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Abstract: In similarity-based constrained clustering, there have been various approaches on how
to define the similarity between documents to guide the grouping of similar documents together.
This paper presents an approach to use term-distribution statistics extracted from a small number of
cue instances with their known classes, for term weightings as indirect distance constraint. As for
distribution-based term weighting, three types of term-oriented standard deviations are exploited:
distribution of a term in a collection (SD), average distribution of a term in a class (ACSD), and average
distribution of a term among classes (CSD). These term weightings are explored with the consideration
of symmetry concepts by varying the magnitude to positive and negative for promoting and demoting
effects of three standard deviations. In k-means, followed the symmetry concept, both seeded and
unseeded centroid initializations are investigated and compared to the centroid-based classification.
Our experiment is conducted using five English text collections and one Thai text collection, i.e.,
Amazon, DI, WebKB1, WebKB2, and 20Newsgroup, as well as TR, a collection of Thai reform-related
opinions. Compared to the conventional TFIDF, the distribution-based term weighting improves
the centroid-based method, seeded k-means, and k-means with the error reduction rate of 22.45%,
31.13%, and 58.96%.

Keywords: constrained document clustering; term weighting; class frequencies and distributions;
text mining; similarity measure; k-means; pattern deviation; term information

1. Introduction

Knowledge discovery and data mining (KDD) is a vital process to help and understand user
(human) behavior by inferring knowledge and discovering patterns from a large-scale data collection.
Classification (supervised learning) and clustering (unsupervised learning) are two complementary
techniques in KDD, where the former utilizes a set of labeled examples to create a model for further
classification of an unseen object while the latter uses no prior information but groups similar objects
based on a kind of (dis)similarity measure. Generally, the clustering technique is useful for discovering
a new set of categories in which discovering group relies on identifying the interesting distribution,
in contrast the classification classifies data based on the predefined classes [1]. However, a large
dimensional data often contains noise that is not a part of the underlying pattern. Some researchers
tried to guide the unlabeled data by giving some hint for identifying interesting distribution in
data [2–4] and make a relationship by using similarity metric and distance metric [5]. Since construction
of labeled data (objects) is costly, it is worth investigating unsupervised approach or semi-supervised
approach (combination of supervised and unsupervised approaches) [6]. In the past, some researchers
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investigated semi-supervised learning where a preliminary predictive model was constructed using a
small set of labeled data (objects) and then revised later using a large number of unlabeled data [7–10].

However, as analogy to semi-supervised learning, an interesting new concept is
semi-unsupervised learning. In the past, this concept was known as constrained clustering or metric
learning. The approach applies a set of constraints or information extracted from labeled data to
guide grouping unlabeled data [11–17]. One essential issue that makes semi-unsupervised learning
differ from the semi-supervised learning is the unfixed (or undefined) number of classes or groups.
While the number of classes in the semi-supervised learning is fixed or well-defined but that of the
semi-unsupervised learning is undefined or unfixed. In terms of clustering methodology, a simple but
fundamental method, k-means was often selected for investigation on control or guide the clustering
process by Basu et al. [13]. Later, Davidson et al. [18] proposed informativeness and coherence,
as potential measures for identifying useful constraint sets in the k-means clustering. Their experiments
showed that a constraint set with high informativeness and coherence tended to improve clustering
performance via investigation of four particular constrained clustering algorithms, i.e., COP-KMeans
(CKM), PC-KMeans (PKM), M-KMeans (MKM), and MPC-KMeans (MPKM). Klein et al. [19] pointed
out that information given in the form of the pairwise constraints seems weaker than that given in
the form of labeled data. These works used a simple TFIDF weighting to calculate the similarity
or the distance between two documents. As another interesting issue, it is questionable that with
the direct usage of the labeled data, whether there are more effective ways to represent similarity or
distance among documents for clustering, rather than the simple TFIDF weighting. One potential is
to apply distribution statistics to enhance term weighting. Although some previous works [20–22]
proposed to use distribution-based weighting in classification, but there is no investigation on how the
distribution-based term weightings affect the quality of clustering process.

Based on the above background, we propose a method to use information of class and collection
distributions extracted from labeled data, as similarity-based constraints for k-means clustering. Our
method uses three types of distribution statistics i.e., inter-class term distribution, intra-class term
distribution, and in-collection term distribution, extracted from labeled data, to guide the clustering
process towards the user preference. The proposed method in this study does not straightforwardly
rely on the prior knowledge of labeled data, rather than it tries to capture behavioral patterns
using statistics for clustering. Finally, to measure cluster quality, three types of measurement called
class-based, cluster-based, and similar-based measures are proposed. Then the effectiveness of term
weighting on clustering is investigated using five text datasets. The rest of this paper is organized
as follows. In Section 2, we describe types of learning/mining and similarity-based constrained
clustering. Section 3 illustrates document/cluster (vector) representation using term weighting
and term distribution, followed by document similarity and our constrained clustering framework.
Section 4 shows the experiment settings and performance measures. In Section 5, the experimental
results and error analysis are discussed. Finally, discussion, conclusions, suggestions, and future works
are summarized in Sections 6 and 7.

2. Related Works

This section begins with comparative analysis of four learning schemes where the
semi-unsupervised learning (SUSL) scheme is contrasted with the semi-supervised learning (SSL)
scheme. In addition, several approaches on constrained clustering, a semi-unsupervised learning
(SUSL) scheme, are reviewed with their merits and demerits. Finally, a number of existing works that
applied the four learning schemes document management, are analytically explored and summarized.

2.1. Comparative Analysis on Four Learning/Mining Schemes

This section provides a perspective on classification of supervised versus unsupervised learning
tasks and their families. Table 1 compares the four schemes of learning (mining); that is supervised
learning (SL), semi-supervised learning (SSL), semi-unsupervised learning (SUSL), and unsupervised
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learning (USL), in terms of (i) existence of predefined classes, (ii) model learning, (iii) availability of
labeled examples, and (iv) availability of unlabeled examples. Note that classification is a method of
supervised learning while clustering is a method of unsupervised learning.

Table 1. Characteristics of the four learning schemes: supervised (SL), semi-supervised (SSL),
semi-unsupervised (SUSL), unsupervised (USL).

Scheme Property SL SSL SUSL USL

Predefined classes © © × ×
Model learning © © 4 ×
Availability of labeled examples © 4 4 ×
Availability of unlabeled examples × 4 © ©

©: Primary;4: Secondary; ×: Not Required.

In the past, most existing literature declared only the first three schemes, i.e., SL, SSL, and USL.
Indeed, to be more precise, in the past, there exist a number of SUSL methods, such as constrained
clustering with pairwise constraints [11] and integrating constraints with metric learning [12] but
they treat it as USL with contraints, not the SUSL concept. However, in this paper, we intend to form
a systematic framework by introducing the fourth scheme; semi-unsupervised learning (SUSL) in
addition to SL, SSL, and USL. While the SL scheme always requires a costly training dataset with labels,
the SSL learning is an extension of SL to learn a classification model from a small set of labeled data,
and then extend or revise such model by unlabeled data. Both SL and SSL utilize labeled examples to
guide model learning where classes are given and therefore the number of classes is predefined. On
the other hand, the traditional USL and our proposed SUSL assume no information on how classes
look like and how many classes there are. Moreover, SL and SSL construct the model from the labeled
examples whereas USL does not create any model and SUSL implicitly builds an intermediate model
and utilizes it to group similar instances.

In a theoretical viewpoint, SL possess a set of labeled examples, USL occupies a set of unlabeled
examples, SSL and SUSL hold both labeled examples and unlabeled examples but the labeled examples
are counted as a secondary resource. On the other hand, SL utilizes no unlabeled examples, USL
mainly works on unlabeled examples, SUSL uses knowledge extracted from labeled examples to guide
operation on unlabeled examples, and SSL enhances the model using unlabeled examples. In summary,
to contrast our proposed semi-unsupervised learning (SUSL) scheme to the supervised learning (SL),
the semi-supervised learning (SSL), and unsupervised learning (USL), two primary points are (i)
arbitrariness on the number of classes/clusters/groups and (ii) exploitation of labeled examples
to guide clustering/grouping. As an interesting application, it is possible to apply SUSL to group
documents according to user preference (or intention), namely constrained document clustering. Given
user preference in the forms of a few constraints that indicate which documents should (or should
not) be in the same clusters, a large number of unlabeled documents can be grouped into a number of
clusters with satisfaction of such constraints. Here, the advantage of constrained document clustering,
i.e., SUSL, is shown via the following example. We have conducted a preliminary experiment to
investigate performance of SL, SSL and USL using the WebKB dataset of 4161 documents under two
complimentary dimensions (WebKB1: 4 classes and WebKB2: 5 classes) and the result is shown in
Table 2. As the dataset characteristics, the WebKB1 classes are quite balanced while the WebKB2 classes
have skewness in one large class (approximately 10 times of another class). The evaluation is made in
the classification manner.

Here, the SL is the classification mode where the model is learned from a set of labeled data using
the centroid-based method [20]. The evaluation was done with 3329 documents (80% of the data) as
the training set and 832 (20% of the data) as the test set. The SSL is the clustering mode where the initial
cluster centroids are learned from a set of labeled data, i.e., 80% of the data, and then the clusters are
refined using 20% of the data. This mode is similar to the seeded k-means shown in [13]. The USL is
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the conventional k-means where the clusters are formed using 20% of the data, the initial centroids are
randomly selected for 100 trails and the best performance is chosen. In this experiment, four schemes
of term weighting are explored; standard term frequency (TF), normalized term frequency (nTF), term
frequency with inverse document frequency (TF × IDF), and normalized term frequency with inverse
document frequency (nTF × IDF). Here, the normalized term frequency used in this experiment is
the norm-1. The normalized term frequency of the j-th term in the i-th document, denoted by nt fij,

is
t fij

∑T
k=1 t fik

, where t fik is the frequency of the k-th term in the i-th document and T is the number of

possible terms.

Table 2. Geo-mean of (accuracy, f -measure) in cases of supervised Learning (SL), semi-supervised
learning (SSL), and unsupervised learning (USL).

Term Weighting Scheme
WebKB1 (4 Classes) WebKB2 (5 Classes)

SL SSL USL SL SSL USL

TF 73.79 63.76 52.63 71.52 32.46 30.62
(74.71, 73.18) (64.94, 62.60) (53.94, 51.36) (74.92, 68.27) (40.19, 26.21) (39.35, 23.83)

nTF 75.12 48.67 47.24 76.39 40.08 28.03
(74.96, 75.29) (47.78, 49.58) (48.14, 46.36) (80.27, 72.70) (46.49, 34.56) (31.68, 24.80)

TF × IDF 79.66 70.55 55.03 86.43 61.68 30.25
(80.10, 79.22) (71.01, 70.10) (58.12, 52.11) (90.03, 82.97) (63.95, 59.48) (39.06, 30.25)

nTF × IDF 81.82 78.68 56.00 93.32 86.24 38.14
(82.03, 81.60) (78.42, 78.93) (57.73, 54.32) (95.34, 91.34) (88.20, 84.32) (43.45, 33.47)

TF: Term Frequency, nTF: Document-normalized Term Frequency, IDF: Inverse Document Frequency.

From Table 2, a number of observations can be made as follows. Firstly, it is not surprising
that SL mostly obtains better performance than SSL and the SSL tends to gain higher performance
than USL since more information is available for model construction. Secondly, for some term
weighting (i.e., nTF), the SSL is worse than USL. Thirdly, WebKB2 (unbalanced dataset) seems to
achieve higher performance than WebKB1 (balanced dataset) in the case of supervised learning since
the classification may gain a bias due to the class-size information. Here, the largest classes dominate
75% of the cases. With less tendency, the reverse results were obtained in the cases of semi- and
un-supervised learning. Fourthly, without class information (USL), the clustering is blind and the
performance is low. Here, the maximum is 56.00% for the WebKB1 case of USL with nTF × IDF.
In summary, without class information, the accuracy drops dramatically and class balancedness affects
the clustering result. For further investigation, it is worth figuring out how term weighting and term
distribution, as similarity-based class constraints, affect clustering quality for unsupervised learning.

As a more concrete elaboration, clustering is known as the unsupervised learning, where there is
no pre-defined class, no labeled examples, and no model learning. However, the task that we coped
with in this paper, is semi-unsupervised learning, where we partially have some pre-defined classes
but they are loosely since we do not use the class information directly but we extract statistics and then
use them indirectly as term weights for clustering. That is, we assume that there is no class defined.
This is the same with the concept of the well-known seeded k-means, but the seeded k-means have no
term weighting applied. This point is the originality of this work. We also have weak model learning,
not a rigid one, like the supervised learning or the semi-supervised learning. We use labeled examples
but do not straightforwardly use them as the prior knowledge for class definition, rather than we try to
capture behavioral patterns using the statistics extracted from these examples for clustering. In other
words, distribution-based term weightings are used as soft guidance to construct good clusters of
unlabeled documents.

2.2. Similarity-Based Constrained Clustering

In the past, the concept of controlling unsupervised learning was reported in several literatures,
including pairwise constraints [11], metric-learning constraints [12], and community-relationship
pairwise constraints [17]. According to Davidson et al. [18], most constrained clustering techniques
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can be divided into two categories; namely search-based (also known as constraint-based) and
similarity-based (also known as distance-based ), even some methods are a hybrid of these methods [23].
The search-based method modifies clustering algorithms to incorporate direct the prior knowledge
into the clustering task, where the solution space is searched according to the constraints. On the other
hand, the similarity-based method applies an existing clustering method by modifying the distance
measure in accordance with the prior knowledge. The latter can enhance the former by transferring
the original space to a new space using a sort of cluster quality measure, namely “distance metric
learning” [19] and then perform clustering. Moreover, several researchers asserted that a combination
of search-based and similarity-based approaches can improve cluster quality [24,25].

As another point of views, Dinler & Tural [23] classified constrained clustering into three
approaches based on the type of constraints used for grouping guideline. Three types of constraints are
pointed out, i.e., (i) labeled-data constraint, (ii) instance-level constraint and (iii) cluster-level constraint.
The first approach utilizes a small set of instances with their labels for clustering in the initial round
and then to perform the succeeding rounds either with or without instance labels. Unlike classification,
some extra clusters can be introduced with a sort of probabilistic or discriminative models [13,26].
The second approach introduces a set of pairwise constraints, i.e., MUST-LINK and CANNOT-LINK,
to guide which data object can or cannot be together with which data object when we formulate
clusters [11,27]. Unlike the previous two approaches, the last approach focuses on cluster-level
constraints, rather than labeled-data or instance-level constraints. For example, characteristics are the
size of the groups/clusters, lower or upper bounds on the radii, and diameter of the groups [28–30].
Zhu et al. [28] proposed a heuristic algorithm to transform the size of constrained clustering problems
into the integer linear programming problem.

Finally, it is a challenging research topic, to explore the constrained clustering with labeled-data
constraints. Recently, feature projection and weighting have been widely used to highlight and/or
suppress features according to discriminative information at the bag level [31]. Moreover, it is worth
designing a semi-unsupervised learning model that compromises between flexibility and accuracy by
applying the feature distribution [20,32,33], the feature projection, and the feature weighting schemes
for partial guidance, i.e., promote or demote features for recognizing user intention. However, these
research works still need detailed investigation with some symmetry settings.

3. Constrained Document Clustering with Distribution-Based Term Weighting

This section starts with the concept of term distribution as term weighting in manipulating
clustering process. Then its application to document clustering using term weighting is discussed.
Based on this background and a framework of our semi-unsupervised learning towards adaptive
constrained clustering is described.

3.1. Distribution-Based Term Weighting Scheme

Most existing document classification methods applied to the basic TFIDF as term weighting since
TF highlights the words/terms that occurs often and IDF can discount the terms that occurs in several
documents. Some works [34,35] applied parametric distance metric learning with labeled information
to find out a regression mapping of a point on an original input space onto a point on an optimal feature
space in some specific task, such as e-commerce. Moreover, a clustering method using multi-distance
measures calculated under multiple objectives has been proposed to support a variety of characteristics
on different structures of datasets [36]. In suchwork, dissimilarity between patterns in the input space
is approximated by Euclidean distance between points in the feature space [37]. Although the method
works well in general, it is sensitive to the noise [38]. As an alternative, the term weighting concept
can be introduced to encode the lexical knowledge as constrained with term weighting scheme. This
approach controls the similarity and dissimilarity among documents by adjusting the weight of a
term using its variances in in-collection, inter-class and intra-class set. The weighting scheme can help
promote significant terms and demote trivial (general) terms [20,21,32]. Following the concepts in [20],
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an important term should (i) appear frequently in a certain class, (ii) appear in few documents, (iii) not
distribute very differently among documents in the whole collection, (iv) not distribute very differently
among documents in a class, and (v) distribute very differently among classes. The first and second
represent the conventional term frequency and inverse document frequency, respectively. The third to
fifth items refer to distributions of a term in the whole collection, those within a class, and those among
classes. These three distributions are defined by standard deviation (SD), class standard deviation
(CSD), and inter-class standard deviation (ICSD) as follows:

Let D = {d1, d2, ..., d|D|} be a set of |D| documents (document collection), T = {t1, t2, ..., t|T|}
be a set of |T| possible terms, and C = {c1, c2, ..., c|C|} be a set of |C| clusters. The class model
M : D× C → {T ,F} can partition documents in a collection into a number of groups by assigning a
Boolean value to each pair 〈di, ck〉 ∈ D× C that M(di, ck) = T . The value of T (i.e., true) is assigned
to 〈di, ck〉 when the document di is determined to belong to the cluster ck. Moreover, let Ck = {d | d
is a document belonging to the cluster ck}, where

⋃
Ci = D and Ci ∩ Cj = ∅. On the other hand,

a value of F (i.e., false) is assigned to 〈di, ck〉 when the document di is determined not to belong to
the cluster ck. Here, let t fij be the term frequency of the term tj of document di and it can be an actual
frequency, a normalized frequency with respect to document/term length or other forms. The formal
definitions of the two common frequencies; TF and IDF, as well as the three standard deviations; SD,
ACSD, and ICSD are as follows:

• Term frequency (TF):
t fij = N(di, tj) (1)

• Inverse document frequency (IDF):

id f j = log10(1 +
|D|
d f j

) (2)

• Standard deviation (SD):

sdj =

√√√√∑k ∑di∈Ck
(t fij − (

∑k ∑di∈Ck
t f ij

∑k|Ck |
))2

∑k|Ck|
(3)

• Average class standard deviation (ACSD):

acsdj =
1
|C|∑k

√
1
|Ck| ∑

di∈Ck

(t fij − t f jk)
2 (4)

• Inter-class standard deviation (ICSD):

icsdj =

√
1
|C|∑k

(t f jk − (
1
|C|∑k

t f jk))
2 (5)

t f jk =
∑di∈Ck

t f ij

|Ck|
(6)

Here, the factor t fij is the frequency of term tj in the document di and id f j is the inverse document
frequency of term tj. The factor id f j is the logarithmic scale value of one plus the ratio of the number of
documents in the collection (|D|) to the number of documents that contain the term tj, i.e., d f j, namely
document frequency. The factor sdj (the in-collection standard deviation of the term j) represents the
variation of the term j’s frequency among the documents in the document collection. Conceptually,
the higher sdj means the term j has high occurrence variation among documents in the whole collection.
That is the term may tend to be a stopword and it may not be a good representative of the class (cluster).
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The factor acsdj presents the average of cluster standard deviation among all possible clusters, where
the cluster standard deviation is the variation of the term j’s frequency among the documents in the
cluster. While a term with a low acsdj, i.e., low intra-class variation, could be a good representative
term in a class (or a cluster). As the last type, icsdj presents the standard deviation of the term j’s
class-summation frequencies, on the set of possible classes (or clusters). A term with a higher icsdj
may be considered as a good representative term.

3.2. Constrained Document Clustering with Term Weighting

This section presents the formalism of constrained document clustering with term weighting.
In the past, term weighting was shown to be effective in improving classification performance [21].
However, there are still few works on application of term weighting in clustering. While most of
previous works used instance-level constraints, such as MUST-LINK and CONNOT-LINK to guide
k-means clustering, this work proposes a method to use term distribution extracted from a relatively
small set of data with their labels as term weighting to guide clustering. Such distribution acts as
a clue of user intention in clustering process by distinguishing effective terms from non-effective
ones. Let ~d = [twj] be the document d’s term-weighting vector derived from two components;

(i) frequency-based weighting (
−→
f w = [ f wj]), and (ii) distribution-based weighting (

−→
dw = [dwj]) where

twj is the term weight of the term tj defined as follows.

~d =
−→
f w�

−→
dw (7)

= [twj] (8)

twj = f wj × dwj (9)

f wj = t f θ
j × id f κ

j (10)

dwj = sdα
j × acsdβ

j × icsdγ
j (11)

Here, t f j is the term t’s frequency or its derivatives while id f j is the inverse document frequency.
In this work, two types of term frequency (t f j) is used, the original term frequency and the normalized
term frequency as shown in Section 2.1. The θ, κ, α, β, and γ are the parameters for setting the exponent
of t f j, id f j, sdj, acsdj, and icsdj, where a positive value means to promote the factor while a negative
value works as relegation. Initially the documents in the collection are randomly grouped into N
group, where N is the number of groups, we intend to partition the documents. While there have been
several means of expressing distance/similarity in clustering, two major classes are k-means using
Euclidean distance, and k-means using cosine similarity. In this work, for the sake of simplicity and
scale invariance, we apply the k-means using cosine similarity [39], where the closeness between two
documents is represented by cosine distance between them [40]. The larger value is, the closer the
documents are. Here, let the i-th document in a collection be represented by di and its document vector
be expressed by ~di. In the same way, the k-th cluster be represented by ck, its cluster vector be expressed
by ~ck and its associated document set be denoted by Ck. The number of clusters is denoted by |C| as
mentioned in the previous section. The norm-2 of the vector ~di (= [twij]) is represented by ||~di||2 and

it corresponds to the size of the vector (∑
|T|
j=1 twij) over all possible terms (T = {t1, t2, ..., t|T|}). Based

on this background, the objective of clustering is to find the best partition S∗ = {c∗1 , c∗2 , ..., c∗|C|}) that
maximizes the summation of cosine distances between the documents and their associated clusters.

S∗ = arg max
S={c1,...,c|C|}

|C|

∑
k=1

∑
di∈Ck

~di . ~ck∥∥∥~di

∥∥∥
2
‖~ck‖2

(12)

~ck =
1
|Ck| ∑

di∈Ck

~dm (13)
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However, as known, the clustering problem is NP-hard and therefore, it is difficult to find
the global optimal according to the above equations. This work applies k-means to find the
near-optimal solution and introduces distribution-based weight to guide the clustering process towards
user intention.

3.3. The Framework of Clustering with Term Weighting

This section describes the framework of document clustering with constraints provided in the form
of term weighting. As shown in Figure 1, the framework includes three main processes; (i) statistics
extraction, (ii) document encoding, and (iii) seed calculation and constrained clustering.

Figure 1. The framework of constrained clustering (semi-unsupervised learning) using
distribution-based term weighting. Here, TF = term frequency, FW = frequency-based weight, DW =
distribution-based weight, DV = document vector, S = set of centroid.

As the first process, the statistics extraction process extracts term-related statistics, including IDF,
SD, ACSD, and ICSD, where the first is frequency factor while the rest are distribution factors. In the
second process, the term frequency (TF) and the extracted statistics (IDF, SD, ACSD, and ICSD) are
used to encode each document in labeled dataset (the upper part of the process ii) and/or unlabeled
dataset (the lower part of the process ii) into a vector by term weighting and term normalization. In the
third process, the document vectors of the labeled dataset can be used to calculate a seed (also called
an initial centroid) for each cluster. However, it is also possible to consider the unguided version where
the initial centroids of the clusters can be set randomly. At this process, the unlabeled documents
are clustered with the constraints in the form of initial centroids and term weighting encoded in the
document vectors. This work applies k-means clustering.

Algorithm 1 illustrates the pseudo-code of the main procedure, Clustering, of the constrained
clustering (semi-unsupervised learning), which is the third process (seed calculation and constrained
clustering) in Figure 1.

Algorithm 2 illustrates the pseudo-code of two sub-procedures, namely StatisicsExtraction

(line 1) and DocumentEncoding (line 10). The three inputs to the main procedure are the set of the
labeled documents (DL) and the set of the unlabeled documents (DU) and the number of clusters (k)
the user intends to group. The output is the result clusters of the input documents in both forms of
sets (C = {C1, C2, ..., Ck}) and centroids (S = {~c1,~c2, ...,~ck}).
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Algorithm 1 Pseudo-code of main procedure of the constrained k-means clustering (semi-unsupervised
learning) by distribution-based term weighting

1: procedure Clustering(DL ,DU ,k)
2: Input: DL = {dl1, dl2, ..., dl|DL |}, # labeled documents
3: DU = {du1, du2, ..., du|DU |}, # unlabeled documents
4: k = the number of clusters
5: Output: C = {C1, C2, ..., Ck} # a set of clusters
6: S = {~c1,~c2, ...,~ck} # a set of cluster centroid vectors
7: begin
8: Σ = StatisticsExtraction(DL)
9: (D

′
L, D

′
U) = DocumentEncoding(DL, DU , Σ)

10: C = IDC(D
′
L, D

′
U) # Initialize documents for each cluster

11: S = CentroidCalculation(C) # Calculate centroids
12: while not satisfy convergence condition do
13: C = ReAllocation(D

′
U , S) # ~di ∈ D

′
U → its closest cluster, see Equation (12)

14: S = CentroidCalculation(C) # Re-calculate centroids by Equation (13)
15: end while
16: end
17: end procedure

Algorithm 2 Pseudo-code of sub-functions for constrained k-means clustering

1: procedure StatisticsExtraction(DL)
2: Input: DL = {dl1, dl2, ..., dl|DL |} # labeled documents
3: Output: Σ = ([id f j], [sdj], [acsdj], [icsdj]) # a statistics profile
4: begin
5: ([id f j], [sdj], [acsdj], [icsdj]) = StatCal(DL) # Statistics calculated by Equations (2)–(5)
6: end
7: end procedure
8:

9: procedure DocumentEncoding(DL ,DU ,Σ)
10: Input: DL = {dl1, dl2, ..., dl|DL |} # labeled documents
11: DU = {du1, du2, ..., du|DU |} # unlabeled documents
12: Σ = ([id f j], [sdj], [acsdj], [icsdj])

13: Output: D
′
L = {~dl1, ~dl2, ..., ~dl|DL |} # labeled doc.vectors

14: D
′
U = {~du1, ~du2, ..., ~du|DU |} # unlabeled doc.vectors

15: begin
16: for each document dli in DL do
17: ~dli = ENC(dli,Σ) # Encode labeled documents by Equation (7)
18: end for
19: for each document dui in DU do
20: ~dui = ENC(dui,Σ) # Encode unlabeled documents by Equation (7)
21: end for
22: end
23: end procedure

Firstly, the statistics (Σ, including SD, ACSD, ICSD, IDF) of DL are extracted (line 8 of Algorithm 1)
by the StatCal function in the subprocedure (StatisicsExtraction). Secondly each document
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in DL or DU is encoded (line 9 of Algorithm 1) into a vector using the statistics Σ and term
frequency (t fij) by the ENC function in the DocumentEncoding subprocedure in Algorithm 2 at line 17
and 20. Each element of the vector is a weight for the corresponding term in the document.
The weight can be calculated according Equations (7)–(11). After the encoding step, the clusters
are initialized by the mathttIDC function (line 10 of Algorithm 1), called initial document clusters)
before execution of iterative clustering. The initial document clusters (groups) will be used to calculate
the centroid of each clusters by the CentroidCalculation function (line 11 of Algorithm 1). After
the initialization, the ReAllocation function is applied to reallocate the documents to their closest
cluster (line 13 of Algorithm 1). Then the centroids of the newly allocated clusters are calculated
by the CentroidCalculation function (line 14 of Algorithm 1). The reallocation and the centroid
re-calculation are iteratively executed until the convergence condition is satisfied (line 12 Algorithm 1).

4. Experiment Settings and Metrics

This section describes the datasets, the experiment settings and the performance measures for
evaluating the effectiveness of the constrained clustering using our proposed distribution-based term
weighting scheme.

4.1. Data Sets and Preprocessing

In this work, six text datasets from five sources are used for evaluation as shown in Table 3.

Table 3. Characteristics of six datasets.

Dataset Amazon Drug Info. WebKB1 WebKB2 20Newsgroups Thai-Reform

General Characteristics
Abbreviation AM DI KB1 KB2 20N TR
Language English English English English English Thai
Genre Product Medicine Education Education News Politic
# classes 3 7 4 5 20 3
# doc./class 2000 each 640 each 501/922/1118/1620 221/237/249/304/3150 various (628-999) 1000 each
Total terms 387,493 1,243,566 572,949 572,949 1,896,335 131,717
Distinct terms 7614 7768 6527 6527 8286 3549

Document Size (total terms)
Avg. 64.58 277.58 137.70 137.70 100.76 43.91
Max. 1654 4063 17,719 17,719 5366 1114
Min. 1 2 4 4 1 2
SD. 73.26 323.92 315.70 315.70 210.35 53.64

Document Size (distinct terms)
Avg. 51.52 136.60 79.64 79.64 64.43 31.98
Max. 743 846 2505 2505 1288 357
Min. 1 2 2 2 1 2
SD. 49.38 117.16 74.29 74.29 75.71 28.79

Class Size (total terms)
Avg. 129,164.33 177,652.29 143,237.25 114,589.80 94,816.75 43,905.67
Max. 148,115 309,812 181,757 430,950 173,234 56,608
Min. 94,784 59,112 86,085 28,499 52,972 21,459
SD. 24,353.03 97,841.22 35,145.48 158,348.95 20,107.90 15,918.06

Class Size (distinct terms)
Avg. 6041.67 5005.71 5446.75 4072.20 4891.55 2545.67
Max. 6933 6029 6008 6435 5613 2835
Min. 4375 3520 4839 3204 4136 2001
SD. 1179.46 977.75 515.30 1167.89 482.08 385.39

Inter/Intra size of TF by cosine similarity
Inter-similarity 0.0291 0.0487 0.1252 0.1314 0.0204 0.2063
Intra-similarity 0.0429 0.1444 0.1659 0.1408 0.0575 0.2802
Inter/Intra 0.6784 0.3373 0.7547 0.9332 0.3548 0.7363

The first dataset, “Amazon”, is a collection of 6000 reviews in three categories taken from Book,
DVD, and Electronics domains (2000 reviews for each domain) in the Amazon online shopping store,
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collected from Dredze’s homepage at Johns Hopkins University (www.cs.jhu.edu/mdredze/datasets/
sentiment).

The second dataset, “DI” (stand for drug information), contains 4480 (640× 7) online medical
prescriptions in seven categories, provided in the form of HTML documents at www.rxlist.com,
an online medical resource dedicated to offering detailed and current pharmaceutical information on
brand and generic drugs. The third (WebKB1) and fourth (WebKB2) datasets consists of 4161 web
documents from the same source provided by the CMU Text Learning Group at www.cs.cmu.edu.
These web documents were collected from departments of computer science from four universities
with some additional pages from other universities in January 1997, under the World Wide Knowledge
Base (WebKB) project. While WebKB1 includes web documents from the four popular classes (project
(501), course (922), faculty (1118), and student (1620) from the original 7 classes), WebKB2 consists
of web documents into five classes by university, concretely Cornell (221), Washington (237), Texas
(249), Wisconsin(304), and miscellaneous (3150). Note that both WebKB1 and WebKB2 datasets
include only 4161 documents. We excluded 38 pages from the original 4199 pages since they contain
only the structure of web page without any content. The fifth dataset, “20 Newsgroups”, is a
collection of 18,821 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups.
In details, the numbers of documents in newsgroups are 628, 675, 799, 909, 963, 966, 973, 975,
982, 984, 985, 987, 989, 990, 991, 994, 996, 996, 999, and 1040. The original dataset is available on
UCI-KDD archive (kdd.ics.uci.edu/databases/20newsgroups) but this work uses the clean-up version
on ana.cachopo.org. The last dataset, “Thai Reform”, consists of 3000 Thai documents, 1000 each from
three categories; Consumer protection (Category 6), Education and HR development (Category 7),
and Local government (Category 10), taken from the full set of more than 100,000 documents of twenty
(20) categories. The documents are suggestions or comments written in Thai language on how to
reform Thailand in twenty areas (classes), collected by the online system at thaireform.org. While some
comments are short, some are quite lengthy. The total number of terms in the DI and 20Newsgroups is
relatively large while there is not much difference on distinct terms among the six datasets. However,
the 20Newsgroups has the largest number of distinct terms (i.e., 8286 terms).

Before using these datasets, we performed the following preprocess steps as follows. While the
Amazon documents are plain texts without tags and headers, the DI and WebKB documents have
some HTML tags and the 20Newsgroups documents have some news headers. Therefore we exclude
the HTML tags from the DI and WebKB documents and eliminate the headers from the 20Newsgroups
documents. Moreover, for the five English datasets, the common pre-processing steps are (i) to omit
stopwords, (ii) to transform all letters to lowercase, (iii) to remove words that are less than 3 characters,
(iv) to apply the Porter’s Stemmer for the remaining words, and (v) to ignore terms whose document
frequency is lower than 0.001 percent of the number of documents in the collection. As the preprocess
for the Thai Reform dataset, the Thai comments are segmented by the LexTo word segmentation tool
(www.sansarn.com/lexto/). Next, we remove non-alphanumeric characters and omit stopwords using
the list provided by Jaruskulchai, C. (1998) as well as we ignore the term with only one frequency.
Table 3 summarizes the characteristics of these six datasets. The DI documents are the longest (277.58
terms on average and 136.60 distinct terms on average) while the Thai-Reform documents are relatively
the shortest (43.91 terms on average and 31.98 distinct terms on average). The WebKB (WebKB1 and
WebKB2) has one very long document of 17,719 terms with 2505 distinct terms.

For class characteristics, the class size are quite uniform for all datasets, except the Thai Reform
has relative smaller classes than the other datasets. For the class size when we consider only distinct
terms, the Amazon has the largest number of distinct terms for each class since many words share
among all classes. The ratios of inter-similarity/intra-similarity for the DI and 20Newsgroups are low,
that is 0.3373 and 0.3548, respectively. Then we can expect high classification performance for these
datasets. They seem to have good separation between documents in the class and those outside the
class. Such ratio for the WebKB2 is very high (i.e., 0.9332) The separation among documents in the

www.cs.jhu.edu/mdredze/datasets/sentiment
www.cs.jhu.edu/mdredze/datasets/sentiment
www.rxlist.com
www.cs.cmu.edu
ana.cachopo.org
www.sansarn.com/lexto/


Symmetry 2020, 12, 967 12 of 25

class and those outside the class is not so good. Then we can expect low classification performance for
this dataset.

4.2. Experiment Settings

To evaluate our method, we have conducted five experiments in the standard five-fold
cross-validation. In addition, we have conducted the experiments to investigate performance of SL, SSL
and USL. The centroid-based method in [20], the seeded k-means algorithm in [13], and the k-means
algorithm in [39] are used for SL, SSL and USL, respectively. The first experiment aims to investigate
effect of single distribution-based term weighting, combined with traditional term weighting on both
sides of a multiplier (for promoting) or a divider (for demoting). The second experiment is performed
to analyze effect of combined distribution-based term weighting on different exponents (powers)
of term weighting factors. In total, we explore the performance of 125 combinations, i.e., 3 factors
(SD, ACSD, ICSD) and with 5 different exponents (−1.0, −0.5, 0, 0.5, 1.0), are explored. The best-20,
best-10, worst-20, and worst-10 combinations are characterized to explore whether each factor has
promoting or demoting affects on the clustering performance. For the best-10 combinations, their
performances on each dataset are also investigated. The baselines are the methods where the exponents
of factors (SD, ACSD, and ICSD) are set to zero. In the third experiment, we use distribution-based
term weighting, extracted from predefined clusters, as expression of the user intention. Then we
evaluate clustering performance when the user intention is varied. We use the distribution-based
statistics extracted from KB1 (#classes = 4) as term weighting to represent the WebKB documents and
then perform the conventional (un-seeded) k-means to cluster the documents into 4 and 5 classes.
In the same way, we also exploit the statistics extracted from KB2 (#classes = 5) as term weighting
for 4-class and 5-class clustering. From the result, we evaluate the impact of distribution-based term
weighting (user intention) on clustering performance. The best-5 combinations for KB1 (or KB2) are
selected for performance comparison. The fourth experiment surveys performance of varied training
set sizes. Finally the last experiment explores the performance of the best term weightings when the
number of clusters is varied from two (2) to twenty (20) for each dataset, except the 20N dataset from
15 to 100 (steps of 5), due to its large number of classes. Here, the ratio of the training dataset to the
whole dataset is set to 0% to 80%.

4.3. Evaluation Measures

As evaluation metrics, we apply three types of measures; (1) class-based, cluster-based,
and similarity-based measures. As the class-based measure, the geometric mean (GM) of accuracy (A)
and macro average of f -measure (F̄) in Equation (14) is used. This measure has a strong point in the
fairness in evaluation of a task with data imbalanceness [41].

GM =
√

A × F̄ (14)

Here, when the number of clusters is not equal to the number of classes in the training set, a greedy
method is applied to map multiple clusters to a single cluster in order to absorb the difference between
the number of actual classes and that of predicted classes. As the cluster-based measure, the purity
represents the ratio of the number of instances with the most frequent label in the clusters, to the total
number of instances, as shown in Equation (15).

Purity =
1
|C|

|C|

∑
k=1

max
m

|Ck ∩ Lm|
|Ck|

(15)

where Ck denotes the k-th cluster and Lm represents the m-th labeled class. As the last measure,
the similarity-based measure is calculated by pairwise cosine similarity within/amongst clusters.
The similarity among instances in the same cluster, so-called intra-similarity Equation (16), as well as
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the similarity among instances in the different classes, so-called inter-similarity Equation (17), are used.
Here, ~di and ~dj are the document vectors for the document di and dj, respectively.

Intra-similarity =
1
|C|

|C|

∑
k=1

1
(|Ck|)(|Ck| − 1)

× ∑
di∈Ck

∑
dj 6=di∈Ck

~di · ~dj∥∥∥~di

∥∥∥∥∥∥~dj

∥∥∥ (16)

Inter-similarity =
2

|C|(|C| − 1)

|C|

∑
n=1

|C|

∑
m=n+1

1
|Cn||Cm|

× ∑
di∈Cn

∑
dj∈Cm

~di · ~dj∥∥∥~di

∥∥∥∥∥∥~dj

∥∥∥ (17)

5. Experimental Results

5.1. Cluster Quality of Single Factor

The first experiment investigates effect of an individual distribution factor on clustering quality
by adding one single term distribution factor (either SD, ACSD, or ICSD) to the frequency-based
weighting. In this experiment, as frequency-based weighting, either TF × IDF or nTF × IDF is
explored. Remind that nTF, the normalized term frequency of the j-th term in the i-th document,

is defined as
t fij

∑T
k=1 t fik

, where t fik is the frequency of the k-th term in the i-th document and T is the

number of possible terms, as shown in Section 2.1. They are the same schemes as shown in Table 2. The
cluster quality evaluation is conducted in both classification and clustering manners. For classification,
we perform the centroid-based method with five-fold cross validation, where 80% of the data are
used for centroid calculation and the rest 20% are used for performance testing. For clustering, we
perform the seeded k-means method [13] with the same five-fold cross validation. Table 4 shows
geo-mean (GM) of accuracy and f -measure (averaged from five folds) as clustering quality, where
the results of two different frequency-based weightings are located at (FW = TF × IDF) on the left
and (FW = nTF × IDF) on the right. The results of the six datasets; AM, DI, KB1, KB2, 20N, and TR,
are expanded from the left to the right for each frequency-based weighting. Panel I indicates the
result of centroid-based classification while Panel II displays the result of seed k-means clustering. We
investigate four calculation methods for the three distribution factors; i.e., SD, ACSD, and ICSD. For
example, in the first column of Table 4, SDT, SDN, SDTI, and SDNI imply that the standard deviation
(SD) is calculated from term frequency (T), normalized term frequency (N), term frequency with
inverse document frequency (TF × IDF: TI), and normalized term frequency with inverse document
frequency (nTF × IDF: NI), respectively. The ACSD and ICSD are also explored in the same manner.
The distribution factor is attached to the frequency-based component (FW) in two styles; promotor (×)
and demotor (/), as shown in the first column of Table 4. Since five folds are performed, the p-value
can be calculated from a one-tailed t-test for these five trails. As significant expression, †††, ††, and †

are provided when p-value ≤ 0.01, ≤ 0.05, and ≤ 0.1, respectively. The Avg. column shows the
averaged performance from the six datasets. For each distribution factor, we compare promotor (×)
performance with demotor (/) performance and we highlight the winner with the bold font. From
Table 4, some observations can be made as follows. Firstly, it is not surprising that the centroid-based
classification obtains approximately 2–5% higher performance (GM) than seeded k-means clustering
since the former is a supervised method but the later is an unsupervised one. Secondly, NTF × IDF
(the right part in the table) outperforms TF × IDF (the left part in the table). This implies that the
normalization helps improve classification and clustering performance. Thirdly, in most cases, SD and
ACSD perform well as a demoter while ICSD works well as a promoter. This phenomenon is the same
with the result reported in the work of [20]. Fourthly, it seems that the distribution factors (statistics)
calculated from normalized term frequency with inverse document frequency (nTF × IDF: NI) seem
to be a good method to catch the intuitive property of the documents or the collection. As the result,
in the following experiments, we use nTF × IDF as frequency-based weighting and also for calculating
the distribution factors.
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Table 4. Effect of single term distribution on clustering quality (geo-mean measure) for centroid-based
classification (Panel I) and seeded k-means clustering (Panel II).

Method FW = TF × IDF
Avg.

FW = NTF × IDF
Avg.

FW � DW AM DI KB1 KB2 20N TR AM DI KB1 KB2 20N TR

Panel I: Centroid-based method (Classification)
FW / SDT 92.13 92.21 89.69 90.74 87.56 94.76 91.18 ††† 92.25 91.96 89.61 91.20 87.80 94.92 91.29 †††

FW × SDT 84.72 69.05 59.75 44.91 57.21 75.35 65.17 84.90 68.77 59.86 46.03 57.19 75.84 65.43
FW / ACSDT 92.83 92.06 89.78 92.00 86.26 95.20 91.36 ††† 92.96 91.91 89.06 92.19 86.48 95.19 91.30 †††

FW × ACSDT 83.15 70.48 54.67 41.50 54.01 66.07 61.65 83.37 70.14 52.59 42.12 53.88 66.33 61.41
FW / ICSDT 77.44 69.18 78.17 79.43 81.94 79.90 77.68 78.57 68.79 77.74 80.42 82.02 79.84 77.90
FW × ICSDT 81.22 78.72 60.56 73.72 57.70 85.14 72.84 81.25 78.69 60.88 74.05 57.06 85.22 72.86

FW / SDN 94.25 96.55 89.45 93.25 91.90 94.24 93.27 ††† 94.23 95.99 89.11 94.24 91.86 93.58 93.17 †††

FW × SDN 79.77 81.01 62.79 65.49 66.27 85.22 73.43 79.80 81.24 60.30 65.83 66.16 85.54 73.15
FW / ACSDN 94.60 97.02 90.59 93.83 90.08 94.76 93.48 ††† 94.63 96.53 90.30 94.48 90.03 94.01 93.33 †††

FW × ACSDN 78.36 82.45 56.99 59.16 61.30 81.82 70.01 78.79 82.31 57.05 59.29 61.38 81.72 70.09
FW / ICSDN 84.43 86.41 83.78 83.18 88.19 83.48 84.91 †† 84.48 86.86 83.27 83.10 88.17 83.38 84.88 ††

FW × ICSDN 77.66 80.16 65.54 77.64 59.69 85.57 74.38 77.89 79.98 65.55 77.99 59.81 85.61 74.47

FW / SDTI 88.71 91.71 83.12 88.04 84.56 92.05 88.03 ††† 92.40 93.04 90.27 94.12 88.48 95.37 92.28 †††

FW × SDTI 88.19 56.44 61.67 53.10 63.59 90.47 68.91 89.25 59.62 61.88 54.05 64.33 91.07 70.03
FW / ACSDTI 88.94 91.55 82.43 86.69 84.08 91.38 87.51 ††† 93.31 93.00 90.86 93.68 87.18 95.76 92.3 †††

FW × ACSDTI 88.37 53.48 60.81 65.91 63.40 89.96 70.32 89.33 56.83 62.14 68.43 64.43 90.84 72.00
FW / ICSDTI 61.93 46.61 63.27 59.26 76.50 58.62 61.03 69.47 63.98 79.34 78.40 83.80 67.74 73.79
FW × ICSDTI 86.14 71.32 67.24 86.28 64.17 88.23 77.23 ††† 86.71 71.75 68.40 86.33 64.54 88.24 77.66

FW / SDNI 94.68 96.77 89.42 97.83 91.75 96.46 94.49 ††† 87.57 93.37 80.12 97.82 86.42 94.93 90.04 †††

FW × SDNI 86.38 80.42 77.82 88.82 75.59 90.74 83.30 85.07 77.41 76.04 88.8 73.73 90.74 81.97
FW / ACSDNI 94.95 97.31 90.21 98.03 90.45 97.45 94.73 ††† 86.66 94.47 80.07 98.02 85.54 97.45 90.37 †††

FW × ACSDNI 85.69 80.93 76.81 86.24 73.19 90.21 82.18 84.31 77.13 75.42 86.24 71.06 90.22 80.73
FW / ICSDNI 83.72 90.17 84.00 86.52 89.38 86.51 86.72† 70.04 61.99 61.23 86.54 76.88 86.51 73.87
FW × ICSDNI 82.12 81.88 80.55 87.89 68.21 89.44 81.68 81.70 82.00 79.74 87.88 67.21 89.44 81.33 ††

Panel II: Seeded k-means method (Clustering)
FW / SDT 90.92 89.58 81.79 86.79 83.65 92.30 87.51 ††† 91.44 89.93 87.18 87.30 84.60 93.16 88.94 †††

FW × SDT 75.31 43.83 53.74 31.78 40.05 46.29 48.50 72.66 44.15 53.79 31.41 41.25 54.04 49.55
FW / ACSDT 91.73 90.37 81.90 80.76 82.47 93.39 86.77 ††† 92.31 90.81 85.73 83.77 83.32 94.05 88.33 †††

FW × ACSDT 73.68 36.57 46.96 31.39 33.69 43.31 44.27 71.31 43.30 49.62 31.42 29.27 50.11 45.84
FW / ICSDT 60.59 59.84 66.36 61.65 74.15 71.82 65.74 65.75 46.77 69.72 63.15 71.47 67.91 64.13
FW × ICSDT 75.60 65.81 46.28 66.19 46.26 79.94 63.35 75.39 58.75 45.87 67.98 45.12 78.05 61.86

FW / SDN 88.17 84.98 70.73 77.13 82.76 79.33 80.52 ††† 88.74 95.48 87.5 90.58 90.69 88.64 90.27 †††

FW × SDN 70.36 63.76 51.67 32.43 47.19 82.10 57.92 67.35 62.10 45.13 42.38 44.97 78.06 56.67
FW / ACSDN 89.19 86.83 72.18 65.51 82.61 80.76 79.51 ††† 89.21 96.00 88.76 78.71 88.54 89.44 88.44 †††

FW × ACSDN 69.29 60.77 49.95 31.53 35.41 58.86 50.97 64.58 58.17 46.12 32.47 30.33 59.67 48.56
FW / ICSDN 66.67 64.45 62.12 51.55 69.91 62.44 62.86 73.78 79.75 77.94 62.87 82.28 75.04 75.28†

FW × ICSDN 74.74 71.26 51.73 68.33 47.55 85.71 66.55 73.90 70.90 50.14 69.62 45.32 85.21 65.85

FW / SDTI 87.38 84.73 75.46 75.17 82.24 91.12 82.68 ††† 91.79 82.30 83.32 89.74 86.35 94.59 88.02 †††

FW × SDTI 83.94 32.91 49.40 34.95 81.66 76.06 59.82 76.63 43.42 53.48 40.57 48.74 87.20 58.34
FW / ACSDTI 87.75 86.25 74.57 67.88 69.33 91.01 79.47 ††† 92.86 92.60 83.14 88.76 84.92 95.17 89.58 †††

FW × ACSDTI 86.59 30.20 48.31 32.68 76.66 81.06 59.25 76.95 38.86 51.61 42.85 42.61 85.08 56.33
FW / ICSDTI 35.04 33.41 52.56 38.62 49.46 44.95 42.34 36.55 37.58 68.12 50.41 76.25 40.47 51.56
FW × ICSDTI 79.05 67.52 53.56 85.25 43.65 86.12 69.19 ††† 77.57 62.16 48.29 85.50 51.84 83.64 68.17 ††

FW / SDNI 89.45 86.65 75.24 82.47 82.97 83.66 83.41 ††† 85.23 92.39 67.76 97.59 85.18 93.16 86.88 †††

FW × SDNI 75.39 52.92 69.04 66.62 60.54 89.70 69.04 73.20 60.07 52.36 81.89 56.87 89.61 69.00
FW / ACSDNI 90.95 88.18 77.36 76.50 84.61 85.46 83.84 ††† 84.45 93.00 68.78 96.60 83.98 97.38 87.37 †††

FW × ACSDNI 74.80 49.19 65.39 49.29 51.33 88.99 63.17 70.83 51.91 57.47 67.54 46.55 87.41 63.62
FW / ICSDNI 52.87 67.61 58.01 54.51 73.05 65.46 61.92 55.64 53.72 49.68 76.26 70.14 74.82 63.38
FW × ICSDNI 77.42 69.29 65.71 85.86 54.10 88.56 73.49 †† 75.80 76.30 63.60 85.93 56.22 88.14 74.33 ††

TW = FW�DW where FW is frequency-based and DW is distribution-based weight. SDX means SD calculated
from the method X. ACSDX means ACSD calculated from the method X. ICSDX means ICSD calculated from
the method X. where X equals to T for term frequency (TF), N for normalized term frequency (NTF), TI for TF
× IDF, and NI for NTF × IDF. p-value is marked by ††† (for ≤ 0.01), †† (for ≤ 0.05), and † (for ≤ 0.1.)

5.2. Cluster Quality of Multiple Factors

While the result of the first experiment suggests the promoting/demoting role of three single
factors of distribution-based term weighting. The experiment in this section explores performance of
the combinations of parameters in order to find the potential combinations of these parameters. The
exponents of each parameter (i.e., SD = α, ACSD = β, and ICSD = γ) are varied between −1.0
and 1.0 with step size of 0.5. By this, there are 125 (5 × 5 × 5) combinations in total. Here, the factor
of SD, ICSD, and ICSD are calculated when the standard term weighting (NTF × IDF) is applied.
Three algorithms; centroid-based, seeded k-means and conventional k-means, are investigated. While



Symmetry 2020, 12, 967 15 of 25

the first and second algorithms set the k initial centroids by calculating from the training set, but the
conventional k-means method randomly selects k points as the initial centroids, with 100 trials to reduce
the effect sampling variations, then the result shown with maximum value. Based on the average GM
on six datasets, the best-20 or (best-10) weightings (combinations) as well as the worst-20(worst-10)
weightings (combinations), are collected and their exponents are analyzed. By the investigation of the
best-20 and the worst-20 weightings (combinations), the exponent of each parameter is characterized.
Table 5 shows the numbers of the best-20 (or best-10) or the worst-20 (or worst-10) weightings by the
exponent of each parameter (SD, ACSD, and ICSD). For example the first row of Panel I, Panel A (best),
the number ‘5(3)’means five of the best-20 weightings have the exponents of SD= −1. Panel A shows
the numbers for the best-20 (best-10 in parenthesis) while Panel B displays those for the worst-20
(worst-10 in parenthesis).

Table 5. Descriptive analysis of term distribution factors (SD, ACSD, and ICSD) when their exponents
are varied (−1.0, −0.5, 0.0, +0.5 and +1.0) for centroid-based algorithm (Panel I), for seeded k-means
algorithm (Panel II), and for conventional k-means algorithm (Panel III). Each number in the table
expresses the number of term weightings (combinations). Panel A stands for the best-20 (the best-10 in
the parenthesis) and Panel B presents the worst-20 (the worst-10 in parenthesis).

Method
Power of DW (p)

Total
−1 −0.5 0 0.5 1

Panel I: Centroid-based algorithm

Panel A (Best):

SD 5(3) 7(5) 5(2) 2(0) 1(0) 20(10)
ACSD 8(3) 7(5) 4(2) 1(0) 0(0) 20(10)
ICSD 0(0) 0(0) 11(6) 7(4) 2(0) 20(10)

Panel B (Worst):

SD 5(4) 4(2) 2(0) 3(1) 6(3) 20(10)
ACSD 5(3) 3(2) 1(1) 2(1) 9(3) 20(10)
ICSD 12(8) 5(2) 1(0) 1(0) 1(0) 20(10)

Panel II: Seeded k-means algorithm

Panel A (Best):

SD 6(3) 7(4) 5(2) 1(1) 1(0) 20(10)
ACSD 7(3) 6(4) 5(2) 2(1) 0(0) 20(10)
ICSD 0(0) 0(0) 10(7) 7(3) 3(0) 20(10)

Panel B (Worst):

SD 3(0) 3(0) 2(1) 4(3) 8(6) 20(10)
ACSD 3(0) 2(0) 1(1) 4(3) 10(6) 20(10)
ICSD 11(6) 5(3) 3(1) 0(0) 1(0) 20(10)

Panel III: Conventional k-means algorithm

Panel A (Best):

SD 6(4) 6(4) 5(2) 3(0) 0(0) 20(10)
ACSD 7(3) 6(4) 5(3) 2(0) 0(0) 20(10)
ICSD 0(0) 0(0) 0(0) 10(4) 10(6) 20(10)

Panel B (Worst):

SD 2(0) 3(1) 6(3) 6(3) 3(3) 20(10)
ACSD 3(0) 2(0) 4(3) 5(3) 6(4) 20(10)
ICSD 16(9) 4(1) 0(0) 0(0) 0(0) 20(10)

Table 5 implies that SD and ACSD works well as a demoter since most of the best-20 (and best-10)
weightings have negative exponents for SD and ACSD. On the other hand, ICSD acts superior as a
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promoter since most of the combinations (weightings) have positive exponents for it. Moreover,
while most centroid-based and seeded k-means algorithms have zero as the exponent of ICSD,
the conventional k-means algorithm prefers to have a positive value for the exponents of ICSD.
In other words, the inter-class weight (ICSD) affects unseeded k-means while it does not influence the
seeded versions, i.e., the seeded k-means and centroid-based algorithm.

As a further analysis, the GM performances of the best-10 weightings and baseline are
investigated as shown in Table 6. We can observe that 15 weightings are superior to the baseline
for the centroid-based algorithm, 11 weightings for the seeded k-means, and 64 weightings for the
conventional k-means. By averaging on the six datasets, the best weightings for the centroid-based
(i.e., SC1), seeded k-means (i.e., SK1) and conventional k-means (i.e., UK1) are superior to the baseline
with a gap of 2.47% (varying from −0.10% of AM to 5.21% of DI), 4.28% (varying from 1.7% of AM
to 9.13% of KB2), and 28.68% (varying from 15.11% of KB1 to53.48% of KB2), respectively. One more
observation is that the rankings of centroid-based and seeded k-means looks similar while they are
quite different with the conventional k-means. The most dominant difference is the effect of ICSD is
positive for the former ones but it is not so important for the latter.

Table 6. Geo-mean (GM) performance of best-10 weightings and the baseline for the six datasets: Panel
I for the centroid-based, Panel II for the seeded k-means, and Panel III for conventional k-means.

Method
Power of DW

AM DI KB1 KB2 20N TR Avg.
Panel Ranking

SD ACSD ICSD I II III

Panel I: Centroid-based algorithm
SC1 −0.5 −1 0.5 91.15 95.99 84.85 95.80 84.93 96.10 91.47 1 1 18
SC2 −1 −0.5 0.5 91.46 95.77 84.43 94.91 85.51 95.93 91.34 2 2 21
SC3 −0.5 −1 0 91.04 95.38 84.48 95.45 86.20 95.23 91.30 3 3 45
SC4 0 −0.5 0 91.23 94.54 84.08 95.58 86.76 95.19 91.23 4 4 50
SC5 −0.5 0 0 91.68 94.38 83.23 96.03 86.31 95.63 91.21 5 5 54
SC6 0 −1 0.5 91.93 94.47 86.35 93.13 83.24 93.91 90.51 6 11 12
SC7 −1 −0.5 0 91.20 93.71 82.35 95.14 84.67 95.22 90.38 7 9 44
SC8 −0.5 −0.5 0 87.18 94.20 80.32 98.53 86.47 95.23 90.32 8 7 72
SC9 −0.5 −0.5 0.5 91.77 94.35 85.41 92.40 83.21 94.14 90.21 9 6 3
SC10 −1 0 0 87.57 93.37 80.12 97.82 86.42 94.93 90.04 10 10 71
B-SC 0 0 0 91.25 90.78 81.82 93.32 83.06 93.74 89.00 16 12 65

Panel II: Seeded k-means algorithm
SK1 −0.5 −1 0.5 91.87 95.75 80.52 95.37 83.65 96.04 90.53 1 1 18
SK2 −1 −0.5 0.5 91.79 93.88 79.39 92.68 83.98 95.11 89.47 2 2 21
SK3 −0.5 −1 0 91.33 92.95 76.93 95.40 84.95 94.56 89.35 3 3 45
SK4 0 −0.5 0 89.93 94.80 72.39 95.06 84.12 95.56 88.64 4 4 50
SK5 −0.5 0 0 90.33 95.71 72.14 94.49 83.65 95.40 88.62 5 5 54
SK6 −0.5 −0.5 0.5 91.51 90.21 78.03 91.68 80.21 93.88 87.59 9 6 3
SK7 −0.5 −0.5 0 90.74 89.76 79.25 86.21 84.98 93.03 87.33 8 7 72
SK8 0 −1 0 84.46 93.00 68.78 96.60 85.61 94.05 87.08 11 8 70
SK9 −1 −0.5 0 90.92 91.30 76.05 91.76 78.23 93.86 87.02 7 9 44
SK10 −1 0 0 85.23 92.39 67.76 97.59 85.18 93.16 86.88 10 10 72
B-SK 0 0 0 90.17 89.28 78.68 86.24 80.12 93.01 86.25 16 12 65

Panel III: Conventional k-means algorithm
UK1 −1 −0.5 1 80.25 85.08 66.91 86.63 71.81 89.57 80.04 21 19 1
UK2 −0.5 −1 1 79.74 82.96 67.09 86.97 72.70 89.46 79.82 19 17 2
UK3 −0.5 −0.5 0.5 80.65 83.49 64.10 72.88 76.12 90.74 78.00 9 6 3
UK4 −1 −1 1 74.94 78.51 58.68 87.34 74.38 92.38 77.71 12 20 4
UK5 −1 0 0.5 76.03 83.94 64.27 73.82 75.40 91.78 77.54 14 14 5
UK6 0 −1 1 73.05 79.31 66.41 86.28 68.42 88.30 76.96 30 27 6
UK7 0 −0.5 0.5 76.04 77.99 62.72 84.10 71.26 89.07 76.86 20 13 7
UK8 −1 0 1 77.02 80.97 64.55 85.97 63.24 88.62 76.73 35 29 8
UK9 −0.5 0 0.5 76.66 80.23 62.31 82.65 69.67 88.61 76.69 25 16 9
UK10 −0.5 −0.5 1 74.70 79.49 66.30 85.96 65.16 88.36 76.66 32 21 10
B-UK 0 0 0 59.85 51.21 51.80 33.15 44.04 68.13 51.36 16 12 65

SC: seeding on centroid-based; B-SC: baseline of seeding on centroid-based; SK: seeded-kmeans; B-SK: baseline
of seeded k-means; UK: un-seeded on k-means; B-UK: baseline of un-deeded on k-means; AM: Amazon, DI:
Drung information, KB1: WebKB1, KB2: WebKB2, 20N: 20 Newsgroup; and TR: Thai-Reform.
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5.3. Term Weighting as Expression of User Intention

In this experiment, the distribution-based term weighting is calculated from the statistics extracted
from predefined clusters, as expression of the user intention. The clustering performance is evaluated
with different user intention using the WebKB dataset. Concretely, the statistics extracted from KB1
(#classes = 4) are used as term weighting to represent the WebKB documents and then the conventional
(un-seeded) k-means are executed to cluster the documents into 4 and 5 classes. The conventional
k-means calculated with 100 trials to initial centroids (selecting k points) then the maximum value
is shown. Similarly, the statistics extracted from KB2 (#classes = 5) are used as term weighting,
instead. We evaluate the impact of distribution-based term weighting (user intention) on clustering
performance, using the best-5 weightings for KB1 (or KB2) are selected for performance comparison.
Table 7 shows a performance comparison between two user-defined dimensions of WebKB, i.e., KB1
and KB2. Here, the best-5 weightings are evaluated with the unseeded k-means (UK). The values
before the parentheses are geo-mean of accuracy and f -measure while those in the parentheses are
accuracy and f -measure, respectively.

Table 7. Geo-mean of accuracy and f -measure when user intention is expressed by the
distribution-based term weightings calculated from KB1 (Panel I) and those calculated From KB2
(Panel II). Here, the values before the parentheses are geo-mean of accuracy and f -measure while those
in the parentheses are accuracy and f -measure, respectively.

Methods
Power of DW User Dimension Difference

SD ACSD ICSD Dim.1 no. class = 4 Dim.2 no. class = 5 |Dim.1 − Dim.2|
Panel I: Distribution-based term weighting from KB1 (K = 4)
UK-KB1-1 −0.5 −1 1 67.09 (70.46, 63.88) 29.80 (34.08, 26.05) 37.29 (36.38, 37.83)
UK-KB1-2 −1 −0.5 1 66.91 (68.11, 65.72) 30.30 (34.15, 27.05) 36.61 (33.96, 38.67)
UK-KB1-3 0 −1 1 66.41 (70.35, 62.69) 29.95 (33.63, 26.67) 36.46 (36.72, 36.02)
UK-KB1-4 −0.5 −0.5 1 66.30 (69.00, 63.71) 31.14 (34.90, 27.78) 35.16 (34.10, 35.93)
UK-KB1-5 −1 0 1 64.55 (67.68, 61.56) 30.39 (34.15, 27.05) 34.16 (33.53, 34.51)

Panel II: Distribution-based term weighting from KB2 (K = 5)
UK-KB2-1 −1 −1 1 35.29 (48.32, 25.78) 87.34 (90.73, 84.07) 52.05 (42.41, 58.29)
UK-KB2-2 −0.5 −1 1 31.72 (39.96, 25.18) 86.97 (90.18, 83.87) 55.25 (50.22, 58.69)
UK-KB2-3 −1 −0.5 1 30.10 (35.69, 25.38) 86.63 (89.93, 83.45) 56.53 (54.24, 58.07)
UK-KB2-4 0 −1 1 35.72 (46.66, 27.35) 86.28 (89.59, 83.09) 50.56 (42.93, 61.74)
UK-KB2-5 −1 0 1 33.55 (44.68, 25.19) 85.97 (89.19, 82.86) 52.42 (44.51, 57.67)

The result shows that it is possible for us to use the distribution statistics as term weighting
for guiding the clustering process. Term distribution extracted from a dimension is useful to guide
clustering on that dimension as the clustering performance is high. For example, Panel I indicates that
the distribution extracted from the first dimension of KB (KB1 with four classes) can help classify a
text on the first dimension with a geo-mean between 64.55–67.09%. Reversely, the performance on
the second dimension is relatively low with a geo-mean of 29.80–31.14% On the other hand, Panel
II shows that the distribution extracted from the second dimension of KB (KB2 with five classes) is
suitable for classifying a text on the second dimension with a geo-mean between 85.97–87.34%. In the
same way, the performance on the first dimension is relatively low with a geo-mean of 30.10–35.72%.

5.4. Investigation of Various Training Set Sizes

This section aims to explore the effect of training set size on the performance of our constrained
k-means. The dataset is split into two sets: 80% for the training set and 20% for the test set. To
investigate the effect of the training set size, the test set is fixed to 20% of the whole dataset while the
training set size is set to 5% and 10% to 80% with a step size of 10%. To reduce the effect of overfitting in
the training set, each experiment is performed 100 times randomly and the performance is the average
of these trails. The algorithms in comparison are the centroid-based algorithm and the seeded k-means
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algorithm. The results are shown in Figure 2a,b, respectively. Here, we select the best weighting of
each dataset in Table 6, later called ’the best’ in short. In the figure, the legends represent the number of
classes in the dataset, and the exponent of the weight for each distribution factor. For example, for the
Thai Reform dataset (TR), the legend is “TR (3, −0.5, −1, 0.5)”, describing that the number of classes is
3 and the best weighting contains SD = −0.5, ACSD = −1, and ICSD = 0.5.
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Figure 2. Effect of training set size on clustering quality in terms of average geo-mean of accuracy and
f -measure (Avg. GM) of two algorithms using seeded initial centroids: (a) centroid-based algorithm
and (b) seeded k-means algorithm.

Some observations can be made as follows. Firstly, for both centroid-based and seed k-means
algorithms, the larger the training set is provided, the higher performance is. Secondly, when we
provide a large training set, say 80%, there is only small difference between centroid-based and
seed k-means algorithms. Thirdly, for the datasets with a small number of classes such as AM, TR
and KB1, the seeded k-means algorithm tends to outperform the centroid-based algorithm when a
small training set is used. However, for the datasets with a large number of classes such as DI, KB2,
and 20N, when the training set is small, the centroid-based algorithm has a tendency to obtain a
higher GM than the seeded k-means algorithm. As a possible reason, for a small training set with a
large number of classes, when the iterative clustering process is performed after the centroid-based
algorithm (that is, the seeded k-means algorithm), the clustering may become more diverse and then
the performance becomes lower, compared to the pure centroid-based algorithm. Fourthly, for all
datasets, the performance becomes stable when the training set size is large enough. In this experiment,
performance on most datasets becomes stable at the training set size of 40%.

To contrast with the seeded k-means, we also perform the unseeded version (the conventional
algorithm), by setting k initial centroids randomly and then performing the iterative k-means process.
To alleviate the effect of the initial clusters of the algorithm, 100 trials are made and their average and
maximum are calculated. Unlike the centroid-based algorithm and the seeded k-means algorithm
where the best weighting is selected from the average of the six datasets, in this experiment, we select
the best weighting for each dataset, later called ’the best’ in short. That is, best weightings for different
datasets may differ. The results are shown in terms of the maximum GM (Figure 3a) and the average
GM (Figure 3b).
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Figure 3. Effect of training set size on unseeded clustering, in terms of (a) maximum and (b) average
geo-mean (over 100 trails) of accuracy and f -measure.

The following observations can be concluded. Firstly, the maximum performance is naturally
higher the average performance. Secondly, the performance in terms of maximum and average
(maximum GM and average GM), has the same tendency for AI, AM, TR, KB1, and KB2, except 20N.
Thirdly, the ‘maximum’and ‘average’performances on the 20N dataset are quite different, as shown
Figure 3. One possible cause may come from the effect of the number of the classes. The performance
of a dataset with a large number of classes (for example, 20N in this experiment) tends to have high
variance. Fourthly, the unseeded k-means method can obtain a high GM for the DI dataset, compared
to other datasets. Referred to Table 3, the ratio of the inter-similarity to intra-similarity is small (i.e.,
0.3373), implying that the seven classes of DI are quite obviously distinct in nature. Fifthly, the results
for DI, AM, and KB1 are quite stable even the training set size is varied. In cases of TR and KB2,
the performance increases when the size of training set becomes larger. It seems that TR and KB2 have
a high ratio of the inter-similarity to intra-similarity. They are 0.9339 and 0.7363, respectively. For these
two datasets, the larger the training set, the higher the performance is obtained. Sixthly, KB1 has a high
ratio of the inter-similarity to intra-similarity, i.e., 0.7547 and its performance is low and stable. It is
relatively hard to classify/cluster the KB1 documents as shown in Table 7. Therefore, the performance
of this dataset is low, even the weighting is applied.

5.5. Effect of Cluster Number on Cluster Quality

This section presents an investigation on how the number of clusters affects the cluster quality.
To this end, we vary the number of groups (clusters) in the clustering process and then explore their
performances. As mentioned in Section 4.3, the performance measures are of three types; class-based,
cluster-based, and similarity-based metrics.

In this experiment, the baseline is set to the conventional k-means algorithm with the weighting
of NI=NTF × IDF, where term distribution is not applied but only term frequency and inverse
document frequency are used, 100 trails initial clusters are made and their performance is calculated
by average. The investigation is performed on the six datasets, using our proposed method, which
is the conventional k-means with the best distribution-based term weighting of each dataset (as in
Figure 3). Figures 4–6. show the average of cluster performance in terms of class-based, cluster-based,
and similarity-based measures, respectively. Each figure shows the performance of the best term
weightings (later called the best in short) when the number of clusters is varied from two (2) to twenty
(20) for each dataset, except the 20N dataset from 15 to 100 (steps of 5), due to its large number of
classes. The big circle marks on the point in each graph indicate the performances when the original
number of clusters is used.
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(c) KB1
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(d) KB2
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(e) 20N

2 4 6 8 10 12 14 16 18 20
Number of Clusters

10

20

30

40

50

60

70

80

90

100

A
vg

. G
M
 (%

)

Baseline (NTFxIDF)
Best (3,-1.0, -1.0, 1.0)

(f) TR

Figure 4. Class-based measurement using geo-mean of accuracy and f -measure. Here, the circle marks
indicate the performance when the original number of clusters is used.
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(c) KB1
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(d) KB2
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(e) 20N
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Figure 5. Cluster-based measurement using purity. Here, the circle marks indicate the performance
when the original number of clusters is used.
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Figure 6. Similarity-based measurement using ratio of inter- to intra-similarity (by average cosine
similarity). Here, the circle marks indicate the performance when the original number of clusters
is used.

From these figures, some observations can be made as follows. Firstly, for all datasets,
incorporating term distribution into term weighting as the constraint can help us to improve the
performance over the baseline for all metrics: GM, purity, and the ratio of inter- and intra-similarity.
Moreover, this advantage remains even if the number of clusters are set higher. Secondly, for the AM
and TR datasets, the highest GM and purity is achieved when the number of clusters is set to four (or
five), even the original number of clusters is three, as shown in Figure 4. When the number of clusters
becomes higher than five, the GM and purity of the resultant clusters reduce. Referring to Table 3,
the AM and TR datasets contain relatively small documents, i.e., texts with fewer than 70 terms (on
average 64.58 words for AM and 43.91 words for TR). Therefore, grouping these small documents
seems difficult since they include less information for clustering. The highest GM for the best and
the baseline for AM are 69.73% and 61.69%, respectively, when the number of clusters is five. The
highest GM for the best and the baseline for TR are 90.62% and 85.84%, respectively, when the number
of clusters is six. The highest purity for the best for AM is 70.86%, when the number of clusters is
four. The highest purity for the best and the baseline for TR are 89.70% (#cluster = 6) and 87.77%
(#cluster = 4), respectively. For both AM and TR, When the number of clusters becomes higher than
five, the best and baseline performance drops. Thirdly, shown in the bottom-most section of Table 3,
the ratio of inter- to intra similarity (by cosine similarity) of both DI and 20N dataset are lower (0.3373
for DI and 0.3548 for 20N) than that of the other datasets (0.6784 for AM, 0.7547 for KB1, 0.9332 for
KB2, and 0.7363 for TR). This figure means that clustering or classification on the DI and 20N datasets
is easier than the other datasets. Based on this, the GM and purity gaps between the best and the
baseline of DI are quite large, and the gap is still obvious when the number of clusters increases,
as shown in Figures 4 and 5. However, for the 20N dataset, since the number of classes (clusters) is
large (20 groups), the classification task become complicated and the performance is relatively low,
i.e., approximately 50% for both GM and purity. There exists a trivial gap between the best and the
baseline in terms of both GM and purity indices.

Fourthly, for the WebKB dataset (KB1 and KB2), there is a medium (GM and purity) gap between
the best and the baseline. However, for KB2, the purity of the baseline is quite stable and there is only
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a small gap when the number of clusters increases from two to twenty, as shown in Figure 5 The KB2
where one large class exists (docs per class: 221/237/249/304/3150, see Table 3), the distribution-based
term weighting seems more effective to preserve cluster quality than the traditional term weighting.
Although the results of GM and purity on the KB2 dataset show that the best is superior to the
baseline, but when the number of clusters is small, the baseline performs better. One observation
of this performance outcome is that the KB2 dataset has one large class (3150 documents) and the
performance on this dataset drops when the number of clusters is smaller than the original. Lastly,
Figure 6 presents the performance of the best distribution-based weighting that also has a lower ratio
of inter- to intra similarity (by average cosine similarity) than the baseline. Our proposed method
achieves better improvement in the resultant clusters, compared to the baseline. When we increase the
number of clusters, the average ratio of inter- to intra-similarity over 100 trails is also improved. The
ratio of the baseline to the best (the black square) indicates their good performance. For all datasets,
the ratio of the baseline to the best is higher than 1.0, that is the distribution-based term weighting can
improve the quality of clustering. Unlike classification where the number of classes is fixed, in the
work the number of clusters can be varied and the preservation of the GM, purity and the average
ratio of inter- to intra-similarity is observed.

6. Discussion and Related Works

In this section, the constrained clustering using distribution-based term weighting is discussed,
along with related works. Most constrained clustering methods used either labeled data or a set of
MUST-LINK and CANNOT-LINK pairwise constraints to guide blind clustering. However, to the
best of our knowledge, there is no investigation on term weighing as constraint for clustering. In the
past, term weighting was used as means to improve classification process in several literatures. Early
works straightforwardly applied the frequency-based term weighting (FW), in the form of TFIDF, such
as [42–44]. However, FW may not be sufficient to reflect the importance level of a term, in relevant
to characteristics of a class, since these statistics come from the whole collection, regardless of class
consideration. Towards this drawback, some works [20,21,45,46] exploited class-based statistics
to reflect the class information during classification, i.e., chi-square, information gain, gain ratio,
and inverse class frequency. In contrast to term frequency, term distribution can be used to express
importance of a term by assigning different scores to a term with high distribution and a term with
low distribution, in the form of distribution-based weighting (DW). Our DW uses class-information to
promote and demote a term. Using only the frequency-based term weighting (FW), the centroid-based
method (B-SC), seeded k-means (B-SK), and k-means (B-UK) obtains 89.00%, 86.25%, and 51.36%,
respectively, as shown in Table 6. On the other hand, when the distribution-based term weighting
(DW) is also used, the centroid-based method (SC1), seeded k-means (SK1), and k-means (UK1) obtains
91.47%, 90.53%, and 80.04%, respectively. They are 2.47%, 4.28%, and 28.68% gaps, corresponding
to approximately 2.78%, 4.96%, and 55.84% improvement rate over the FW performances. As error
reduction viewpoint, they are 22.45%, 31.13%, and 58.96% reduction rate over the FW performances.
The improvement triggered by the distribution-based term weighting (DW) is quite significant. The
class information affects the clustering process, as shown in Table 7). Figures 4–6 show the performance
when the number of clusters are varied. The figures also indicated that the DW can help enhance the
performance of FW.

7. Conclusions

In this paper, three types of distribution-based term weightings are used as distance constraint
to improve document clustering, i.e., distribution of terms in collection (SD), average distribution
of terms in a class (ACSD), and average distribution of terms among classes (ICSD). Weighting
terms helps guide the clustering process by promoting or demoting terms based on their importance
in the context. This weighting is calculated from statistics that extracts the characteristic of class
considered by distribution. The experiments claimed that SD and ACSD should be used as demotors,
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but ICSD as a promotor. Compared to the conventional TFIDF, the distribution-based term weighting
improves the centroid-based method, seeded k-means, and k-means with the error reduction rate
of 22.45%, 31.13%, and 58.96%. This characteristic is also the same when we vary the size of the
training set. One main advantage of our approach is that we can cluster data or objects (in this work,
documents) into any k clusters by considering the statistics (or knowledge) from some classified
examples. In the future, we plan to apply this approach to other type of clustering, such as affinity
propagation, agglomerative clustering, BIRCH, DBSCAN, mean shift, OPTICS, spectral clustering,
Gaussian mixture model, a family of k-means and k-medoids, and fuzzy-based clustering. Additionally,
we plan to explore efficiency of our method on any machine learning algorithms, including those
of active learning, classification, and regression. Another interesting topic is to investigate the
effectiveness of our proposed method on a number of standard tabular datasets with spherical or
non-spherical expected clusters. Moreover, it is worth exploring the efficiency and effectiveness of this
approach when dimensionality reduction, such as latent semantic analysis (LSA), factor analysis (FA),
random projection (RP), independent component analysis (ICA), linear discriminant analysis (LDA),
and principal component analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE),
isometric mapping (ISOMAP), uniform manifold approximation and projection (UMAP).
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