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Abstract: We present an extension and a deepened analysis of a suggested experimental scheme
for detecting atomic parity violation, previously published in Phys. Rev. A 2019, 100, 050101.
The experimental concept is described in more detail and we compute new ab initio data necessary
for assessing the plausibility of the approach. Original theoretical data for transition matrix elements
on the electric dipole forbidden transition in caesium 6s 2S;,~5d 2D;,, are reported, as are a range of
electric dipole matrix elements connected to the ground state 6s. The latter is used for an analysis of the
wavelength-dependent light shift in Cs. A range of experimental details is presented, combined with
a survey of realistic lasers parameters. These are adopted to project the feasibility of the scheme to
eventually be capable of delivering data beyond the standard model of particle physics.

Keywords: atomic parity violation; optical lattices; fundamental physics; precision spectroscopy;
caesium; many-body quantum physics; Dirac-Hartree-Fock; relativistic coupled-cluster; light shift

1. Introduction

The role of symmetry is central in the standard model (SM) of elementary particle physics [1,2].
The argument that a symmetric conservation law may not apply to the parity of the wave functions of
physical systems was published in 1956 by Tsung-Dao Lee and Chen-Ning Yang [3]. In the following
year, clear experimental proofs of parity violation were reported by Chien-Shiung Wu and her group [4].

While parity non-conservation (PNC) has frequently been studied at high energies (see e.g., [5]),
the opportunity of using atomic or molecular systems for experimental surveys at the other end of the
energy spectrum was introduced by Bouchiat and Bouchiat [6,7]. The week interaction was predicted
to have a subtle influence on atomic spectra, and with a carefully designed high-precision experiment,
combined with leading-edge theoretical computations of atomic parameters, such studies constitute
tests of the SM.

The effect is very subtle. For light and medium-size atomic species, they are well beyond being
possible to detect by current spectroscopic technology. However, the influence of PNC effects increases
rapidly for increasing nuclear mass, at least as Z* (with Z the atomic number) [6]. For heavy atoms,
the feasibility for detection is still difficult, but not entirely excluded.
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Heavy atoms, however, carry the drawback that atomic ab initio calculations, crucial for the
interpretation of the results, are more difficult for large Z because of the increased importance of
relativistic effects. For this reason, many experimental attempts, or suggestions, to observe atomic
PNC employ alkali atoms or the isoelectronic ions. The sole valence electron greatly facilitates exact
computations, and at the same time, the relatively simple energy level spectra of alkalis also imply
considerable experimental advantages.

In the context of atomic spectra, the way in which the parity violation shows up can be divided into
two categories (see e.g., [8,9]). One is a nuclear spin-independent (NSI) effect caused by the exchange
of a Zy-boson between the electronic charge cloud and the nucleus. The counterpart, the nuclear
spin-dependent effect (NSD) is also connected to a neutral Zyp-current, but it is hypothesised that it has
another contributing effect, namely a nuclear anapole moment. The latter has been predicted [10,11],
but an unambiguous experimental demonstration is still lacking.

Important experimental advances in the field have been made. Typically, the extreme demands on
precision and control of systematic effects make the progress gradual and incremental. A well known
study by Wood et al. [12] used a Stark induced transition on the spectral line 6s 2s; /278 2s; /2 [12],
and claims the observation of an NAM. The latter, however, does not fully agree with independent
studies approaching the issue from a nuclear physics approach [13,14]. Another species amenable for
precision studies is Yb, as exemplified in the experiment on the line 6s? 1Sy-5d6s 3Dy in [15], and in the
recent work [16].

When devising an experimental survey of PNC, one must consider that there is no direct path
for detection. The PNC Hamiltonian will reveal itself as a mixing of atomic states of opposite parities.
While this means that there is no direct clean transition amplitude to study, the PNC coupling
will interfere with weak transitions, electric dipole (E1) forbidden, driven by some higher-order
electromagnetic moment, typically the electric quadrupole (E2) or the magnetic dipole (M1).

In [17], we reported on a novel suggestion for how to perform an atomic PNC experiment,
with enough accuracy for obtaining an unequivocal signature of parity violation and a measured value
of the nuclear weak charge Qw. It is based on trapping a large ensemble of neutral atoms in an optical
lattice at specifically tailored detection sites, following an idea introduced by Fortson for single trapped
ions [18]. Within a realistic sampling time, the accuracy should be sufficient to make the experiment a
critical probe of the SM, and ideally to an exploration of physics beyond the SM. While the underlying
idea is general, we used as a case study a NSI effect of the transition 6s2S;/,-5d 2Ds/, in neutral'33Cs.

In the present paper, we report on a more profound study of this proposed experiment, on the
one hand focusing on more experimental details, and on the other hand, we report new improved
theoretical data for the relevant PNC and E2 transition matrix elements. Thereby, we provide a
road map for a realisation of the experiment in the near future. We also briefly extend the analysis
by including alternative geometries and the applicability of the method to other species than Cs.
To further the feasibility study, and a future interpretation of data, we have also extended the theoretical
calculations to include a large number of E1 matrix elements coupling the ground state to a series of
higher-lying states. This provides a critical measure of the light shift in the optical lattice, and this
study is here extended to study of the optical wavelength dependence of the E1 light shift.

2. Experimental Methods

In this section, we will describe the experimental scheme. This is divided into two parts: the first
explains the optical field geometries needed to periodically trap the atomic ensemble and to design
a commensurate lattice of suitable detection volumes. The second is one detailing a spectroscopic
scheme for detection of NSI PNC. The projected PNC signature will be described in Section 4.

2.1. Light Field Geometry

Our experimental approach is an adaptation to a large sample of neutral atoms of the scheme
originally developed by Fortson [18] for a single trapped ion. In the latter case, the ion is held in a tight
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secular orbit, relative to the wavelength of an applied light field. The light is two crossed standing
waves, one of them having an intensity maximum in the trapping volume and the other having a node
at the same location, as shown in Figure 1.

Figure 1. Experimental blueprint introduced by [18]. A single ion is held in a tight secular orbit,
defining an interaction region (grey central circle in the figure). This is intersected by two standing
waves of equal wavelength light, resonant with an E2 transition. One wave (blue in the figure) has an
intensity maximum at the site of the ion, maximising the PNC perturbation, whereas the other (red)
has a node, thereby providing a local maximum for an E2 transition amplitude. The light wavelength
must be large relative to the interaction region.

The two fields should both be resonant with an electric dipole forbidden transition. In both the
seminal paper by Fortson and in our adaptation to an optical lattice configuration, the transition in
question is from a 6s ground state to one of the fine-structure levels of the 5d state. In our case, this is
in neutral Cs and in [18] it refers to the isoelectronic Ba*. The field having a node will address an E2
resonance and since the latter scales with the gradient of the field amplitude, it being driven at a field
node maximises the induced E2 light shift.

The orthogonal field, with an anti-node overlapping the trapping volume, excites a weak E1 light
shift induced by the parity violating mixing of both the 6s and 5d levels with a progression of p and f
levels. The corresponding matrix element is of the following form:

¥sd|H1[¢k) (Yx|Hpne|Wes) ny ($sa|Hpnel¥r) (¥x|HE1|ss) )
p

{
ApNe (Pos <> Ps5q)

The sums are taken over all states with opposite parity to 6s and 5d.

Provided that the interaction volume (in [18] corresponding to the localisation of the trapped ion) is
small compared to the resonant wavelength, the ion experiences the two approximately homogeneous
Rabi frequencies [19]:

1 851 r
Op = 5 Y (Ag)i, lax()]
i,j I Jr=0

1
and Qpnc = o Y (Apnc)i Ei(r=0), )
i

where the indices represent the Cartesian coordinates and the tensor elements (Agz);;j and (Apnc);
are the E2 and PNC amplitudes respectively.
The two interactions in Equation (2) combine to a total light shift given by:

AE = 14/|Og + Opnel?

h Re [QEZ QT’NC]

~hQp +
E2 Om

= Wg2 + Wpne - 3)
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In the second line, the independent contribution of Qpyc has been ignored. It is too small to be in
reach of experimental detection. However, the interference term, which we have labelled Wpnc
can be accessible for measurements, provided that all systematic effects may be controlled ans
discriminated against.

Applying the Fortson Scheme to a Large Sample on Neutral Atoms

While the scheme with a single ion benefits from the long integration time possible in an ion
trap, the sample size of one is a problem. The scheme introduced in [17] confronts this problem by
suggesting to trap a large sample of neutral atoms in a two-dimensional optical lattice. The crux with
this is that every single atom must then be trapped, and well localised, around a point which fulfils the
characteristics illustrated in Figure 1.

To accomplish this, the two crossed standing waves driving E2 and PNC amplitudes can still be
applied in the same way. This will necessarily lead to a two-dimensional detection lattice, consisting
of points where an optimised detection of the Fortson type is favoured. The experimental problem
that leaves behind is then to devise a scheme that assures that every atom in a sample is well localised
around a good detection point in the same 2D-plane.

This calls for a 2D optical lattice, and there is more than one way to design an optical lattice to
fulfil the criterion in the previous paragraph. When doing this optical engineering, the element and
the energy level structure in question must be considered. Additionally crucial is the interplay of beam
geometry and polarisations, not only of the optical lattice beams but also of the E2 and PNC fields.
This will determine spectroscopic selection rules.

The scheme we suggest is specifically designed for caesium and a detection of NSI light shift on
the spectral line 6s 2S /,-5d ?Ds/,—see Figure 2.

E/cm!
7528,
15000 - _5d’Dy,
5d 2Dy,
10 000 -
5000
0 —

Figure 2. Partial Grotrian diagram, showing the four lowest electronic configurations in Cs. Indicated
by the blue arrow is the E2 allowed transition 6s 25, /,~5d 2D3/2 at Agq = 689.5 nm. The thick red arrow
shows the wavelength of the optical lattice light (A, = 975.1 nm, see text). This is well below the D1
and D2 resonances to the 6p configuration.

The proposed optical beam geometry is illustrated in Figure 3.
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Figure 3. Proposed light field configurations. The red and blue arrows represent cavity enhanced
standings waves, aligned at 71/4 with the &, and &, axes. These excite respectively E2 and parity
non-conservation (PNC) transition amplitudes (see Equation (2) and Figure 2). They have mutually
orthogonal linear polarisations, and are resonant with the 6s-5d transition. The green arrows show
optical lattice beams, linearly polarised along &y.

The E2 and PNC laser beams are resonant with the selected spectral line at Agq4 = 689.5 nm,
and both these cavity-enhanced standing waves are aligned in the xz-plane at angles of 7/4 relative
to the quantisation axis &,. The four optical lattices are along the é, and &,-axes, polarised along
&y and tuned to a frequency exactly equal to the square root of two below the sd-resonance,
Aol =AsqV2 = 975.1 nm.

The electric fields of all laser beams are described by the equations:

& A A oA
Ealr, t) = 701 &y {exp[—lkol éy-r]+expliky éyr]+exp[—ikgy é;-1]

+ exp[ikg é;1] } elwol 1 cc. 4)
SEZ A A iksd A A iksd A A : iwgqt
Ep(r,t) = Wi (éx—&;) < exp 1 (éx+8é;)-r| +exp 7 (éx+&;) r+im| pe“sd +cc. (5)

Epnc(rt) = iPN\/EC (éx+eéz) {exp |:_1\k/s§d (éx—e;) ’r] +exp [\l/ki
The three factors £, with the respective subscripts, are the amplitudes of the electric fields for the
optical lattice, the E2 and PNC excitations. The w’s are angular frequencies and the k =w/ c the angular
wave numbers. The relative phase of 77 in £, ensures that a nodal plane crosses the origin. For all
beams, the temporal phases have to be interferometrically controlled. Since all laser beams appear in
counter-propagating pairs, there is no need to lock the relative phase between the two lasers at Agq
and Aj. Any global phase drift in any of them will appear equally in all arms, meaning that all phase
drifts before the respective beams are split will cancel (see [20] or [21]).

As in Figure 1, the setup generated by Equations (5) and (6) gives us two orthogonal standing
waves, one driving an E2-transition and the other one inducing a PNC light shift. The difference is
that, instead of limiting the field of view to one point in space, we look at the entire plane spanned
by the two beams. This will have a periodic pattern of points fulfilling the detection requirements
(E2 nodal point overlapping a PNC anti-nodal point).

In order to ensure a uniform irradiance in the interaction region, the E2 and PNC beams should
have a near-flat distribution, using techniques such as, for example, in [22] or [23]. This should give an
interaction region of approximately the cube of the E2 and PNC beam diameters. In addition, to remove

(éx—éz)-r] } el@sal 4 oce. | (6)
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atoms lingering outside the detection volume, clean-up beams resonant at the D1 and D2 lines should
be focused to the regions directly outside the volume, directly before the spectroscopic measurement.
Also for the optical lattice, it is beneficial with an irradiance distribution in the interaction region as
homogeneous as possible.

The optical lattice will ensure that every atom in the sample is tightly confined in the 2D-plane
around a valid detection point. The configuration in Equation (4) yields a square optical lattice with
the light shift potential [24-26]:

U(r) = Uy [cosz(kolx) + cos? (koiz) + 2 cos(kopx) cos(kolz)] , (7)
where U is the light shift at irradiance maxima. In Figure 4, we show an illustration of the overlapping

grids of trapping and detection sites. There will be detection point that do not have an atom, but this is
of no consequence.

Figure 4. Left: Two overlapping orthogonal standing waves (red for the E2-field and blue for the PNC
field) generate a 2D grid of points optimised for detection of PNC. Full lines represent anti-nodal
planes and dotted ones nodal planes. At the ideal detection sites (purple circles), the PNC field has
irradiance maxima, whereas the E2 field has a node—with a maximally steep gradient. Right: Optical
lattice sites are shown as filled, green concentric circles. All of these will coincide with an idea detection
point (purple crosses). The gradual green shading represents the irradiance modulation around the
lattice sites.

The experimental sequence will be initiated by atoms being accumulated in a magneto-optical trap
(MOT). The thermal motion will then be reduced by three-dimensional laser cooling to temperatures
of the order of 1 pK. The final preparatory step is then to adiabatically transfer them to the optical
lattice in Equation (4).

For all involved laser beams, it will be critical to have sufficient power. The final PNC signature
will scale as the square root of the irradiance—see Equation (2). For the optical lattice, higher irradiance
means tighter confinement. Ideally, the atoms should be trapped in the Lamb-Dicke regime. This keeps
them confined in an area in the 2D-plane small compared to Ag ’e

Intense lasers, for all beams, also facilitates uniform Rabi frequencies and potential depths.
In Section 4, we provide a case study where we, as an example, assume lasers close to the limit to what
is currently commercially available.

2.2. Spectroscopic Detection Scheme

In order to achieve an unambiguous experimental signature of PNC, two main hurdles have to
be overcome:

1.  The detection scheme must isolate the parity-violating component of the total signal.



Symmetry 2020, 12, 974 7 of 22

2. Aplethora of systematic effects have to be confronted.

To this effect, we suggest employing a spectroscopic scheme inspired by [27]. The core idea is to
measure several splittings in the ground-state manifold of Zeeman sublevels, with opposite signs of the
angular momentum projection Mr. This will all but eliminate the main systematics effects, namely the
E1 light shift induced by the trapping potential, the linear Zeeman shift and the pure E2 light shift
contribution in Equation (2). The only linear effect that will not be eliminated, when comparing the
mirrored spectral signals, is the parity-violating contribution. In this particular scheme that we present,
an NSI PNC signature is isolated, and we have selected the resolved hyperfine structure (hfs) transition
F = 4 + F' = 5 on the line 6525, /,—5d 2D3/2. This leaves us with nine Zeeman states (Mp) in the
ground state, see Figure 5. We assume that the sample has been initially optically pumped, in order to
leave the majority of the population in 6s2Sy/,, F = 4.

i ME'=+5
542Dy, , F'=5 oy M =3 M=
32 5 / Mp'=+2 "=
M=o Mr=tl"——
M= -1 i —_—
Me'=-2 2L -
’ F
M =-4 Mr=3
Mr'=-5 "
7777777777 Raman spectroscopy
=> ORaman
Mrp=+4
Mp=+3
Mr=+2
0 Mr=+1 RF spectroscopy
Mr=-2 3 = = ORFa
Mr=-3
Mr=-4

6s2S,,,F=4

RF spectroscopy
= ORFb
Figure 5. Detailed energy level scheme of the spectral line 6s2S/,-5d D5/, including all involved
Zeeman levels (Mr). The degeneracy is broken, as shown in Equation (9). Our spectroscopic detection
scheme is illustrated by the arrows. The blue ones correspond to radio-frequency (RF)-spectroscopy
of the two level splittings 71 wrp, = AE(4+4)—AE(43) and % wrgp = AE(—4) —AE(—3), and the par of
green arrows the Raman spectroscopy of fi Wraman =AE(+1)—AE(—1).

To pinpoint NSI we need the E2 and PNC fields to drive AMf = 0 transitions. The polarisations
and the beam propagation directions in Equations (5) and (6), and in Figure 3, have been chosen with
this in mind. The PNC beam polarisation will drive 7r-transitions. For the E2 field, AMr = 0 will
be strongly favoured, and AMr = +1 will be completely suppressed (see [19]). The lingering small
AMF = £2 transition probability will be eliminated by adding a bias field of minimum 3 mT along é,.
That will shift spin-changing transitions sufficiently out of resonance. This field will also serve the
purpose of fixing the quantisation axis.

The total M dependent light shift in the 6s2S;/, ground state of an atom trapped in the optical
lattice, and interacting with the detection field, is:

AE(MF) = MpEz + Eqz,m + Ugm + WezMm + Wenem - (8)

The two last terms are the light shifts from Equation (3) and we have assumed that the the
corresponding light is exactly on the resonance Ayq. Up s is the E1 light shift at the centre of the
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trapping volume, induced by the optical lattice. We assume that the atoms are sufficiently tightly
confined to consider this as uniform. Ez and Eqz v are Larmor frequencies in energy units due to,
respectively, the linear and quadratic Zeeman effect. With ‘quadratic Zeeman effect” we here refer
to the quadratic term arising in the intermediate region between the weak Zeeman effect and the
Paschen—Back effect (see e.g., [28]).

The series of levels shift in both ground and excited states as illustrated in Figure 5. The shifts for
the ground state levels are:

AE(4+4) =4Ez+ Ups + Wra3 + Wopnca

AE(+3) =3Ez + qur3 + Upz + Wg23 + Wpnes
AE(+2) =2Ez + Eqz2 + Up2 + Wra 2 + Wene,2
AE(+1) = Ez+Eqz1+ Uo1 + W21 + Wenca

AE(0) = Egzo+ Uop + Wez,0 + Wenco )

AE(—1) = —Ez + Eqz,-1+ Up1 + W21 — Wenc
AE(=2) = =2Ez+ Eqz,—> + Uo2 + Wrz2 — Wene2
AE(—3) = —3Ez+ Eqz,3 + Uos + Wrz,3 — Wene3
AE(—4) = —4Ez + U4 + We23 — Wpnca -

It should be noted that the E2 light shifts are the same for the states Mp = +3 as for Mp = +4.
The AMp = 0 transitions for these states have the same Clebsch-Gordan coefficients.

The relative energies of the manifold of Zeeman states should now be accurately measured.
The PNC shift will bring about a subtle break in the symmetry apparent in Figure 5, and with a careful
choice of measurements of splittings, this could be uncovered form the other effects. A schematic
illustration of our proposed scheme is included in the lower part of Figure 5.

2.2.1. RF and Raman Spectroscopy

The specific Zeeman splittings that we pinpoint are Mp = —4 <> Mr = -3, Mr = -1+ Mp =1
and Mr = 3 <+ Mf = 4 (see Figure 5). The two at the stretched ends of the manifold will be addressed
with radio-frequency (RF) spectroscopy (see [19] for details). Specifically, this should be done by
Ramsey spectroscopy with a combination of a microwave radiation at 9.2 GHz (the ground state hfs
splitting) and induced fluorescence. The suitable measurement duration is the lifetime of the 5d level
(approximately one microsecond [29]). This will yield two spectra, respectively centred on the energies:

hwRF’a = AE(+4) — AE(+3)
and fwggp = AE(—4) — AE(-3), (10)

The remaining Zeeman state energy difference needed is Mr = —1 <+ M = 1. Itis not easily
accessible by RF spectroscopy. Instead, with two laser beams of equal irradiance and a small and
tunable relative detuning, a spectrum is acquired by stimulated Raman spectroscopy. The balancing
of the intensities eliminates additional light shifts caused by the Raman beams. The central energy
will be:

t WRaman = AE(+1) _AE(_l) : (11)

The cancellation of systematic effects is a crucial feature of the scheme. To optimise this,
the spectroscopies should be made all at once, following ideas developed by the atomic clock
community, see [30].
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2.2.2. Isolation of the PNC Signature

The central angular frequencies in Equations (10) and (11) should be combined as:

h (wRF,a — WRFb — wRaman)
= (Wpncs — Wenes — Wenep) + Eqz
= hweps + Eqz . (12)

The subtraction of signals in Equation (12) leaves us with one spectral signature which is the
PNC signature that we will eventually want to isolate. Remaining in Equation (12) is the quadratic
part of the Zeeman shift, which is insensitive to mirroring spectroscopy. The latter shift will remain
a considerable systematic effect. It will have to be controlled by minimising ambient fields and by a
spectroscopic in situ determination of the remnant shift. Techniques for how to further minimise this
error contribution are explained in [31].

In Section 4, we will combine the expression in Equations (9) and (12) with theoretical
computations of the relevant transition matrix elements (see Section 3) in order to estimate an expected
final result.

3. Theoretical Methods

To calculate transition matrix elements, we consider an atomic Hamiltonian (H,;) emerging from
the Dirac-Coulomb interactions. Thereby, we account for the relativistic and electron correlation effects
in the calculations of atomic wave functions. In atomic units (a.u.), this is given by:

Hat:z C"‘i'Pz’"‘(ﬁi—l)cz‘FVn(T’i)‘f‘Zvc(l”ij) , (13)

i j>i

with & and B being the Dirac matrices (see e.g., [1]). Vi(r) represents the nuclear potential and

Ve(rij) = rl is the Coulomb interaction potential for one electron pair. To evaluate the nuclear charge
if

density pn(7) and Vi (r), we consider the Fermi-charge distribution defined by [32]:

pn(ri) = Hei)ﬁ : (14)

Here, py is a normalisation factor, and the half-charge radii b and a = 2.3/4(In 3) are related to
the skin thickness. We have used the value b = 5.670729105 fm [33] in our calculations.

The ground state electronic configuration of neutral Cs is [5p®]6s (see Figure 2). The configurations
of low-lying excited states differ only with respect to the valence 6s orbital being replaced by
another one. Atomic wave functions of these states can be conveniently determined by considering
the closed-shell electronic configuration first, and then appending the respective valence orbital.
We consider the Dirac-Hartree-Fock (DHF) method as a path to obtain the mean-field wave function
(|®o)) of the [5p®] configuration. The DHF wave function of the relevant atomic states of Cs atoms are
then defined by |¢,) = a}|®Py) with a], representing the respective appended valence orbital v.

The single particle orbitals of this DHF wave function are defined as [34]:

_ 1 PH,K(”) XK,m(gr(P)
§0n,x,m(7’, 9’¢) o7 (i Qn,K(r) Xk,m(9f¢)> ’ 15

where P, «(r) and Q, « () are the large and small component radial functions, while xy, (6, ¢) and
X—xm(0,¢) are the respective four component spinors for the principal quantum number 7 and the
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relativistic angular momentum quantum number x. The radial components are constructed using
Gaussian type orbitals (GTOs) [35]. That is:

P”K ZCKkgKk (16)

and

Q”K ZCKkgKk ) (17)

where k sums over the total number of GTOs (Nj) in each symmetry, C}%S are the unknown

coefficients that need to be determined and g%s are the GTOs for the large (L) and small (S)
components, respectively.
The GTOs for the large radial component are defined as:

ghi(r) = NL e ) (18)

where NI, represents a normalisation constant, 77, is an arbitrary coefficient suitably chosen for accurate
calculations of wave functions and [ is the orbital quantum number of the orbital. The exponents
form an even-tempered series,

M=, (19)

in terms of the parameters 7 and .
However, GTOs for the small radial component are defined by implementing a kinetic balance
condition as

d «
S S L
Sex(r) = N2y (dr + r) Sek(r) (20
with the corresponding normalisation constant N>, > . In Table 1, we give the list of 779 and { parameters,

along with Nj for each symmetry used in the present calculations.

Table 1. Lists of 7y, { and number of Gaussian type orbitals (GTOs) (Ni) used to define the basis
functions for different symmetries in the construction of single particle orbitals in the present
calculations. In the bottom row, we also give the number of active orbitals (Ny) allowed to participate
in the estimation of electron correlation effects, using the RCCSD method.

s P d f g h i
1o  0.00009 0.0008 0.001 0.004 0.005 0.005 0.005
¢ 2.15 2.15 2.15 2.25 2.35 235 235
Ni 40 39 38 37 36 35 33

Nv 1-19 2-19 3-19 417 515 6-13 7-13

The interaction Hamiltonian due to the NSI PNC interaction is given by [36]:

H11>TI\SIIC = 2\% QW rs Pn(”) = /\Hweak s (21)

where Gy is the Fermi constant and s is the product of the four Dirac matrices. In the above expression,
we have defined Hy,e,x by considering A = 2?—% Qw. Owing to the odd parity of the H,ye,x interaction,
the Apnc amplitude between the same nominal parity |¥;) and |'¥¢) states is given by:

(Y¢|Hg1|¥5)

) (22)
(Fel¥e) (YilYi)

Apne =
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Since HII,\TI\SIC is very weak with respect to the main structural Hamiltonian, Hyt, the eigenfunction
(|'¥»)) to the total Hamiltonian H = Hat + AHyeqk, and its energy (E;), can be expressed as:

1¥.) = [F) + A[E) + 0(A2)
and

E, = EY + A¥Y) + 012, (23)

where the superscripts 0 and 1 represent the zeroth-order and first-order perturbation contributions
due to Hyeak- By neglecting O(A?) contributions, we get:

W Hg ¢ + (¢ | Hg, 2V

ApNC ~ (24)
0) 0) 0 0
¢ 4| ><‘f§ %)
In the sum-over-states approach, the first-order wave function is then written as
(1" Hyear ¥3)
)= 3 1)) 25)
I#n E;SO) — E}O)

The limitation of this approach is that, in an actual calculation, it is only possible to include
contributions from a few low-lying valence excited bound states, by calculating them individually
using a suitable many-body method. However, to achieve high accuracy for Apnc calculations, it is
often necessary to include contributions from the core and continuum states. Again, core-polarization
effects simultaneously due to the PNC interaction Hamiltonian and the dipole operator cannot be
included in a sum-over-states approach.

The above problems are circumvented by obtaining the first-order perturbed wave functions
for the initial and final states directly. From the equation H|¥,) = E,|¥,), the first-order wave
function satisfies:

(Hat — ES) [8)) = (B — Hygear) [¥5)) . (26)

To account for the electron correlation effects to all-orders, we apply relativistic coupled-cluster
(RCC) theory, in which the exact wave function of the [5p6] configuration is expressed as [37,38]:

[¥o) = e |[®g), 27)

where T is the particle-hole excitation operator. For states described by the [5p°] closed core
configuration and the valence orbital (v), the atomic wave function can be expressed in the RCC
theory as [39]:

[¥o) = e 5 |®,)
=el {1+5,}|D,), (28)
where S, is another RCC operator, which excites the valence orbital to a virtual orbital and a

valence-core pair to the unoccupied virtual orbitals.
To obtain the unperturbed and perturbed wave functions, we perturb the RCC operators as [40]:

T=TO 4+ ATM 4 O(A2) (29)

and
So =S 1 aslV + o(A2), (30)

5]
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where T(0/1) and S§O/1) are the core and the valence excitation operators, with the superscripts 0 and 1
representing the zeroth and first-order perturbations due to Hyeax. Substituting the above operators in
the earlier expressions, and equating the zeroth- and first-order in orders of A terms, yields:

¥ = e {14 07} @)
and |‘I’§1)> =l {55}) +T1M (1 + S )} |Py) - 31)

The amplitudes of the unperturbed RCC operators and energies are obtained by solving the
following equations (see e.g., [40,41]):

(Pk|Hat|Po) = Ik E(()O) (32)

and
<<I>L|Hat{1+5 N @o) = EP (@r| {610 + So} Do) , (33)

with Hy = e~ Hat eT". The superscripts K and L indicate the K" and L™ excited determinants
with respect to |®0> and |®,).
The energies are evaluated as
O —
Ey” = (o] at|®0) (34)

and
B = (@[ Hat {1+ 50"} @) . (35)

It follows that the difference between Ez(,o) and E(()O) yields the binding energy of an electron in the
valence orbital v. Similarly, amplitudes of the perturbed RCC operators are obtained by:

(Dk|Hat TY + Ayearc|Po) = 0 (36)

and
(@ |(Hat — EV)SSY + (AuT + Hyeai) x {1+ SV} ®,) =0, (37)

_7(0) 7(0)

where Hycac = € Hyeak €
After obtaining amplitudes for the unperturbed and perturbed RCC operators, we evaluate the
Elpnc amplitude as:

(@g {4+ (V1) T *}HE1{1+5 N4 {8 1y Heg {TO (14+8©) + 51} )
(@e{s\” + 1N {145 }|@;)

APNC >~ ’ (38)

(0)+eT(O). The ‘Core’ contributions for the initial and final states

originate from TWTHE; and Hg; T, and the rest of the RCC terms involving SEO/ Dt and Si(o/ 1 give
rise to valence contributions from the ‘final” and ‘initial” states, respectively.

We have also evaluated transition amplitudes due to the electric dipole (Ag;), electric quadrupole
(App) and magnetic dipole (A1) electromagnetic channels by using the unperturbed wave functions

in the expression:

—_— + —_
where Hg; = eT” Hgp eT” and N = e

<‘P§0)|O|‘f<°>>
VOO e 0 (¢ Oy 0
_ (e \{s“ +130{1+ 5"} @)
(@S N1+ s ) |

(O)g =

(39)
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where 0 = e7”"0eT for the respective transition operator O, and N = eTeT” " We have
incorporated one-particle and one-hole (single) and two-particle and two-hole (double) excitations of
the RCC theory (RCCSD method) to carry out all the calculations. The number of active orbitals (Ny)
considered for each angular momentum symmetry in the RCCSD method are mentioned in Table 1.

4. Results

In this section, we will first report on the results of the theoretical calculation. In addition the
eigenvalues of this data for 1*3Cs, they are necessary for a prediction of the parity violation signature
in Equation (12) and thus for a check of the experimental feasibility. The various calculated transition
amplitudes will also be essential for a proper estimate of experimental error contributions.

The relevant quantities in the spectroscopic investigations are the different light shifts. To estimate
these, computed matrix elements must be combined with relevant Clebsch-Gordan coefficients and
amplitudes of the driving laser fields. For a successful measurement, the irradiance of both the laser
driving the E2 and PNC transitions on the 6s-5d line (sd-laser) and the one generating the optical
lattice (ol-lattice) will be highly critical. The final measured PNC signature scales as the square root
of the sd-laser irradiance (see Equation (2)). The importance of the ol-laser intensity is related to
the achievable localisation of the atoms around optimised detection sites, as in Figure 4, and for the
homogeneity of the E1 light shift across the interaction volume.

As projected laser powers, we have assumed ones from sources being at the top end of what is
currently possible to obtain from commercial suppliers. These numbers are possible to improve, at least
slightly, in an laboratory environment, and they will certainly increase with the advancement of laser
technology. In Table 2, we show the assumed laser powers applied in derivations that will follow in
this section together with the corresponding relevant field amplitude and other important parameters.

Table 2. Hypothesised laser parameters for the sd- and ol-lasers. P is the total laser power, Q¢ a
cavity enhancement factor, w the beam diameter at the interaction region, & the field amplitude at
the detection sites and the final column shows the maximum reduction in amplitude at the edge of
the interaction region. To estimate the numbers for the sd-laser, we have used [22]. For the ol-laser,
the amplitude refers to the total one, taking into account all lattice beams (see (7)).

Almm) PW) Qe w(mm) Mode Eint(V/m)  A€max/Eint

sd-laser 689.5 3 100 0.5 flat-top ~3x10° 0.015
ol-laser 975.1 5 1 15 Gaussian ~1x10° 0.03

To derive the electric field amplitudes £gr = Epne = 3% 10° V/m for the sd-laser, we have assumed
that E2 and PNC standing waves are cavity-enhanced with a factor of 100. The parameters for the
sd-laser are such that they give a similar field amplitude to that used by Fortson in [18].

4.1. Theoretical Results

The calculations described in Section 3 are essential for an analysis of the feasibility of the
experimental method. When the actual experiment is done, these computed quantities will be crucial
for an interpretation of the experimental data.

4.1.1. Calculated PNC, E2 and M1 Matrix Elements and Associated Light Shifts

The results for the transition amplitudes on the PNC-NSI, E2 and M1 amplitudes on the electric
dipole forbidden 6s2S;/,-5d 2Dy, transition are shown in Table 3. These results are improved from [17].
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Table 3. Contributions to the overall 6s2S, /,—5d 2D, /, transition amplitude from the M1, E2 and PNC
interactions, computed with the methods described in Section 3. The M1 and E2 amplitudes are given
in a.u., and the PNC amplitude is given in —ieag[Qw/N] x 10~ 1, with the weak charge Qw and a
neutron number N = 78 of 133Cs atom.

Method AM1 AEZ APNC

DHF ~0 43.85 2396
RCCSD 254x107% 3361 3.210

From Table 3, we first conclude that it is justified to ignore the M1 contribution to the overall
measured signature in (12). The table data is then combined with assumed laser electric field
amplitudes from Table 2 and Clebsch-Gordan coefficients to derive estimates for the PNC and E2 light
shifts in Equation (3) (see [42]). The resulting light shift for the levels involved in the spectroscopy
shown in Figure 5, and included in the analysis in Equations (10) and (11), are shown in Table 4.

Table 4. Calculated energy shifts for relevant AM = 0 transitions on the spectral line 6s2S,,
F=4-5d2D,/,, F=5, using the calculated transition amplitudes from Table 3 and the hypothesised
electric field amplitude of Table 2.

Wea/h Wenc/h

Mp=1-M}=1 —11.02MHz —0.544 Hz
Mp=3-M,=3 —2701MHz —0.445Hz
Mp=4-M,=4 —2701MHz —0333Hz

4.1.2. Calculated E1 Matrix Elements and Associated Light Shifts

The E1 light shifts are annulled in the mirror spectroscopy scheme deployed in Equation (12).
This is, however, under the assumption that the laser power will be entirely uniform and that there
are no deviations at all in polarisation purity or in the laser beam geometry. To eventually be able to
account for errors induced by these imperfections, we need accurate values for the E1 matrix elements
of several transitions potentially relevant for the ground state light shifts. The results for the E1 matrix
elements, calculated as described in Section 3 are shown in Table 5.

The calculated E1 matrix elements are given from both the DHF and RCCSD methods.
The differences between the results from both the methods show contributions due to electron
correlation effects. As can be seen, the DHF method gives larger values in most of the transitions and
the correlation effects bring them down. It also demonstrates that E1 amplitudes of the transitions
involving the low-lying states exhibit large contributions due to the correlation effects. We have also
compared our calculated values with experimental results that are inferred from the measurements of
either lifetimes or Stark shifts of the atomic states. Though the inclusion of electron correlation effects
through the RCCSD method brings the DHF values close to the experimental results, we still find
reasonably large differences between the RCCSD values. Recently, Roberts et al. [43] have reported
some of the E1 amplitudes that are relevant to the estimation of uncertainty to the Apnc amplitude
of the 6s 25/, — 5d 2D/, transition in Cs atom and compared them with the inferred values from
the experiments. We have quoted these values in the above table for comparison. Roberts et al. had
used Feynman diagram techniques and scaled the wave functions to obtain their results. We believe
that accuracies of our results can be improved further after including contributions from the triple
excitations, Breit interaction and quantum electrodynamics. We would like to defer this task to
future work.
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Table 5. Calculated E1 matrix elements (in a.u.) from the Dirac-Hartree-Fock (DHF) and RCCSD
methods. We have also quoted extracted available experimental values from measurements of lifetimes

and Stark shifts for states of Cs, and from another recent calculation.

Transition

DHF

RCCSD Roberts et al. [43]

Experiment

6s 251/, — 6p 2Py,
6s 251/, — 7p 2Py,
6s 281/2 — 8p 2P1/2
6s 281/2 — 9p 2P1/2
6s 251/, — 6p 2Ps),
6s 251/2 — 7p 2P3/2
6s 281/2 — 8p 2P3/2
6s 251/2 — 9p 2P3/2
7s 251/2 — 6p 2P1/2
7s2S1/, — 7p 2Py,
75251, — 8p 2Py,
7s 281/2 — 9p 2P1/2
7s2S1/, — 6p 2Ps),
7s2S1/, — 7p 2Py,
7s2S1/, — 8p 2Py,
7s 281/2 — 9p 2P3/2
8s 251/2 — 8p 2P1/2
8s 251/2 — 9p 2P1/2
8s 251/2 — 8p 2P3/2
85251/, — 9p 2Py,
9s 231/2 — 9p 2P1/2
9s 281/2 — 9p 2P3/2
7p 2P/, — 5d ?Dsy,
8p 2P/, — 5d ?Ds,
8p 2P1/, — 6d 2Dsy,
9p 2Py, — 5d 2Dsy,
9p 2Py, — 6d 2Dsy,
9p 2Py/, — 7d 2Dsy,
7p 2P3/, — 5d 2Ds,
8p 2P3/, — 5d 2Ds,
8p 2P3/2 — 6d 2D3/2
9p 2Ps/, — 5d 2Dy,
9p 2Ps, — 6d ?Ds,
9p 2Ps/, — 7d 2Dsy,
7p %P5/, — 5d 2Ds),
8p 2Ps/, — 5d ?Dsy,
8p 2Ps/, — 6d 2Ds/,
9p 2P3/, — 5d 2Ds/,
9p 2P3/, — 6d 2Ds/,
9p 2P3/2 —7d 2D5/2
5d 2D3/2 — 4f 2F5/2
6d 2Ds/, — 4f 2Fs),
5d 2Ds/, — 5f 2Fs,
6d D5/, — 5f 2Fs/,
7d 2Dy, — 5 2Fs,
5d 2Ds/, — 4f 2Fs,
6d 2Ds/, — 4f 2Fs/,
5d 2Ds/, — 5f 2Fs),
6d 2Ds/, — 5f 2Fs),
7d 2Ds/z — 5f 2F5/2
5d 2Ds;, — 4f 2Fy),
6d 2Ds;, — 4f 2Fy),
5d 2Ds/, — 5f 2Fy),
6d 2Ds/, — 5f 2Fy),
7d 2Ds;, — 5f 2Fy,

5.278
0.372
0.132
0.069
7.426
0.694
0.282
0.159
4413
11.012
0.934
0.394
6.671
15.349
1.622
0.726
18.719
1.997
25.977
3.289
29.818
41.423
4.039
0.989
8.058
0.489
2.166
13.186
1.688
0.428
3.336
0.212
0.925
5.453
5.024
1.277
10.011
0.633
2.778
16.107
10.660
25.583
4.722
9.607
46.630
2.840
6.843
1.261
2.568
12.471
12.703
30.602
5.642
11.490
55.769

4.549
0.302
0.092
0.040
6.397
0.610
0.234
0.124
4.252
10.297
0.950
0.389
6.501
14.298
1.670
0.736
17.821
2.040
24.618
3.395
28.755
39.773
2.052
0.634
4.945
0.336
1.521
8.823
0.809
0.255
1.945
0.134
0.610
3.379
1.852
0.588
4.637
0.301
1.500
8.107
10.355
23.811
4.224
9.674
45.090
2.855
6.704
1.185
2.762
12.418
12.772
29.978
5.301
12.257
55.531

4512
0.2724

6.351
0.5659

4.5097(74) [44]
0.2825(20) [45]

6.3403(64) [44]
0.57417(57) [46]

4.249(5) [47]
10.308(15) [48]

6.4890(50) [47]
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The E1 light shifts at the apices of the optical lattice (nadirs of the optical potential) in Figure 4
can be calculated through the equation [49]:

2 X .
uo_zg’m( i, N >4I(r). (40)

~2hw? \Wi—we Wi+ Wl

Here, I(r) is the irradiance of one of the four optical lattice beams, and the configuration is that
of Equation (4). The sum should in principle extend over all allowed transitions from the 6s ground
state, and w; and I'; are respectively the corresponding resonance angular frequencies and radiative
linewidths of the upper levels in the transitions.

The reduced matrix elements in Table 5 can then be used to derive the linewidths in
Equation (40) via:

= 5 g ey ol e ) @
! 7 3meghcd 2], +1 ‘S IELITFL/

In this equation for the width of an upper state ¢;, the sum runs over all lower levels ¢; to which
; has an electric dipole allowed decay. The resonance angular frequencies used are empirical ones
taken from [50]. From the above we have derived the wavelength dependent light shift of the 6s
ground state. This is shown in Figure 6.

104

(‘I T T T T T T T T
600 800 1000 1200

Figure 6. Light shift, in MHz, for the 6s ground state of Cs, as a function of wavelength (in nm).

For the wavelength A, = 975.1 nm and the laser irradiance as in Table 2, the contributions the the
light shift of the 6s ground state from the excited configurations 6p, 7p, 8p and 9p are summarised in
Table 6. The values in the table have been calculated by using an experimentally reported value for the
linewidth of 6p [44], and calculated numbers from Table 5 for the remaining levels.
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Table 6. Light shift of the fine structure level 6s 2Si/,, when irradiated by an optical lattice light field at
Aol =975.1 nm. Beam parameters are as in Table 2 and the the values of transition matrix elements from

Table 3.
Contribution Total
Level from MHz kHz
6s2S1/, 6p 2Py, —267.31
6p 2Ps/, —169.10
7p 2Py, —0.82
7p 2P, —0.88
8p 2Py, —-0.13
8p 2Ps), —-0.29
9p 2Py, —1.88
9p 2Py, —1.64
—438.53

From Table 6, we can conclude that more than 98% of the contribution to the 6s light shift emanates
from the 6p doublet (the D1 and D2 lines) at A}, and that the inclusion of further levels will contribute
little to the total light shift.

4.2. Predicted Measured Parity Violation Signature

The beam parameters in Table 2 gives us an interaction volume with the PNC and E2 beams of
about an eighth of a cubic millimetre. For Cs pre-cooled in a MOT and an optical molasses, a number
density of 1012 cm ™3 is feasible. This gives us a sample size of the order of N ~ 108 interacting atoms.

For the shot-noise limit, we use:

Awg, = (TNT) 1, (42)

where T = 909 ns is the radiative liftetime of the upper state [29] and T is the total integration
time. This means that for a desired resolution of Aw, the minimum total time for observation is
Tmin = 100/ Aw? (in seconds).

The quadratic Zeeman shift is not compensated for by Equation (12) and thus it must be accurately
determined and compensated for. With the atoms trapped in the optical lattice, and both detection
fields turned off, an accurate reading of the quadratic Zeeman shift can be obtained by RE-spectroscopy
in the ground state. This should be done using the same spectroscopic scheme as the main PNC
observation. That will leave:

E;z =Egz,3+E;z-1—Ejz1 —Egz3 - (43)

For the bias field of 3 mT, this will, in frequency units, be about 2 kHz, which is possible to
measure to within one part in 10%, by applying the same in situ spectroscopy as in Figure 5, but without
the PNC and E2 beams turned on. An alternative method to spectroscopy for accurately characterising
the bias field is via the magnetic Hanle effect [51]. Finally, using a varying field and extrapolation
techniques [31], the elimination of this error can be further perfected.

Under the assumption that the quadratic Zeeman shift has been accurately compensated for, the
expected final PNC signature, given the calculated PNC light shift in Table 4, will be:

Weps =~ 27T X 1.3Hz . (44)

5. Discussion

In Table 3, we have presented the Anii, App and Apnc amplitudes of the 6s 2s, s, — 5d 2D3/2
transition of 133Cs, as computed from both the DHF and RCCSD methods. These values are slightly
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different from the values that we had reported earlier in [17]. This is because of the inclusion of orbitals
from the h- and i-symmetries, and from neglecting contributions from triple excitations, the Breit
interaction and QED effects. The small differences between results from [17] and present work indicate
that roles of the neglected interactions in the determination of the above quantities are not very
significant. Similarly, the present result is in reasonable agreement with other calculations reported
previously [43,52].

It can also be seen from the table that the M1 amplitude for the 6s %S/, — 5d 2Ds/, transition comes
out as negligibly small with the DHF method (~—9.4 x 1077 a.u.), but it is three orders magnitude
greater when calculated with the RCCSD method. Albeit the all-order core-polarization electron
correlation effects are mainly responsible for this enhancement, the pair-correlation contributions also
play a significant role. In contrast, the DHF value for Ag; is larger than the RCCSD result. This means
that the electron correlation effects reduce its value from the DHF calculation.

In the case of the Apnc amplitude, there is also a significant enhancement in the RCCSD
result compared to the DHF method. It is worth mentioning here that the Apnc amplitude of the
6s 251/, — 5d D3/, transition in 1*3Cs is three times larger than the one of the 6s 2Si, — 7s %Sy,
transition [52]. The latter line was the one used is the heretofore most accurate PNC measurement
in Cs, by Wood et al. [12]. The reason for this is that both the 6s 23, /> and 7s 25, /» states contribute
strongly to Apnc, but their signs are opposite. As a result, there is a sizeable cancellation for the
spectral line connecting the two. In contrast, for the 6s 2s, 7, — 5d D, /, transition, the 6s 2s, /, state
dominate the total contribution to Apnc for the spectral line. Furthermore, the small contribution that
arises through the 5d ?D;, state has the same sign with the contribution from the 6s 2S;, state.

Our extensive data on El transition matrix amplitudes show that correlation effects play a
more important role than has previously been expected. This study will soon be extended to
include also triple excitations in the analysis, and also to include further transition. That will allow
further analysis of light shift also of several excited states, and accurate theoretical determinations of
magic wavelengths.

The projected signal in Equation (44) is well within the capabilities of what is measurable.
With sufficient integration time, and with systematic effects properly taken care of, the method
has potential to provide more accurate data for the Cs weak charge, and unambiguous proof of the
existence on the nuclear anapole moment. From a nuclear physics point view, a successful experiment
will provide information oh the meson nucleon coupling in the nuclear medium.

In an upcoming instrumental article, we will provide a detailed analysis of the stochastic and
systematic uncertainties associated with this experiment, together with a detailed methodology for
how to overcome them. The main error sources are:

1. uncompensated linear Zeeman effect
2. quadratic Zeeman effect

3. uncompensated E1 light shifts

4. uncompensated E2 light shifts

5. polarisation/geometry

Items 1, 3 and 4 are to the most part eliminated by the mirroring spectroscopy, and the
application of Equation (12). This will be made more efficient by synchronous spectroscopy, as in [30].
The individual measurement cycles will have a duration of just a few microseconds, and the signal
subtraction is made for each individual cycle. That leaves very little time for an ambient fluctuation to
seriously affect the data.

If the light irradiances of the laser beams are not perfectly homogeneous, different atoms will feel
different light shifts. This will show up in the data as an inhomogeneous broadening. An effort to use
flat-top beams will remedy this, as will defocussing. However, the latter will come at a cost in terms of
irradiance. The lingering broadening should be the same in each measurement cycle, and a large part
of it will be removed in the subtraction in Equation (12). Furthermore, the issue can be investigated
and quantified by the spectroscopy applied without the PNC field turned on.
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Spectroscopy without PNC and E2 fields can also be used to probe errors occurring to imperfections
in geometric alignment and polarisation. The polarisation can be kept pure, using approaches such as in
e.g., [53,54].

5.1. Possible Extensions

Other Elements than Cs

The idea of having an optical lattice where every trapping site is at a good detection point, defined
in the Fortson schemes and in Figures 1 and 4, is general and not species-dependent. However,
the specific optical lattice geometry in Figure 3 is designed specifically with Cs in mind. A prerequisite
for the optical lattice to be commensurate with the grid of detection sites, with the chosen geometry,
is that the optical lattice wavelength relates the to s-d resonance exactly as Ay = v/2A4q. In the case of
Cs, this means that the optical lattice laser frequency is tuned well below the D1 and D2 resonances at
894 nm and 852 nm (‘red detuning’). Thus, irradiance maxima will correspond to energy minima and
the optical lattice will be trapping.

The geometry and polarisation in Figure 3, with detection fields aligned at 45 degrees relative to
the quantisation axis also means that AMf = 0 transitions can be selected with high fidelity. This makes
the scheme particularly for probing NSI phenomena.

The predicaments above are valid also for Fr, for which the scheme could be directly applied in
the same way as for Cs. For Rb, and for lighter alkalis, this is not true. For example, for Rb, the E2
transition 5s S, /—4d ’D; /, is at the Agq_gp, = 516.5 nm. With the idea above applied directly, the optical
lattice wavelength is Ay _gp = 730.4 nm. That would mean a blue optical lattice detuning relative to
the D1 and D2 lines at 794.8 nm and 780.0 nm. The atoms are thus drawn towards irradiance minima,
and the geometry in Figure 3 would result in a “pinball optical potential’ [55] with no localised atoms.

However, an optical lattice can in principle be engineered at will [56] and, with another geometry,
the fundamental generalisation of the Fortson scheme to large samples of neutral atoms is still feasible.
The same is true for any other atomic species. It should be stressed, however, that with any geometry,
the combination of the geometry and the polarisation of the detection fields will strongly affect the Mr
selection rules.

Furthermore, the technique is not limited to the spectroscopic technique suggested for limiting
systematic effects, and for detecting NSI PNC. With other choices for polarisations and beam
propagation directions, and with other spectroscopy schemes, NSD effects could also be probed.

6. Conclusions

The study of PNC at low energy calls for systematic research using different systems and different
methods. The one we presently put forward will add to this, bringing with it the advantages that it
combines the optimised detection technique of [18] with large sample size. We have shown that our
scheme holds promise as a contribution to the search for experimental signatures on new physics and
physics beyond the SM, based on atomic systems.
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Abbreviations

The following abbreviations are used in this manuscript:

SM Standard model for elementary particle physics
PNC Parity non-conservation

NSI Nuclear spin independent
NSD Nuclear spin independent
NAM Nuclear anapole moment

El Electric dipole moment

E2 Electric quadrupole moment
M1 Magnetic dipole moment
MOT Magneto-optical trap

hfs Hyperfine structure

RF Radio-frequency

DHF Dirac-Hartree-Fock

GTO Gaussian type orbitals

RCC Relativistic coupled-cluster

RCCSD  RCC with a single and double excitations approximation
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