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Abstract: Polymeric membrane technology is a constantly developing field in both the research
and industrial sector, with many applications considered nowadays as mature such as desalination,
wastewater treatment, and hemodialysis. A variety of polymers have been used for the development of
porous membranes by implementing numerous approaches such as phase inversion, electrospinning,
sintering, melt-spinning and cold-stretching, 3D printing, and others. Depending on the application,
certain polymer characteristics such as solubility to non-toxic solvents, mechanical and thermal
stability, non-toxicity, resistance to solvents, and separation capabilities are highly desired. Poly (vinyl
alcohol) (PVA) is a polymer that combines the above-mentioned properties with great film forming
capabilities, good chemical and mechanical stability, and tuned hydrophilicity, rendering it a prominent
candidate for membrane preparation since the 1970s. Since then, great progress has been made both in
preparation methods and possible unique applications. In this review, the main preparation methods
and applications of porous PVA based membranes, along with introductory material are presented.
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1. Introduction

Polymeric membranes are used in a vast array of applications; predominantly in water treatment,
gas separations, medical, industrial, fuel cells, and others [1–10].

The membrane’s purpose is to act as a selective barrier for species of interest. In order for that to be
achieved, a membrane must have a certain structure. Typically, these can be either porous, having openings
of a desired diameter acting as a sieve, or non-porous, where the chemical nature of the polymeric matrix
dominates molecular diffusion, favoring the passage of a certain component against other(s). Membrane
performance typically is a trade-off between permeability, which is the normalized flux of the desired
component and the selectivity, which is defined as the ratio of the compositions of the species of interest in
the permeate side. This means that it is challenging to achieve both high fluxes accompanied with high
selectivity. Membrane structure plays a vital role in controlling these factors; dense structures exhibit high
selectivity but low permeability (disproportional to the membrane’s thickness) while porous structures
are characterized by high fluxes and lower selectivity. The combination of these two cases is considered
as the ideal scenario: an asymmetric structure comprising of a highly porous substrate, providing flux
and mechanical strength, and a thin dense layer providing the desired selectivity. This asymmetry is highly
desirable but many challenges remain still on how to achieve controlled structures with desired properties
and up-scalable capabilities. Common polymers used for the membrane preparation include cellulose
acetate (CA), polyethersulfone (PES), polysulfone (PSf), poly(vinylidene fluoride) (PVDF), polyacrylonitrile
(PAN), polytetrafluoroethylene (PTFE), poly-(1,4-phenylene ether), ether sulfone (PPEES), sulfonated
poly(ether ether ketone) (SPEEK), poly(p-phenylene sulfide) (PPS), polypropylene (PP), polycarbonate (PC),
poly(dimethyl siloxane) (PDMS), polyether block amide (PEBAX), polyimides (PI), ultra-high molecular
weight polyethylene (UHMWPE), and others. Several polymer characteristics are taken into consideration in
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regard to specific membrane applications [11–15] such as thermal, chemical, and mechanical stability as well as
hydrophobicity/hydrophilicity. For example, hydrophilic polymers such as poly (vinyl alcohol) (PVA) are
the choice of preference when it comes to pervaporation [16] or treating oil containing wastewater [17].

Properties of Poly(Vinyl Alcohol)

Synthetic routes for the preparation of poly (vinyl alcohol) have been reported since the 1920s from
Herrmann and Haehnel [18] by saponifying poly (vinyl esters) and in the 1930s by Herrmann, Haehnel,
and Berg [19] by transesterification. Since then, various preparation routes have been proposed,
while in the industrial scale, the majority of PVA is produced via the polymerization of vinyl esters or
ethers (usually vinyl acetate), with subsequent saponification or transesterification. Hydrolysis of poly
(vinyl acetate), (PVAc) to PVA can be performed in solution, suspension, or emulsion with alkaline or
acidic catalysts. The preferred process is transesterification in methanol in the presence of catalytic
amounts of sodium methoxide [20]. In reality, PVA is a copolymer consisting of hydroxyl and acetyl
units remaining from the incomplete hydrolysis of the parent poly (vinyl acetate). Therefore, polymers
with greater than 50% hydroxyl groups are considered as poly (vinyl alcohols) while the ones with more
than 50% acetyl groups are poly (vinyl acetates). The percentage of OH– (%mol) groups in the final
product is also called degree of hydrolysis (DH) and the properties of PVA are greatly dependent
on that. Typical commercial degrees of hydrolysis are 70–72%mol, 87–89%mol and 99+%mol (fully
hydrolyzed). Solubility of PVA is greatly dependent on the DH with the fully hydrolyzed grades being
more difficult to dissolve, typically in hot water, than the lower hydrolysis grades producing more
viscous aqueous solutions. This phenomenon is attributed to the strong hydrogen intramolecular
bonds that form in the fully hydrolyzed grades than the lower ones [21]. PVA is also soluble in
polar solvents like N-methyl-2-pyrrolidone [22], dimethyl sulfoxide, diethylenetriamine, formamide,
N,N-dimethylformamide, and hexamethylphosphoric triamide, glycerol (hot), and piperazine while it
is not soluble in lower alcohols, tetrahydrofuran, dioxane, ethylene glycol formal, ketones, esters,
carboxylic acids, and concentrated aqueous solutions [23].

PVA’s melting point is approximately 220–230 ◦C for fully hydrolyzed grades and 180–190 ◦C for
partially hydrolyzed ones. A similar effect is observed in glass transition temperature, which ranges
from 65–85 ◦C while the decomposition temperature is 220–250 ◦C.

The crystal structure of PVA was first reported by Bunn [24] in 1948 and confirmed by studies
conducted by Assender and Windle [25,26] using x-ray, and Takahashi [27] neutron diffraction.
The crystal cell is monoclinic (a = 7.81 Å, b = 2.52 Å, c = 5.51 Å, α = γ = 90o, β = 91.7◦) [25] with
the intramolecular hydrogen bonds responsible for the chain arrangements as can be seen in Figure 1.Symmetry 2020, 12, x FOR PEER REVIEW 3 of 25 
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Annealing affects the crystal structure and crystallinity, resulting in increased levels of the latter,
as can been seen in Figure 2 Crystal formation is also altered in the presence of nanoparticles [28],
especially with hydrophilic ones like clays [29,30], as seen in Figure 3, where the addition of bentonite
clay induced an additional crystal formation.
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The reported density for the amorphous part of PVA is pa = 1.269 g/cc, while for the crystalline
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Figure 3. (a) Differential scanning callorimetry curves in the melting region. (b) Fraction of the heats
of fusion for the two phases (closed symbols: bulklike phase, open symbols: clay induced phase).
Reproduced by permission from [33]. Copyright 2011 Wiley Periodicals, Inc.

Additionally, the great film forming, adhesion, good mechanical and optical properties,
O2 barrier capability in low humidity [33–35], non-toxicity [36,37], biocompatibility and partial
biodegradability [38,39], and relatively easy nanocomposite preparation capabilities [40] render PVA a
valuable candidate material in diverse and demanding applications.

Due to these properties, PVA has found its way in a wide spectrum of technological fields ranging
from biomedical to construction. Indicative applications include fibers, water soluble packaging,
protective colloid in emulsion and suspension polymerization, adhesives, sizing, paper industry, tissue
engineering [41], wound dressing [42] contact lenses, drug delivery systems [43–46], and orthopedics [47].

Practical applications of poly(vinyl alcohol) based membranes require that it should be crosslinked
prior to use in order to retain the structure and mechanical properties, especially in water related processes;
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studies have also shown that crosslinking can induce minimum effects on the thermal and mechanical
properties, or even their deterioration [48]. Crosslinking can be performed via various chemical or
physical paths [49–51]. Chemical crosslinking requires di-functional crosslinking reagents [49] that
typically include glutaraldehyde [52,53], as can be seen in Figure 4a,b, acetaldehyde, formaldehyde,
and other monoaldehydes. The crosslinking reaction takes place in an acidic environment with sulfuric
and hydrochloric acids being the common chemicals used. A list of common crosslinkers used on PVA
can be seen in
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Figure 4. Crosslinking reaction between (a) poly (vinyl alcohol) and (b) glutaraldehyde. Reproduced
with permission from [53]. Copyright 2007 Elsevier B.V.

Table 1. Crosslinkers used on poly (vinyl alcohol) (PVA), adapted from [49]. Since some of these
crosslinking agents are considered toxic, proper actions should be taken in order that no residues
exist in the final material. Crosslinking reactions of PVA with some commonly used acids [54] can be
seen in Figure 5. Other crosslinking methods include freeze/thaw method [16], heat treatment [55],
and γ-irradiation [56].

Table 1. Crosslinkers used on poly (vinyl alcohol) (PVA), adapted from [49].

Glutaraldehyde Formaldehyde

Citric acid Boric acid
Tetraethoxysilane Malic acid
Poly(acrylic acid) Glyoxal

Genipin PEG diacylchloride
Terephthaldegyde Malonic acid

Sulfur -succinic acid Acetaldehyde
Acrolein and methacrolein Fumaric acid
Urea formaldehyde/H2SO4 1,2-Dibromoethane

Divinyl sulfone γ-Glycidoxypropyltrimethoxysilane
Maleic acid and anhydride Trimesoyl chloride

Toluene diisocyanate Glycidyl acrylate

As a membrane material, PVA is considered attractive due to the following advantages:
hydrophilicity, water permeability, good mechanical properties, thermal and chemicals resistance,
anti-fouling potential, and film forming ability. On the negative side, PVA is permeable to ions, has a
high degree of swelling, compacts under pressure, and shows low flux when it is highly crosslinked [40].
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In this context, dense (non-porous) PVA has been used in various membrane preparations for many
years. The main applications include the implementation of PVA based membranes in pervaporation [57]
for the dehydration of ethanol [58–63], isopropanol [64], acetic acid [65], ethylene glycol mixtures [66],
direct methanol fuel cells [67], reverse osmosis desalination [68], CO2 separation [69], as a polymer
electrolyte membrane [70,71], biodiesel synthesis [72], ion exchange [73], and others.

Furthermore, poly (vinyl alcohol) has attracted a lot of research interest as a membrane for
separations, especially in water treatment due to its low biofouling tendency [74], a known issue that
affects various membrane processes [75].

2. Polymeric Porous Structures

Over the last 60 years or so, there has been great progress in several techniques that have been
developed for the preparation of porous polymeric membranes both on industrial and lab scale [76–79]
including (a) phase inversion also called phase separation (PS), (b) track-etching, (c) stretching,
(d) sintering, (e) electrospinning, and interfacial polymerization [80]. In parallel, the effects of
nanoparticle incorporation during membrane preparation have also been extensively studied for both
performance and structure control [81,82].

In the following paragraphs, the main techniques for obtaining porous structures and how they
were applied for the case of PVA will be described.

2.1. Phase Inversion Method

Phase inversion can be generally described as the process by which a homogeneous polymer
solution becomes separated in a polymer rich and in a polymer lean phase in a controlled manner [83].
The polymer rich phase will eventually become the membrane’s solid skeleton, while from the residual
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lean phase, the pores will be created. Structures obtained by this method typically result in a sponge or
finger-like macropores (i.e., pore diameter > 50 nm) [84].

Phase inversion, also called demixing or precipitation, is the general term of the process and can
be divided in the following sub categories [85,86]:

Non solvent induced phase separation (NIPS), also referred to as immersion precipitation, in which
the addition of a non-solvent in the polymer solution results in a miscibility gap, according to the ternary
diagram of the system as shown in Figure 6 [87]. NIPS is the primary technique for the production
of asymmetric structures and polymeric membranes on an industrial scale, resulting in pore size
diameters ranging from hundreds of nanometers to 10+ µm. Typically, the polymeric solution is casted
in the appropriate support (e.g., a non-woven fabric [88]) and is afterward dipped in a non-solvent
bath, resulting in the immediate solid membrane formation.
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Evaporation induced PS (EIPS), in which the polymer is dissolved in a mixture of a volatile solvent
and a less volatile non-solvent. As solvent evaporation starts, the composition of the solution is
changing in favor of the non-solvent and eventually results in polymer precipitation, forming an
asymmetric skinned membrane.

Vapor-induced PS (VIPS) was first introduced by Zsigmondy and Bachmann [89] in 1918 and then
developed further by Elford in 1937 [90]. In the VIPS process, the casted membrane is placed in a
controlled environment chamber containing non-solvent vapors, which penetrate from the vapor phase
to the polymer solution and induce phase inversion [91–93]. In general, VIPS is regarded as a more
controllable technique with the tradeoff of longer production time requirements.

Temperature induced PS (TIPS), in which the temperature of the polymer solution is changed so
that the polymer solubility in a solvent changes, eventually leading to precipitation.

2.2. Electrospinning

Electrospinning (electrostatic + spinning) is a technique used to create polymer nanofibers from
polymeric solutions ranging in diameter from less than 3 nm to 1 µm with the aid of an electrostatic
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force (Figure 7) [94,95]. Although not the most popular porous material manufacturing process,
electrospinning has evolved, especially in the last few years, into a promising manufacturing process
of membrane technology called electrospun nanofibrous membranes (ENMs). By carefully selecting
the proper fiber diameter, consecutive layering and packing density, a porous asymmetric structure
can be therefore shaped with membrane characteristics such as high air permeability and targeted
liquid entry and bubble point pressure. Electrospinning was introduced as a mean of processing
textile yarns in the 1930s [96], though it originates in the studies of Lord Rayleigh, and since then it
was used in a variety of material preparation [97] including among others, medical applications [98],
protective textiles, [99,100], and filtration membranes [101]. The main advantages of ENMs is their high
surface area and porosity, open structure, controllable manufacturing, and nanocomposite capability.
Typically ENMs are produced as thin layers, which depending on the transmembrane pressure of
the intended application can require the need of a support (usually a non-woven fabric) in order to
provide mechanical stability.
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A special category of PVA based porous materials is the development of hydrogels that have been
studied for many years, mainly for biomedical applications [39]. Although not intended to function as
membranes, their preparation routes can be adapted to obtain porous polymeric structures as supports
and separating elements [102].

3. Porous Poly(Vinyl Alcohol) Preparation Methods

Chae et al. [103] reported a phase inversion method to prepare porous PVA membranes using
water as the solvent and isopropyl alcohol as the non-solvent. The membrane was composed of packed
microspheres as a result of crystallization with its degree depending on the solvent/nonsolvent ratio.
The preparation route was as follows: 1 mL of the PVA aqueous solution (with concentration of 2, 4, 6,
8, or 10% PVA) was poured into a polystyrene (PS) Petri dish filled with 20 mL isopropanol. To perform
the crosslinking of the formed structure, 3 mL of gludaraldehyde (4 wt%) and 0.5 mL of hydrochloric
acid (35–37%) was added in the Petri dish and left for 12 h. The scanning electron microscopy (SEM)
images of the prepared samples can be seen in Figure 8.
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Copyright 2014 ACS publications.

The PVA chains were found to be self-aggregated into a porous structure under the influence of
dipole−dipole interactions in a low-polarity solvent (Figure 9), while the porosities of the matrices
prepared using 4−10% PVA solutions were estimated at 67.6−14.9%

Kim and Lee [104] reported the preparation of integrally skinned asymmetric PVA
(99+% hydrolyzed, Mw. 31,000–51,000) membrane structures by using 2-propanol as the non-solvent
and a mixture of N-methyl-2-pyrrolidone and water as a cosolvent membrane structure from asymmetric
having a dense layer to uniform porous was found to be dependent on the ratio between NMP and water.
As the NMP ratio increased, the structure was driven toward the asymmetric structures. The preparation
route that followed was: 100 g of 10 wt% PVA solution in the cosolvent mixture was prepared by
mixing at 80 ◦C for 12 h. The resulting solutions were cast on a glass plate at 25 ◦C with a casting knife
and submerged into an isopropanol bath for 20 min at 25 ◦C.

Ahmad et al. [105] prepared PVA (88% hydrolyzed, 88,000 Mw) asymmetric membranes using
deionized water as the solvent and a mixture of sodium hydroxide (4.0 wt%) and sodium sulfate
(8.0 wt%) as a coagulant in similar way with previous studies [106]. The prepared membrane was
then crosslinked using glutaraldehyde (10 g/L), sodium sulfate (45 g/L), and sulfuric acid (5 g/L) for
0.5, 1.0, 1.5, and 2 h of reaction time. Although not clear from the electron microscopy observation, by
increasing the crosslinking reaction time, the pore size distribution became narrower while the average
pore size was also reduced, as depicted in Figures 10 and 11. The membranes were evaluated for
their pure water flux with the results indicating that there is no clear relationship between pore size
and water permeability, rather, a relationship between the hydrophilicity and the water flux.
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Wang et al. [107] studied the influence of (a) chemical crosslinking with glutaraldehyde and sulfuric
acid, and (b) heating, as post treatment methods in porous PVA membranes. The casting solution
was a 10 wt% PVA (99% hydrolysis, polymerization degree, 1750) and 0.5 wt% poly(ethylene
glycol) (Mw. 10,000). After degassing (50 ◦C for 12 h), the solution was cast onto a glass plate,
and immediately immersed in acetone, where it remained for 30 min. A crosslinking solution
comprised with glutaraldehyde (3 wt%) and sulfuric acid (5 wt%) in a saturated sodium sulfate
solution (27.5%, 1 g/100 g) was used. PVA membranes were immersed into the crosslinking solution at
25 ◦C for different times (5, 10, and 30 min), washed with deionized water, and dried with acetone.
For the heat-treatment, it was performed at 120 ◦C for different durations (one, two, and three
hours). The membranes were evaluated on their water permeation flux, morphology, and mechanical
properties. Chemical crosslinking did not have any major effect on the membrane’s structure, whereas
heat treatments increased crystallinity and thus changed their morphology.

Chuang et al. [108] prepared asymmetric PVA (Mw 74,800) membranes (Figure 12) and studied
the effect of including dextran (Mw 12,000) and poly (vinyl pyrrolidone) (Mw 10,000) in the membrane
casting solution. Membranes were prepared using water as the solvent, and Na2SO4/KOH/H2O as
the coagulant medium Findings indicate that when PVP was introduced in the solution, compact
structures were favored, while the addition of dextran induced the pore formation on the membrane’s
top layer.
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Figure 10. Pore size distribution of crosslinked PVA membranes at different crosslinking durations.
Reproduced with permission from [78]. Copyright© 2011 Elsevier B.V.

The membranes were evaluated on their ultrafiltration capabilities with respect to the rejection of
dextran and PVP.

The same group also studied the role of adding acetic acid in the structure of PVA membranes [109].
Acetic acid containing aqueous PVA solutions were immersed in a Na2SO4/KOH/H2O coagulation
medium with the findings suggesting an apparent effect of the acidic acid in the overall morphology as
a consequence of the filtration performance of the prepared membranes. The thickness of the dense
layer was decreased by the increased acidic acid content. A reason for this observation can be found in
the increased amount of H3O+, affecting the acid–base equilibrium during coagulation.
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In a study by M’Barki et al. [110], porous membranes were prepared by temperature induced phase
serration with a PVA of 72% DH selected due to its low cloud point temperature (Tcp, 47 ◦C for 10 wt%
polymer). The membrane microstructure resulted from phase separation mechanisms occurring by
spinodal decomposition. Authors studied the binary PVA/water phase diagram (Figure 13) as well as
the crosslinking kinetics in order to determine the desired conditions for membrane preparation.
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Figure 13. Experimental binary phase diagram of PVA72–water solution showing the cloud point curve,
the spinodal temperatures and the binodals for several concentrations. Paths (1) and (2) lead to the formation
of dense membranes. Path (3) induces the formation of porous membrane thanks to the crosslinking reaction
in the diphasic region. Reproduced with permission from [110]. Copyright 2014 Elsevier B.V.

In order to produce the porous membranes, hydrocloric or sulfuric acid was added to the casting
solution (PVA 10 wt% and gludaraldehyde 0.5 wt%) and after 1 min of stirring, it was cast onto a glass
substrate that was placed in a heated support of the required temperature under a controlled relative
humidity environment for 15 min. Afterward, the prepared membrane was removed and dried at
60 ◦C. Results indicated that the crosslinking control was the key step to obtaining porous membrane
morphology (Figure 14).

Modeling studies of the PVA/water system that have also been performed by the same group [111]
suggested that simulations showed that the initial solution thickness could have a significant influence
on the membrane formation dynamics as well as volatile catalyzer components such as hydrochloric acid.

Additional thermodynamic analysis providing useful estimations for the membrane formation of
the PVA/water/DMSO mixtures was performed by Young and Chuang [112] by using the Flory–Huggins
ternary solution theory, indicating optimum ratios favoring system demixing.

Interesting approaches for creating porous structures are by utilizing microfluidics [113]
or supercritical CO2 as a component in polymeric solutions [114]. Studies conducted by
Reverchon et al. [115,116] reported the preparation of PVA membranes by supercritical CO2 assisted
phase inversion. The authors reported their findings with respect to preparation conditions such as
polymer concentration, ethanol to CO2 ratio, temperature, and pressure. Several morphologies found
to be achievable with macropores from 0.5–4 µm and a top layer that is either dense or porous, as can
be seen in Figures 15 and 16.
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The gas foaming method was used by Narkkun et al. [117] to produce L-arginine functionalized
PVA (average molecular weight 130,000 g mol−1 and 99% hydrolyzed) with CO2 introduced from
the thermal decomposition of sodium bicarbonate (NaHCO3) at 130 ◦C. The membranes exhibited a
structure with an average pore size of 32–56 µm depending on the amount of grafted L-arginine.
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Figure 16. Effect of polymer concentration on the PVA membrane section at P = 250 bar, T = 55 ◦C
and with an ethanol: CO2 ratio of 60:40, w/w, (A) 10% (w/w) and (B) 20% (w/w). Reproduced with
permission from [115]. Copyright 2008 Elsevier.

Wu et al. [118] reported the preparation of a composite PVA ultrafiltration membrane for
the treatment of oily water by crosslinking PVA to a mixed cellulose ester microfiltration membrane
and the results indicated that the prepared membrane had excellent antifouling properties against oil.

Treatment of oil/water emulsions was also studied by means of highly porous electrospun PVA
membranes (crosslinking with GA in acetone) by Wang et al. [119] using a variety of PVA grades.
The ultrafiltration experiments were performed in PVA coated scaffolds with a hydrogel layer of
~1.8 µm (Figure 17) and compared to a Pebax 1074 coating with the PVA water flux reaching 130 LMH
and Pebax 57 LMH.

Citric acid crosslinking stability of electrospun PVA fibers have been proposed as a promising alternative
to GA [120] while Truong et al. [54] reported a comparison of crosslinking stability by using citric acid
(Figure 18), maleic acid, and PAA to PVA (Mw 100,000). The prepared membranes where evaluated in two
potential applications: (a) for metal uptake in aqueous systems and (b) ammonia adsorption after decorating
the membranes with a metal organic framework copper benzene-1,3,5-tricarboxylate (HKUST-1).

Preparation of PVA hydrogels by the freezing and thawing technique was first reported by
Peppas [121,122] in the 1970s. Recently, Li and coworkers [123] reported a macroporous PVA
hydrogel with improved mechanical properties due to the addition of Agarose (AG) as a pore forming
agent. The study claims that the AG-interacting water hybrids can facilitate the formation of ice
particles and thereby the macropores. By introducing AG, the crystallinity of macroporous PVA
hydrogels is improved and the hydrogel network is enhanced by the hydrogen bonds, strengthening
the mechanical stiffness.
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Figure 17. (Left) SEM images of electrospun PVA membranes with various molecular weights but
similar degrees of hydrolysis: (A) 98% hydrolyzed, Mw 13,000–23,000 g/mol (electrospun from 24 wt%
solution); (B) 98% hydrolyzed, Mw 78,000 g/mol (from 11 wt% solution); and (C) 98–99% hydrolyzed,
Mw 85,000–124,000 g/mol (from 9 wt% solution). (Upper right) Typical SEM cross-sectional image of
PVA nanofibrous composite membrane. (Lower right) Relations of permeate flux and solute rejection
of the nanofibrous composite membranes with the degree of crosslinking in the PVA hydrogel coating
for separation of oil/water emulsion (feed pressure: 100 psi; temperature: 30–35 ◦C). Reproduced with
permission from [119]. Copyright 2006 Elsevier.

Porous films have been also reported to be produced by SiO2 etching. According to Lee and Wey [124],
they dispersed the nanoparticles in a PVA solution that were cast onto a glass with a 250 µm thickness
overnight, and the next day, the dried membrane was peeled off and annealed for 2 h at 160 ◦C
under vacuum. A 2 M NaOH solution was used to etch the SiO2, resulting in adjustable pore size
porous membranes.
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4. Conclusions and Future Prospective

Membranes, especially those developed for water treatment, are expected to be of research
and industrial focus for many years to come due to factors like climate change, environmental
pollution, and population growth. PVA based porous membranes will continue to be developed
by incorporating functional nanomaterials and by finding innovative ways of pore structure control
like microfluidics. Currently, PVA is one of the polymers of choice when it comes to dehydration
via the pervaporation method. Various types of commercially available PVA membranes exist in
the market with the aim to provide solutions for dehydration or methanol removal from mixtures
of volatile organic compounds, a trend that is expected to continue. Crosslinking density as well as
the crosslinkers will be in the forefront of pervaporation research, aiming eventually at increased
process thermal efficiency. Hydrophilic membranes will also be the center of research attention for
ultrafiltration applications, mainly due to their high achievable fluxes, low fouling, and oil rejection.
Based on the above, PVA is currently used on a commercial scale as the selective layer-coating in
various polymeric membranes based on polymers such as PVDF and PSf. Implementation of green
preparation routes alongside the vast progress in the synthesis of water compatible and ecofriendly
nanoparticles in the preparation of PVA based membranes can contribute to the ever growing concern
of toxic solvent use by the industry. Nanoparticle addition, together with new preparation routes,
can boost the properties and durability of PVA membranes, introducing them into new and exciting
fields. In order for PVA to be a successful replacement material of the conventional used polymers,
a series of improvements should be achieved including mechanical compression resistance, consistent
selectivity under different operating environments, low fouling, and improved mechanical properties.
Intensive research currently undertaken by groups around the world exploring the unique properties
of PVA ensures successful solutions for the above-mentioned aspects.
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