0.7,0.2) (0.2,0.6) (0.7,0.1) (0.3,0.5)

ρ̂ (0.4,0.2) (0.8,0.2) (0.5,0.3) (0.6,0.2) (0.7,0.1) (0.4,0.4)

Since e1 is the cost criteria. We normalize the IF decision matrix by following equation:

aij =

{
(ξaij , νaij) if ej ∈ Ĉb

(νaij , ξaij) if ej ∈ Ĉc
(45)

The normalized IF decision matrix is shown in Table 6 and all criteria are treated as the benefit type.

Table 6. The GIFSS (F̂, Â, ρ̂).

Ŷ e1 e2 e3 e4 e5 e6

y1 (0.8,0.1) (0.6,0.2) (0.4,0.4) (0.7,0.2) (0.6,0.1) (0.7,0.3)
y2 (0.6,0.2) (0.7,0.2) (0.4,0.5) (0.5,0.1) (0.6,0.2) (0.5,0.3)
y3 (0.7,0.3) (0.8,0.1) (0.6,0.3) (0.7,0.1) (0.2,0.5) (0.7,0.1)
y4 (0.8,0.1) (0.9,0.1) (0.6,0.2) (0.5,0.3) (0.7,0.2) (0.6,0.2)
y5 (0.5,0.4) (0.6,0.3) (0.7,0.2) (0.2,0.6) (0.7,0.1) (0.3,0.5)

ρ̂ (0.4,0.2) (0.8,0.2) (0.5,0.3) (0.6,0.2) (0.7,0.1) (0.4,0.4)

The problem of selecting renewable energy sources is solved by proposed fourth algorithms, which
shows the procedure of remoteness based VIKOR method for different conditions and terminologies.

5.1. Solution by Algorithm 1

First two steps of Algorithm 1 have already done. The dpi-IFVs a+j and dni-IFVs a−j are
calculating by using Equations (19) and (20), which help us to choose the best alternative and avoidable
alternative, respectively.

dpi-IFV→ a+j =

{
a+1 = (0.8, 0.1) a+2 = (0.9, 0.1) a+3 = (0.7, 0.2)

a+4 = (0.7, 0.1) a+5 = (0.7, 0.1) a+6 = (0.7, 0.1)
(46)

dni-IFV→ a−j =

{
a−1 = (0.5, 0.4) a−2 = (0.6, 0.3) a−3 = (0.4, 0.5)

a−4 = (0.2, 0.6) a−5 = (0.2, 0.5) a−6 = (0.3, 0.5)
(47)

The distance between dpi-IFVs a+j and dni-IFVs a−j are calculating by using Equation (26).
We use this formula to find the distance between two IFVs. The results summarized in Equation (48)
as follows:

D◦e (a+j, a−j) =

{
D◦e (a+1, a−1) = 0.36742 D◦e (a+2, a−2) = 0.30822 D◦e (a+3, a−3) = 0.36742

D◦e (a+4, a−4) = 0.61237 D◦e (a+5, a−5) = 0.54314 D◦e (a+6, a−6) = 0.48990
(48)
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Algorithm 1: for scenario 1: IF decision matrix, precise weights and displaced ideals

1. Let Y = {y1, y2, ..., ym} represents the alternatives and the set C = {e1, e2, ..., en} represents
the criteria.

2. The IFV is given to each alternatives yi, 1 ≤ i ≤ m according to the each criteria ej,
1 ≤ j ≤ n and identified the precise weight by evaluating some data or selecting the
appropriate linguistics variables. Which generates the IFV decision matrix a = [aij]m×n.
One can obtained weights of attributes by using the above mentioned procedures
(Section 4.3).

3. Find dpi-IFV and dni-IFV with respect to each criteria by using Equations (19) and (20),
respectively.

4. Compute D(a−j, a+j) and D(aij, a+j) for each 1 ≤ i ≤ m and 1 ≤ j ≤ n.

5. Compute RId(aij) for each 1 ≤ i ≤ m and 1 ≤ j ≤ n by using Equation (25).

6. Find DRB group utility index Ŝ
d
(yi) and DRB individual regret index R̂

d
(yi) by using

Equations (33) and (34), respectively. Then compute the DRB compromise index Q̂
d
(yi) by

using Equation (35).

7. Three ranking lists obtained by sorting the values of Ŝ
d
(yi), R̂

d
(yi) and Q̂

d
(yi) for each

alternative in ascending order.

8. The alternative y′ with the minimum value in Q̂
d
(yi) ranking list is the compromise

solution if the following conditions are satisfied.

C1. Acceptable advantage:

Q̂
d
(y′′)− Q̂

d
(y′) ≥ 1

m−1 ,

where y′′ is the alternative have minimum value after y′ in Q̂
d
(yi) ranking list.

C2. Acceptable stability in DM:

The alternative y′ have the minimum values in Ŝ
d
(yi) and R̂

d
(yi) ranking lists.

The set of the ultimate compromise solution is proposed if one of the above condition
is not satisfied, which consists of:

a. Alternatives y′ and y′′ if only C2 is not satisfied.
b. Alternatives y′, y′′, ..., yp if C1 is not satisfied, where p is the largest i for which

Q̂
d
(yp)− Q̂

d
(y′) < 1

m−1

The distance between the IFVs aij and the dpi-IFVs a+j are calculating by using Equation (26) and
the results are displaced in Equation (49).

D◦e (ai1, a+1) D◦e (ai2, a+2) D◦e (ai3, a+3) D◦e (ai4, a+4) D◦e (ai5, a+5) D◦e (ai6, a+6)



y1 0. 0.308221 0.308221 0.141421 0.122474 0.282843

y2 0.2 0.2 0.367423 0.244949 0.122474 0.244949

y3 0.234521 0.122474 0.122474 0. 0.543139 0.

y4 0. 0. 0.122474 0.244949 0.141421 0.122474

y5 0.367423 0.308221 0. 0.612372 0. 0.489898

(49)



Symmetry 2020, 12, 977 20 of 30

The weights of the attributes are calculated by using expectation score function. The PIFS have
provided the initial data. Equation (29) is used to calculate the precise weights. After calculation,
the weight of the attributes are: ω1 = 0.15, ω2 = 0.2, ω3 = 0.15, ω4 = 0.175, ω5 = 0.2 and ω6 = 0.125.

The displaced remoteness indexes RId(aij) are calculating by using Definition 17. Then RId(aij)

are multiplying by precise weights ωj (j = {1, 2, ..., 6}). The results are presented in Equation (50).

RId(ai1).ω1 RId(ai2).ω2 RId(ai3).ω3 RId(ai4).ω4 RId(ai5).ω5 RId(ai6).ω6



y1 0. 0.2 0.125831 0.040415 0.045099 0.072169

y2 0.081650 0.129777 0.15 0.07 0.045099 0.0625

y3 0.095743 0.079471 0.05 0. 0.2 0.

y4 0. 0. 0.05 0.07 0.052076 0.03125

y5 0.15 0.2 0. 0.175 0. 0.125

(50)

For compromise ranking of the alternatives, the DRB group utility index Ŝ
d
, DRB individual regret

index R̂
d

and the DRB compromise index Q̂
d

are calculated by using Equations (33)–(35), respectively.
All the calculations are displaced in Equation (51).

y1 y2 y3 y4 y5 Ranking


Ŝ
d
(yi) 0.483513 0.539026 0.425215 0.203326 0.65 y4 � y3 � y1 � y2 � y5

R̂
d
(yi) 0.2 0.15 0.2 0.07 0.2 y4 � y2 � {y3, y5, y1}

Q̂
d
(yi) 0.813637 0.683469 0.748379 0. 1. y4 � y2 � y3 � y1 � y5

(51)

From Equation (51), the three ranking lists y4 � y3 � y1 � y2 � y5, y4 � y2 � {y3, y5, y1} and

y4 � y2 � y3 � y1 � y5 are obtained by sorting each Ŝ
d
(yi), R̂

d
(yi) and Q̂

d
(yi) value in ascending

order, respectively. The hydro power among the renewable energy sources is the best option by all

ranking lists. Moreover, Q̂
d
(y′′)− Q̂

d
(y′) = Q̂

d
(y2)− Q̂

d
(y4) = 0.683469 ≥ 1

5−1 = 1
4 = 0.25. Both the

conditions in step 8 of Algorithm 1 are satisfied for hydro power. Therefore, hydro power is the
compromise solution of the selection of renewable energy source problem. The order of the renewable
energy sources is y4 � y2 � y3 � y1 � y5.

5.2. Solution by Algorithm 2

Since all the criterion are of benefit type after normalization (Table 6), therefore, the fpi-IFV
a+̂j = (1, 0) and the fni-IFV a−̂j = (0, 1) ∀ j = {1, 2, ..., 6}. We calculate the distance between aij and
a+̂j by using Formula (26) and the result are presented in Equation (52).

D◦e (ai1, a+̂1) D◦e (ai2, a+̂2) D◦e (ai3, a+̂3) D◦e (ai4, a+̂4) D◦e (ai5, a+̂5) D◦e (ai6, a+̂6)



y1 0.2 0.4 0.616441 0.308221 0.424264 0.367423

y2 0.4 0.308221 0.663325 0.543139 0.4 0.504975

y3 0.367423 0.2 0.424264 0.308221 0.812404 0.308221

y4 0.2 0.122474 0.4 0.504975 0.308221 0.4

y5 0.543139 0.424264 0.308221 0.848528 0.308221 0.731437

(52)

By Definition 18, the fixed remoteness index is equal to the distance, i.e., RI f (aij) = D◦e (aij, a+̂j).
Now, we calculate RI f (aij) . ωj for FRB group utility index and individual regret index as follows:

RI f (ai1) . ω1 RI f (ai2) . ω2 RI f (ai3) . ω3 RI f (ai4) . ω4 RI f (ai5) . ω5 RI f (ai6) .ω6



y1 0.03 0.08 0.092466 0.053939 0.084853 0.045928

y2 0.06 0.061644 0.099499 0.095049 0.08 0.063122

y3 0.055114 0.04 0.063640 0.053939 0.162481 0.038528

y4 0.03 0.0244949 0.06 0.088371 0.061644 0.05

y5 0.081471 0.084853 0.046233 0.148492 0.061644 0.091430

(53)
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The FRB group utility index Ŝ
f
, FRB individual regret index R̂

f
and FRB compromise index Q̂

f

are calculating by using Equations (36)–(38) as follows:

y1 y2 y3 y4 y5 Ranking


Ŝ
f
(yi) 0.38719 0.45931 0.4137 0.31451 0.51412 y4 � y2 � y3 � y5 � y1

R̂
f
(yi) 0.09247 0.099500 0.16248 0.08837 0.14849 y4 � y2 � y3 � y5 � y1

Q̂
f
(yi) 0.20967 0.43779 0.74846 0. 0.90563 y4 � y2 � y3 � y5 � y1

(54)

Algorithm 2: for scenario 2: IF decision matrix, precise weights and fixed ideals

1. Steps 1 and 2 are same as Algorithm 1.
3. Find fpi-IFV and fni-IFV with respect to each criteria by using Equations (23) and (24),

respectively.
4. Compute D(a−̂j, a+̂j) and D(aij, a+̂j) for each 1 ≤ i ≤ m and 1 ≤ j ≤ n.

5. Compute RI f (aij) for each 1 ≤ i ≤ m and 1 ≤ j ≤ n by using Equation (27).

6. Find FRB group utility index Ŝ
f
(yi) and FRB individual regret index R̂

f
(yi) by using

Equations (36) and (37), respectively. Then compute the FRB compromise index Q̂
f
(yi) by

using Equation (38).

7. Three ranking lists obtained by sorting the values of Ŝ
f
(yi), R̂

f
(yi) and Q̂

f
(yi) for each

alternative in ascending order.

8. The alternative y′ with the minimum value in Q̂
f
(yi) ranking list is the compromise

solution if the following conditions are satisfied.

C1. Acceptable advantage:

Q̂
f
(y′′)− Q̂

f
(y′) ≥ 1

m−1 ,

where y′′ is the alternative have minimum value after y′ in Q̂
f
(yi) ranking list.

C2. Acceptable stability in DM:

The alternative y′ have the minimum values in Ŝ
f
(yi) and R̂

f
(yi) ranking lists.

The set of the ultimate compromise solution is proposed if one of the above condition
is not satisfied, which consists of:

a. Alternatives y′ and y′′ if only C2 is not satisfied.
b. Alternatives y′, y′′, ..., yp if C1 is not satisfied, where p is the largest i for which

Q̂
f
(yp)− Q̂

f
(y′) < 1

m−1

From Equation (54), the three ranking lists y4 � y2 � y3 � y5 � y1, y4 � y2 � y3 � y5 � y1 and

y4 � y2 � y3 � y5 � y1 are obtained by sorting each Ŝ
f
(yi), R̂

f
(yi) and Q̂

f
(yi) value in ascending

order, respectively. The hydro power among the renewable energy sources is the best option by all

ranking lists. Moreover, Q̂
f
(y′′)− Q̂

f
(y′) = Q̂

f
(y2)− Q̂

f
(y4) = 0.20967 ≤ 1

5−1 = 1
4 = 0.25. The first

condition (acceptable advantage) in Step 8 of Algorithm 2 is not satisfied. Therefore, the ultimate
compromise solution is proposed. The hydro power and wind energy are the ultimate compromise
solutions of the selection of renewable energy sources problem. The order of the renewable energy
sources is {y4, y2} � y3 � y1 � y5.



Symmetry 2020, 12, 977 22 of 30

5.3. Solution by Algorithm 3

We solve this problem by IF importance weights using Algorithm 3. The PIFS, given by the director
in GIFSS are served as a IF importance weights. The dpi-IFVs a+̂j and dni-IFVs a−̂j (j = {1, 2, ..., 6})
have calculated in Equations (46) and (47), respectively. The distance between a+̂j and a−̂j have
calculated in Equation (48). The displaced remoteness index RId(aij) is calculated by using Definition 17
and the results are presented in Equation (55).

RId(ai1) RId(ai2) RId(ai3) RId(ai4) RId(ai5) RId(ai6)



y1 0. 1. 0.83887 0.23094 0.225494 0.57735

y2 0.544331 0.648886 1. 0.4 0.225494 0.5

y3 0.638285 0.39736 0.333333 0. 1. 0.

y4 0. 0. 0.333333 0.4 0.260378 0.25

y5 1. 1. 0. 1. 0. 1.

(55)

The displaced remoteness indexes RId(aij) are multiplied by IF importance weights vj by using
Equation (40) and the results are presented in Equation (56) as follows:

RId(ai1).v1 RId(ai2).v2 RId(ai3).v3 RId(ai4).v4 RId(ai5).v5 RId(ai6).v6



y1 0. 0.8 0.538346 0.250573 0.321385 0.333116

y2 0.413165 0.648076 0.6 0.390775 0.321385 0.296474

y3 0.460127 0.472457 0.268433 0. 0.8 0.

y4 0. 0. 0.268433 0.390775 0.360022 0.162309

y5 0.6 0.8 0. 0.7 0. 0.5

(56)

The DRB group utility index Sd(yi), individual regret index Rd(yi) and the compromise index
Qd(yi) with a set of IF importance weights vj = (v̄j, ¯

vj) are calculated by using Equations (39)–(41).
The results are summarized in Equation (57)

y1 y2 y3 y4 y5 Ranking
Sd(yi) 2.24342 2.66988 2.00102 1.18154 2.6 y4 � y3 � y1 � y5 � y2

Rd(yi) 0.8 0.648076 0.8 0.390775 0.8 y4 � y2 � {y3, y5, y1}
Qd(yi) 0.856734 0.814377 0.7753 0. 0.976526 y4 � y2 � y3 � y5 � y1

(57)

From Equation (57), the three ranking lists y4 � y3 � y1 � y5 � y2, y4 � y2 � {y3, y5, y1} and
y4 � y2 � y3 � y5 � y1 are obtained by sorting each Sd(yi), Rd(yi) and Qd(yi) value in ascending
order, respectively. The hydro power among the renewable energy sources is the best option by all
ranking lists. Moreover, Qd(y′′)−Qd(y′) = Qd(y2)−Qd(y4) = 0.7753 ≥ 1

5−1 = 1
4 = 0.25. Both the

conditions in step 8 of Algorithm 3 are satisfied for hydro power. The conditions of acceptable
advantage and acceptable stability are fulfilled. Therefore, hydro power is the compromise solution
of the selection of renewable energy source problem. The order of the renewable energy sources is
y4 � y2 � y3 � y5 � y1.

5.4. Solution by Algorithm 4

We solve this problem by IF importance weights using Algorithm 4. The PIFS, given by the
director in GIFSS are served as a IF importance weights. Since all the criterion are of benefit type,
therefore, the fpi-IFV a+̂j = (1, 0) and the fni-IFV a−̂j = (0, 1) ∀ j = {1, 2, ..., 6}. The distance between
aij and a+̂j have calculated in Equation (52). By Definition 18, the fixed remoteness index is equal to the
distance, i.e., RI f (aij) = D◦e (aij, a+̂j). The result of multiplication of fixed remoteness indexes RI f (aij)

and IF importance weights vj are summarized in Equation (58).
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Algorithm 3: for scenario 3: IF decision matrix, IF importance weights and displaced ideals

1. Let X = {x1, x2, ..., xm} represents the alternatives and the set C = {e1, e2, ..., en} represents
the criteria.

2. The IFV is given to each alternatives yi, 1 ≤ i ≤ m according to the each criteria ej,
1 ≤ j ≤ n and identified the IF importance weights by evaluating some data or selecting
the appropriate linguistics variables. Which generates the IF decision matrix a = [aij]m×n.
One can obtained weights of attributes by using the above mentioned procedures
(Section 4.3).

3. Steps 3–5 are same as Algorithm 1.
6. Find DRB group utility index Sd(yi) and DRB individual regret index Rd(yi) by using

Equations (39) and (40), respectively. Then compute the DRB compromise index Qd(yi) by
using Equation (41).

7. Three ranking lists obtained by sorting the values of Sd(yi), Rd(yi) and Qd(yi) for each
alternative in ascending order.

8. The alternative y′ with the minimum value in Qd(yi) ranking list is the compromise
solution if the following conditions are satisfied.

C1. Acceptable advantage:

Qd(y′′)−Qd(y′) ≥ 1
m−1 ,

where y′′ is the alternative have minimum value after y′ in Qd(yi) ranking list.
C2. Acceptable stability in DM:

The alternative y′ have the minimum values in Sd(yi) and Rd(yi) ranking lists.

The set of the ultimate compromise solution is proposed if one of the above condition
is not satisfied, which consists of:

a. Alternatives y′ and y′′ if only C2 is not satisfied.
b. Alternatives y′, y′′, ..., yp if C1 is not satisfied, where p is the largest i for which

Qd(yp)−Qd(y′) < 1
m−1

RI f (ai1) . v1 RI f (ai2) . v2 RI f (ai3) . v3 RI f (ai4) .v4 RI f (ai5) . v5 RI f (ai6) .v6



y1 0.18617 0.47469 0.43582 0.31856 0.511756 0.228491

y2 0.32975 0.39108 0.45932 0.48742 0.492046 0.298895

y3 0.30877 0.27522 0.32738 0.31856 0.734976 0.19586

y4 0.18617 0.17890 0.31217 0.463387 0.409114 0.245831

y5 0.41253 0.49481 0.25119 0.642616 0.409114 0.400086

(58)

The FRB group utility index S f , FRB individual regret index R f and FRB compromise index Q f

are calculating by using Equations (42)–(44) as follows:

y1 y2 y3 y4 y5 Ranking
S f (yi) 2.15549 2.4585 2.16077 1.79558 2.61035 y4 � y1 � y3 � y2 � y5

R f (yi) 0.511756 0.492046 0.734976 0.463387 0.642616 y4 � y2 � y1 � y5 � y3

Q f (yi) 0.309915 0.459576 0.724108 0. 0.829963 y4 � y1 � y2 � y3 � y5

(59)

From Equation (59), the three ranking lists y4 � y1 � y3 � y2 � y5, y4 � y2 � y1 � y5 � y3 and
y4 � y1 � y2 � y3 � y5 are obtained by sorting each S f (yi), R f (yi) and Q f (yi) value in ascending
order, respectively. The hydro power among the renewable energy sources is the best option by all
ranking lists. Moreover, Q f (y′′)−Q f (y′) = Q f (y2)−Q f (y4) = 0.309915 ≥ 1

5−1 = 1
4 = 0.25. Both the

conditions (acceptable advantage and acceptable stability) in Step 8 of Algorithm 4 are satisfied for
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hydro power. Therefore, hydro power is the compromise solution of the selection of renewable energy
source problem. The order of the renewable energy sources is y4 � y1 � y2 � y3 � y5.

The Table 7 shows the ranking results obtained by the above proposed four algorithms. The values
of the parameters p and λ are mentioned in the table. The effect of the parameters p and λ on the
ranking of alternatives will be discussed in the sensitivity analysis section.

Table 7. Summary of the Results.

Algorithm p λ Weights Developed Ranking

Algorithm 1 2 0.5 Precise y4 � y2 � y3 � y1 � y5

Algorithm 2 2 0.5 Precise {y4, y2} � y3 � y1 � y5

Algorithm 3 2 0.5 IF Importance y4 � y2 � y3 � y5 � y1

Algorithm 4 2 0.5 IF Importance y4 � y1 � y2 � y3 � y5

Algorithm 4: for scenario 4: IF decision matrix, IF importance weights and fixed ideals

1. Steps 1 and 2 are same as Algorithm 3.
3. Steps 3–5 are same as Algorithm 2.
6. Find FRB group utility index S f (yi) and FRB individual regret index R f (yi) by using

Equations (42) and (43), respectively. Then compute the FRB compromise index Q f (yi) by
using Equation (44).

7. Three ranking lists obtained by sorting the values of S f (yi), R f (yi) and Q f (yi) for each
alternative in ascending order.

8. The alternative y′ with the minimum value in Q f (yi) ranking list is the compromise
solution if the following conditions are satisfied.

C1. Acceptable advantage:

Q f (y′′)−Q f (y′) ≥ 1
m−1 ,

where y′′ is the alternative have minimum value after y′ in Q f (yi) ranking list.
C2. Acceptable stability in DM:

The alternative y′ have the minimum values in S f (yi) and R f (yi) ranking lists.

The set of the ultimate compromise solution is proposed if one of the above condition
is not satisfied, which consists of:

a. Alternatives y′ and y′′ if only C2 is not satisfied.
b. Alternatives y′, y′′, ..., yp if C1 is not satisfied, where p is the largest i for which

Q f (yp)−Q f (y′) < 1
m−1

5.5. Stability Analysis

The effect of parameter p and λ is discussed in this section. Table 8 shows the calculations of
Algorithms 1 and 2, while Table 9 shows the calculations of Algorithms 3 and 4. Since higher values of
the parameter λ represents the majority of group utility and when the values are changed from 0 to 1
the maximum group utility is obtained. On the other hand, when the value of parameter λ decreases
from 1 to 0, the individual regret get importance. The ranking of alternatives varying when the values
of λ changes but the alternative y4 remain the best option from alternatives. Also, for different values
of the parameter p are used for Algorithms 1–4.

The Algorithms 1 and 3 used the displaced terminologies and concepts while Algorithms 2 and 4
based on the fixed terminologies and concepts. The Algorithms 1 and 3 are more sensitive as compared
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to the Algorithms 2 and 4, i.e., the ranking of the alternatives changes rapidly by changing the values
of the parameter λ. For more details, we refer to Tables 8 and 9.

Table 8. Stability Analysis with Different Values of Parameters p and λ for the Evaluation of Renewable
Energy Sources.

Q̂d

Ranking
Q̂f

Ranking
p λ y1 y2 y3 y4 y5 y1 y2 y3 y4 y5

1 0.0 1. 0.618 0.745 0. 0.745 y4 � y2 � {y3, y5} � y1 0.081 0.081 1. 0. 0.724 y4 � {y1, y2} � y5 � y3

0.1 0.963 0.656 0.726 0. 0.769 y4 � y2 � y3 � y5 � y1 0.108 0.159 0.935 0. 0.752 y4 � y1 � y2 � y5 � y3

0.2 0.926 0.694 0.707 0. 0.792 y4 � y2 � y3 � y5 � y1 0.135 0.238 0.871 0. 0.779 y4 � y1 � y2 � y5 � y3

0.3 0.889 0.732 0.689 0. 0.815 y4 � y3 � y2 � y5 � y1 0.162 0.317 0.806 0. 0.807 y4 � y1 � y2 � y5 � y3

0.4 0.852 0.771 0.67 0. 0.838 y4 � y3 � y2 � y5 � y1 0.189 0.396 0.741 0. 0.834 y4 � y1 � y2 � y3 � y5

0.5 0.815 0.809 0.651 0. 0.862 y4 � y3 � y2 � y1 � y5 0.217 0.474 0.676 0. 0.862 y4 � y1 � y2 � y3 � y5

0.6 0.779 0.847 0.632 0. 0.885 y4 � y3 � y1 � y2 � y5 0.244 0.553 0.612 0. 0.89 y4 � y1 � y2 � y3 � y5

0.7 0.742 0.885 0.613 0. 0.908 y4 � y3 � y1 � y2 � y5 0.271 0.632 0.547 0. 0.917 y4 � y1 � y3 � y2 � y5

0.8 0.705 0.924 0.594 0. 0.932 y4 � y3 � y1 � y2 � y5 0.298 0.711 0.482 0. 0.945 y4 � y1 � y3 � y2 � y5

0.9 0.668 0.962 0.575 0. 0.955 y4 � y3 � y1 � y5 � y2 0.325 0.79 0.417 0. 0.972 y4 � y1 � y3 � y2 � y5

1.0 0.631 1. 0.556 0. 0.978 y4 � y3 � y1 � y5 � y2 0.353 0.868 0.353 0. 1. y4 � {y1, y3} � y2 � y5

2 0.0 1. 0.615 1. 0. 1. y4 � y2 � {y3, y1, y5} 0.055 0.15 1. 0. 0.811 y4 � y1 � y2 � y5 � y3

0.1 0.963 0.629 0.95 0. 1. y4 � y2 � y3 � y1 � y5 0.086 0.208 0.95 0. 0.83 y4 � y1 � y2 � y5 � y3

0.2 0.925 0.643 0.899 0. 1. y4 � y2 � y3 � y1 � y5 0.117 0.265 0.899 0. 0.849 y4 � y1 � y2 � y5 � y3

0.3 0.888 0.656 0.849 0. 1. y4 � y2 � y3 � y1 � y5 0.148 0.323 0.849 0. 0.868 y4 � y1 � y2 � y3 � y5

0.4 0.851 0.67 0.799 0. 1. y4 � y2 � y3 � y1 � y5 0.179 0.38 0.799 0. 0.887 y4 � y1 � y2 � y3 � y5

0.5 0.814 0.683 0.748 0. 1. y4 � y2 � y3 � y1 � y5 0.21 0.438 0.748 0. 0.906 y4 � y1 � y2 � y3 � y5

0.6 0.776 0.697 0.698 0. 1. y4 � y2 � y3 � y1 � y5 0.241 0.495 0.698 0. 0.924 y4 � y1 � y2 � y3 � y5

0.7 0.739 0.711 0.648 0. 1. y4 � y3 � y2 � y1 � y5 0.271 0.553 0.648 0. 0.943 y4 � y1 � y2 � y3 � y5

0.8 0.702 0.724 0.597 0. 1. y4 � y3 � y1 � y2 � y5 0.302 0.61 0.598 0. 0.962 y4 � y1 � y3 � y2 � y5

0.9 0.665 0.738 0.547 0. 1. y4 � y3 � y1 � y2 � y5 0.333 0.668 0.547 0. 0.981 y4 � y1 � y3 � y2 � y5

1.0 0.627 0.752 0.497 0. 1. y4 � y3 � y1 � y2 � y5 0.364 0.725 0.497 0. 1. y4 � y1 � y3 � y2 � y5

3 0.0 0.801 0.574 1. 0. 1. y4 � y2 � y3 � y1 � y5 0.061 0.175 1. 0. 0.833 y4 � y1 � y2 � y5 � y3

0.1 0.806 0.617 0.966 0. 0.98 y4 � y2 � y3 � y1 � y5 0.091 0.227 0.951 0. 0.85 y4 � y1 � y2 � y5 � y3

0.2 0.811 0.659 0.932 0. 0.961 y4 � y2 � y3 � y1 � y5 0.122 0.279 0.903 0. 0.866 y4 � y1 � y2 � y5 � y3

0.3 0.816 0.702 0.898 0. 0.941 y4 � y2 � y3 � y1 � y5 0.152 0.331 0.854 0. 0.883 y4 � y1 � y2 � y5 � y3

0.4 0.821 0.744 0.864 0. 0.922 y4 � y2 � y3 � y1 � y5 0.182 0.383 0.805 0. 0.9 y4 � y1 � y2 � y3 � y5

0.5 0.826 0.787 0.83 0. 0.902 y4 � y2 � y3 � y1 � y5 0.212 0.435 0.757 0. 0.917 y4 � y1 � y2 � y3 � y5

0.6 0.83 0.83 0.795 0. 0.883 y4 � y3 � {y1, y2} � y5 0.242 0.487 0.708 0. 0.933 y4 � y1 � y2 � y3 � y5

0.7 0.835 0.872 0.761 0. 0.863 y4 � y3 � y1 � y5 � y2 0.272 0.538 0.659 0. 0.95 y4 � y1 � y2 � y3 � y5

0.8 0.84 0.915 0.727 0. 0.844 y4 � y3 � y1 � y5 � y2 0.303 0.59 0.61 0. 0.967 y4 � y1 � y2 � y3 � y5

0.9 0.845 0.957 0.693 0. 0.824 y4 � y3 � {y1, y5} � y2 0.333 0.642 0.562 0. 0.983 y4 � y1 � y3 � y2 � y5

1.0 0.85 1. 0.659 0. 0.805 y4 � y3 � y5 � y1 � y2 0.363 0.694 0.513 0. 1. y4 � y1 � y3 � y2 � y5

5 0.0 0.787 0. 1. 0.176 1. y2 � y4 � y1 � {y3, y5} 0.056 0.147 1. 0. 0.806 y4 � y1 � y2 � y5 � y3

0.1 0.79 0.1 0.932 0.159 0.933 y2 � y4 � y1 � y3 � y5 0.087 0.205 0.95 0. 0.825 y4 � y1 � y2 � y5 � y3

0.2 0.793 0.2 0.864 0.141 0.867 y4 � y2 � y1 � y3 � y5 0.118 0.262 0.899 0. 0.845 y4 � y1 � y2 � y5 � y3

0.3 0.796 0.3 0.796 0.123 0.8 y4 � y2 � {y1, y3} � y5 0.149 0.32 0.849 0. 0.864 y4 � y1 � y2 � y5 � y3

0.4 0.799 0.4 0.728 0.106 0.734 y4 � y2 � y3 � y5 � y1 0.18 0.377 0.798 0. 0.884 y4 � y1 � y2 � y3 � y5

0.5 0.802 0.5 0.66 0.0881 0.667 y4 � y2 � y3 � y5 � y1 0.212 0.435 0.748 0. 0.903 y4 � y1 � y2 � y3 � y5

0.6 0.805 0.6 0.592 0.0705 0.601 y4 � y2 � y3 � y5 � y1 0.243 0.492 0.698 0. 0.922 y4 � y1 � y2 � y3 � y5

0.7 0.809 0.7 0.524 0.0528 0.534 y4 � y3 � y5 � y2 � y1 0.274 0.55 0.647 0. 0.942 y4 � y1 � y2 � y3 � y5

0.8 0.812 0.8 0.456 0.0352 0.467 y4 � y3 � y5 � y2 � y1 0.305 0.607 0.597 0. 0.961 y4 � y1 � y2 � y3 � y5

0.9 0.815 0.9 0.389 0.0176 0.401 y4 � y3 � y5 � y2 � y1 0.336 0.665 0.546 0. 0.981 y4 � y1 � y3 � y2 � y5

1.0 0.818 1. 0.321 0. 0.334 y4 � y3 � y5 � y2 � y1 0.367 0.722 0.496 0. 1. y4 � y1 � y3 � y2 � y5

10 0.0 0.998 0.604 1. 0. 1. y4 � y2 � y1 � {y3, y5} 0.045 0.068 1. 0. 0.671 y4 � y1 � y2 � y5 � y3

0.1 0.976 0.644 0.96 0. 0.979 y4 � y2 � y1 � y3 � y5 0.076 0.135 0.952 0. 0.704 y4 � y1 � y2 � y5 � y3

0.2 0.955 0.683 0.92 0. 0.957 y4 � y2 � y1 � y3 � y5 0.108 0.202 0.904 0. 0.737 y4 � y1 � y2 � y5 � y3

0.3 0.933 0.723 0.88 0. 0.936 y4 � y2 � y1 � y3 � y5 0.139 0.27 0.856 0. 0.77 y4 � y1 � y2 � y5 � y3

0.4 0.911 0.763 0.84 0. 0.914 y4 � y2 � y1 � y3 � y5 0.17 0.337 0.808 0. 0.803 y4 � y1 � y2 � y5 � y3

0.5 0.889 0.802 0.8 0. 0.893 y4 � y3 � y2 � y1 � y5 0.202 0.404 0.76 0. 0.835 y4 � y1 � y2 � y3 � y5

0.6 0.867 0.842 0.76 0. 0.871 y4 � y3 � y2 � y1 � y5 0.233 0.471 0.712 0. 0.868 y4 � y1 � y2 � y3 � y5

0.7 0.845 0.881 0.72 0. 0.85 y4 � y3 � y2 � y1 � y5 0.264 0.538 0.664 0. 0.901 y4 � y1 � y2 � y3 � y5

0.8 0.823 0.921 0.68 0. 0.829 y4 � y3 � y1 � y5 � y2 0.296 0.605 0.616 0. 0.934 y4 � y1 � y2 � y3 � y5

0.9 0.802 0.96 0.64 0. 0.807 y4 � y3 � y1 � y5 � y2 0.327 0.673 0.567 0. 0.967 y4 � y1 � y3 � y2 � y5

1.0 0.78 1. 0.6 0. 0.786 y4 � y3 � y1 � y5 � y2 0.358 0.74 0.519 0. 1. y4 � y1 � y3 � y2 � y5
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Table 9. Stability Analysis with Different Values of Parameters p and λ for the Evaluation of Renewable
Energy Sources.

Qd

Ranking
Qf

Ranking
p λ y1 y2 y3 y4 y5 y1 y2 y3 y4 y5

1 0.0 1. 0.788 0.872 0. 0.872 y4 � y2 � y3 � y5 � y1 0.299 0.336 1. 0. 0.641 y4 � y1 � y2 � y5 � y3

0.1 0.953 0.81 0.836 0. 0.862 y4 � y2 � y3 � y5 � y1 0.314 0.401 0.922 0. 0.677 y4 � y1 � y2 � y5 � y3

0.2 0.906 0.831 0.8 0. 0.852 y4 � y3 � y2 � y5 � y1 0.329 0.467 0.845 0. 0.713 y4 � y1 � y2 � y5 � y3

0.3 0.86 0.852 0.764 0. 0.843 y4 � y3 � y5 � y2 � y1 0.343 0.532 0.767 0. 0.749 y4 � y1 � y2 � y5 � y3

0.4 0.813 0.873 0.727 0. 0.833 y4 � y3 � y1 � y5 � y2 0.358 0.597 0.689 0. 0.785 y4 � y1 � y2 � y3 � y5

0.5 0.766 0.894 0.691 0. 0.823 y4 � y3 � y1 � y5 � y2 0.372 0.663 0.612 0. 0.82 y4 � y1 � y2 � y3 � y5

0.6 0.719 0.915 0.655 0. 0.813 y4 � y3 � y1 � y2 � y5 0.387 0.728 0.534 0. 0.856 y4 � y1 � y2 � y3 � y5

0.7 0.673 0.937 0.619 0. 0.803 y4 � y3 � y1 � y5 � y2 0.401 0.793 0.456 0. 0.892 y4 � y1 � y2 � y3 � y5

0.8 0.626 0.958 0.583 0. 0.794 y4 � y3 � y1 � y5 � y2 0.416 0.858 0.379 0. 0.928 y4 � y3 � y1 � y2 � y5

0.9 0.579 0.979 0.547 0. 0.784 y4 � y3 � y1 � y5 � y2 0.43 0.924 0.301 0. 0.964 y4 � y3 � y1 � y2 � y5

1.0 0.532 1. 0.511 0. 0.774 y4 � y3 � y1 � y5 � y2 0.445 0.989 0.223 0. 1. y4 � y3 � y1 � y2 � y5

2 0.0 1. 0.629 1. 0. 1. y4 � y2 � {y3, y5, y1} 0.178 0.106 1. 0. 0.66 y4 � y2 � y1 � y5 � y3

0.1 0.971 0.666 0.955 0. 0.995 y4 � y2 � {y3, y5} � y1 0.204 0.176 0.945 0. 0.694 y4 � y2 � y1 � y5 � y3

0.2 0.943 0.703 0.91 0. 0.991 y4 � y2 � y3 � y5 � y1 0.231 0.247 0.89 0. 0.728 y4 � y1 � y2 � y5 � y3

0.3 0.914 0.74 0.865 0. 0.986 y4 � y2 � y3 � y1 � y5 0.257 0.318 0.834 0. 0.762 y4 � y1 � y2 � y5 � y3

0.4 0.885 0.777 0.82 0. 0.981 y4 � y2 � y3 � y1 � y5 0.284 0.389 0.779 0. 0.796 y4 � y1 � y2 � y3 � y5

0.5 0.857 0.814 0.775 0. 0.977 y4 � y3 � y2 � y1 � y5 0.31 0.46 0.724 0. 0.83 y4 � y1 � y2 � y3 � y5

0.6 0.828 0.852 0.73 0. 0.972 y4 � y3 � y1 � y2 � y5 0.336 0.53 0.669 0. 0.864 y4 � y1 � y2 � y3 � y5

0.7 0.799 0.889 0.685 0. 0.967 y4 � y3 � y1 � y2 � y5 0.363 0.601 0.614 0. 0.898 y4 � y1 � y2 � y3 � y5

0.8 0.771 0.926 0.64 0. 0.962 y4 � y3 � y1 � y2 � y5 0.389 0.672 0.559 0. 0.932 y4 � y1 � y3 � y2 � y5

0.9 0.742 0.963 0.596 0. 0.958 y4 � y3 � y1 � y5 � y2 0.415 0.743 0.503 0. 0.966 y4 � y1 � y3 � y2 � y5

1.0 0.713 1. 0.551 0. 0.953 y4 � y3 � y1 � y5 � y2 0.442 0.814 0.448 0. 1. y4 � y1 � y3 � y2 � y5

3 0.0 0.861 0.403 1. 0. 1. y4 � y2 � y1 � {y3, y5} 0.189 0.106 1. 0. 0.666 y4 � y2 � y1 � y5 � y3

0.1 0.849 0.463 0.952 0. 0.995 y4 � y2 � y1 � y3 � y5 0.214 0.172 0.948 0. 0.7 y4 � y2 � y1 � y5 � y3

0.2 0.837 0.523 0.904 0. 0.99 y4 � y2 � y1 � y3 � y5 0.238 0.239 0.896 0. 0.733 y4 � y1 � y2 � y5 � y3

0.3 0.825 0.582 0.856 0. 0.985 y4 � y2 � y1 � y3 � y5 0.263 0.305 0.844 0. 0.766 y4 � y1 � y2 � y5 � y3

0.4 0.813 0.642 0.808 0. 0.979 y4 � y2 � y1 � y3 � y5 0.287 0.371 0.792 0. 0.8 y4 � y1 � y2 � y3 � y5

0.5 0.801 0.702 0.76 0. 0.974 y4 � y2 � y3 � y1 � y5 0.312 0.438 0.739 0. 0.833 y4 � y1 � y2 � y3 � y5

0.6 0.789 0.761 0.713 0. 0.969 y4 � y3 � y2 � y1 � y5 0.336 0.504 0.687 0. 0.866 y4 � y1 � y2 � y3 � y5

0.7 0.777 0.821 0.665 0. 0.964 y4 � y3 � y1 � y2 � y5 0.361 0.571 0.635 0. 0.9 y4 � y1 � y2 � y3 � y5

0.8 0.765 0.881 0.617 0. 0.959 y4 � y3 � y1 � y2 � y5 0.385 0.637 0.583 0. 0.933 y4 � y1 � y3 � y2 � y5

0.9 0.753 0.94 0.569 0. 0.954 y4 � y3 � y1 � y2 � y5 0.41 0.704 0.531 0. 0.967 y4 � y1 � y3 � y2 � y5

1.0 0.741 1. 0.521 0. 0.949 y4 � y3 � y1 � y5 � y2 0.434 0.77 0.479 0. 1. y4 � y1 � y3 � y2 � y5

5 0.0 0.813 0. 1. 0.263 1. y2 � y4 � y1 � {y3, y5} 0.173 0.0949 1. 0. 0.647 y4 � y2 � y1 � y5 � y3

0.1 0.802 0.1 0.924 0.237 0.959 y2 � y4 � y1 � y3 � y5 0.2 0.166 0.946 0. 0.682 y4 � y2 � y1 � y5 � y3

0.2 0.79 0.2 0.848 0.211 0.919 y2 � y4 � y1 � y3 � y5 0.227 0.237 0.892 0. 0.717 y4 � y1 � y2 � y5 � y3

0.3 0.779 0.3 0.772 0.184 0.878 y4 � y2 � y3 � y1 � y5 0.254 0.307 0.838 0. 0.753 y4 � y1 � y2 � y5 � y3

0.4 0.768 0.4 0.696 0.158 0.837 y4 � y2 � y3 � y1 � y5 0.28 0.378 0.783 0. 0.788 y4 � y1 � y2 � y3 � y5

0.5 0.756 0.5 0.62 0.132 0.796 y4 � y2 � y3 � y1 � y5 0.307 0.449 0.729 0. 0.823 y4 � y1 � y2 � y3 � y5

0.6 0.745 0.6 0.545 0.105 0.756 y4 � y3 � y2 � y1 � y5 0.334 0.52 0.675 0. 0.859 y4 � y1 � y2 � y3 � y5

0.7 0.733 0.7 0.469 0.079 0.715 y4 � y3 � y2 � y5 � y1 0.361 0.591 0.621 0. 0.894 y4 � y1 � y2 � y3 � y5

0.8 0.722 0.8 0.393 0.0527 0.674 y4 � y3 � y2 � y5 � y1 0.388 0.661 0.567 0. 0.929 y4 � y1 � y3 � y2 � y5

0.9 0.71 0.9 0.317 0.0263 0.633 y4 � y3 � y5 � y1 � y2 0.415 0.732 0.513 0. 0.965 y4 � y1 � y3 � y2 � y5

1.0 0.699 1. 0.241 0. 0.593 y4 � y3 � y5 � y1 � y2 0.442 0.803 0.459 0. 1. y4 � y1 � y3 � y2 � y5

10 0.0 1. 0.692 0.925 0. 0.925 y4 � y2 � y3 � y5 � y1 0.128 0.128 1. 0. 0.605 y4 � y1 � y2 � y5 � y3

0.1 0.966 0.723 0.885 0. 0.922 y4 � y2 � y3 � y5 � y1 0.159 0.199 0.945 0. 0.644 y4 � y1 � y2 � y5 � y3

0.2 0.932 0.754 0.844 0. 0.918 y4 � y2 � y3 � y5 � y1 0.19 0.269 0.89 0. 0.684 y4 � y1 � y2 � y5 � y3

0.3 0.899 0.784 0.803 0. 0.914 y4 � y2 � y3 � y1 � y5 0.222 0.339 0.835 0. 0.723 y4 � y1 � y2 � y5 � y3

0.4 0.865 0.815 0.763 0. 0.91 y4 � y2 � y3 � y1 � y5 0.253 0.41 0.78 0. 0.763 y4 � y1 � y2 � y5 � y3

0.5 0.831 0.846 0.722 0. 0.907 y4 � y3 � y1 � y2 � y5 0.284 0.48 0.725 0. 0.802 y4 � y1 � y2 � y3 � y5

0.6 0.797 0.877 0.682 0. 0.903 y4 � y3 � y1 � y2 � y5 0.315 0.55 0.67 0. 0.842 y4 � y1 � y2 � y3 � y5

0.7 0.764 0.908 0.641 0. 0.899 y4 � y3 � y1 � y2 � y5 0.347 0.621 0.615 0. 0.881 y4 � y1 � y3 � y2 � y5

0.8 0.73 0.938 0.601 0. 0.896 y4 � y3 � y1 � y5 � y2 0.378 0.691 0.56 0. 0.921 y4 � y1 � y3 � y2 � y5

0.9 0.696 0.969 0.56 0. 0.892 y4 � y3 � y1 � y5 � y2 0.409 0.762 0.505 0. 0.96 y4 � y1 � y3 � y2 � y5

1.0 0.662 1. 0.519 0. 0.888 y4 � y3 � y1 � y5 � y2 0.44 0.832 0.45 0. 1. y4 � y1 � y3 � y2 � y5
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6. Comparison Analysis

In this section, we compared the results of our proposed methods with the existing methods.
First, we compare our methods with Feng et al. [14]. Feng et al. [14] proposed the method to solve

MADM problems using GIFSS. He used the Xu’s weighted averaging operator for IFVs to aggregate
the information [50]. The ranking of the alternatives for solving the problem of renewable energy
source selection with Feng’s model is y4 � y1 � y3 � y2 � y5.

Khan et al. [46] proposed a method to solve the MADM problems by using a soft discernibility
matrix for GIFSSs. The ranking of the alternatives for solving the problem of renewable energy source
selection with Khan’s model is y4 � y3 � y1 � y2 � y5. In both approaches, the alternative y4, i.e., the
hydro-power remains the best alternative for renewable energy sources. When we solve the renewable
energy source selection problem with proposed algorithms, we also obtained the y4 as the best option.
But the rankings obtained by using the Algorithms 1–4 are different from the proposed methods.
The reasons are to choose the different ideal values and weights.

The Table 10 shows the comparison of the proposed method with different already proposed
methods. The alternative y4 obtained the best option from all methods. The rankings obtained from
the proposed methods are slightly different from the already proposed methods.

Table 10. Comparison Analysis.

Method Operator/Method Used Developed Ranking

Feng et al. [14] Extended Intersection, IFWA y4 � y1 � y3 � y2 � y5

Khan et al. [46] Soft Discernibility Matrix y4 � y3 � y1 � y2 � y5

Xu [50] IFWA Operator y4 � y3 � y1 � y2 � y5

Xu and Yager [51] IFGW Operator y4 � y1 � y3 � y2 � y5

Wang and Liu [55] IFWA Einstein Operator y4 � y3 � y1 � y2 � y5

Zhao et al. [56] GIFWA Operator y4 � y3 � y1 � y2 � y5

Garg [57] PFEWA Operator y4 � y3 � y1 � y2 � y5

Yager [58] PFWA Operator y4 � y3 � y1 � y2 � y5

Yager [58] PFWG Operator y4 � y1 � y3 � y2 � y5

Proposed VIKOR Algorithm 1 y4 � y2 � y3 � y1 � y5

Proposed VIKOR Algorithm 2 {y4, y2} � y3 � y1 � y5

Proposed VIKOR Algorithm 3 y4 � y2 � y3 � y5 � y1

Proposed VIKOR Algorithm 4 y4 � y1 � y2 � y3 � y5

We obtained the same order by using Algorithm 2 as References [14,51,58] for p = 1, λ = 0.7− 1.0,
p = 2, λ = 0.8 − 1.0, p = 3, λ = 0.9 − 1.0, p = 5, λ = 0.9 − 1.0 and p = 10, λ = 0.9 − 1.0
(Table 8). Similarly, we obtained the same order by using Algorithm 4 for p = 2, λ = 0.8− 1.0,
p = 3, λ = 0.9− 1.0, p = 5, λ = 0.8− 1.0 and p = 10, λ = 0.8− 1.0 (Table 9).

Also, we obtained the same order by using Algorithm 1 as References [46,50,55–58] for p =

1, λ = 0.6− 0.8, p = 2, λ = 0.8− 1.0 and p = 3, λ = 0.6 (Table 8). Similarly, by using Algorithm
3 for p = 1, λ = 0.6, p = 3, λ = 0.9 − 1.0, p = 2, λ = 0.6 − 1.0, p = 3, λ = 0.7 − 0.9 and
p = 10, λ = 0.5− 1.0 (Table 9), the order is same is obtained.

From Table 11, we have seen that the ranking coincides with the already proposed methods for
higher values of the parameter λ. This shows that the already proposed methods support the voting
by majority or maximum group utility.

From Table 11, we have seen that the proposed method is more general. The previously proposed
methods aggregate the information and provide the best alternative only with the voting by majority
or maximum group utility. While the proposed method covers all aspects of the decision making,
i.e., the voting by a majority, consensus, and veto by choosing different values of the parameter λ.
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Table 11. Coincide Ranking for the Parameters p and λ.

Method Algorithm Coincide Ranking for the Parameters p
and λ

Feng et al. [14] Xu and Yager [51] Yager [58] Algorithm 2 p = 1, λ = 0.7− 1.0 p = 2, λ = 0.8− 1.0
p = 3, λ = 0.9− 1.0 p = 5, λ = 0.9− 1.0
p = 10, λ = 0.9− 1.0

Algorithm 4 p = 2, λ = 0.8− 1.0 p = 3, λ = 0.9− 1.0
p = 5, λ = 0.8− 1.0 p = 10, λ = 0.8− 1.0

Khan et al. [46] Xu [50] Wang and Liu [55]
Zhao et al. [56] Garg [57] Yager [58]

Algorithm 1 p = 1, λ = 0.6− 0.8 p = 2, λ = 0.8− 1.0
p = 3, λ = 0.6

Algorithm 3 p = 1, λ = 0.6− 0.6 p = 3, λ = 0.9− 1.0
p = 2, λ = 0.6− 1.0 p = 3, λ = 0.7− 0.9
p = 10, λ = 0.5− 1.0

7. Conclusions

The concept of GIFSS has redefined and clarified by F. Feng. In this paper, we have introduced the
Euclidean, Hamming, and generalized distance measures for GIFSSs and discussed their properties.
The numerical examples of decision making and pattern recognition have discussed based on the
proposed distance measures. We also developed a remoteness based VIKOR method for GIFSSs.
The displaced and fixed ideal IFVs have defined. The displaced and fixed remoteness indexes have
defined for IFVs. The four new ranking indexes based on the displaced and fixed ideals displaced and
fixed remoteness indexes, and precise and IF importance weights have defined. Different procedures
of obtaining precise and IF importance weights have discussed. Four algorithms based on the new
ranking indexes, displaced and fixed ideals, displaced and fixed remoteness indexes, and precise and
IF importance weights have been proposed. The four algorithms representing the four remoteness
based VIKOR methods. In the end, the selection of renewable energy sources problem is solved by
using the above proposed four algorithms representing the four remoteness-based VIKOR methods.
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