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Abstract: Goal programming (GP) is a powerful method to solve multi-objective programming
problems. In GP the preferential weights are incorporated in different ways into the achievement
function. The problem becomes more complicated if the preferences are imprecise in nature, for
example ‘Goal A is slightly or moderately or significantly important than Goal B’. Considering
such type of problems, this paper proposes standard goal programming models for multi-objective
decision-making, where fuzzy linguistic preference relations are incorporated to model the relative
importance of the goals. In the existing literature, only methods with linear preference relations
are available. As per our knowledge, nonlinearity was not considered previously in preference
relations. We formulated fuzzy preference relations as exponential membership functions. The grades
or achievement function is described as an exponential membership function and is used for grading
levels of preference toward uncertainty. A nonlinear membership function may lead to a better
representation of the achievement level than a linear one. Our proposed models can be a useful
tool for different types of real life applications, where exponential nonlinearity in goal preferences
exists. Finally, a numerical example is presented and analyzed through multiple cases to validate and
compare the proposed models. A distance measure function is also developed and used to compare
proposed models. It is found that, for the numerical example, models with exponential membership
functions perform better than models with linear membership functions. The proposed models will
help decision makers analyze and plan real life problems more realistically.

Keywords: fuzzy programming; goal programming; preference relation; non-linear membership
function; exponential membership function

1. Introduction

Multi-objective mathematical programming is a powerful mathematical procedure and applicable
in decision making to a wide range of real life problems [1–5]. A multi-objective mathematical
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programming model consists of multiple objective functions, constraints, and decision variables and
can be stated as follows:

Max(Min): { f1(x), f2(x), . . . , fK(x)} , (1)

subject to Ax ≤ b (2)

x ≥ 0, x ∈ S. (3)

where fk(x) for all k = 1, 2, . . . , K is a function of a decision variable x and S is the set of feasible
solutions. Here, Equation (2) represents the constraints where A and b are the m × n and n × 1
matrices, respectively. The ideal solution for a multiple objective programming problem would be to
find a solution x, which optimizes each individual objective function of the problem, simultaneously.
However, with the conflicting objectives in the model, a feasible solution that optimizes one objective
may not optimize any of the other remaining objective functions. Considering this difficulty, several
methodologies have been developed to handle the problem of multiple objectives.

Goal Programming (GP) is one of the widely used technique to solve multi-objective optimization
problems. It was initially proposed by Charnes and Cooper [6], Charnes et al. [7] and further extended
by Caballero et al. [8], Chang [9], Ignizio [10,11], Romero [12,13] and others. GP deals with the over
(positive) and under (negative) achievement of the goals in such a manner that each objective is
satisfied with the least deviation from its respective goal. In classical GP, the aspiration level of goals
are considered as precise and deterministic. However, in real life, when the aspiration levels are not
precise in nature, the concept of fuzzy uncertainty can be applied. The fuzzy set theory was first
introduced by Zadeh [14]. Bellman and Zadeh [15] further developed a decision theory in a fuzzy
environment. Moreover, the uncertainty involved due to vagueness and ambiguity is being dealt
within the fuzzy domain.

When fuzzy set theory is introduced in goal programming, it became fuzzy goal programming.
Using fuzzy goal programming, the degree of satisfaction of each objective function is maximized which
helps the decision maker to decide the best efficient solution. Many researchers proposed and applied
fuzzy goal programming models, for example Aköz and Petrovic [16], Anukokila et al. [17], Chen and
Tsai [18], Cheng [19], Dalman and Bayram [20], Díaz-Madroñero et al. [21], Hocine et al. [22], Jadidi et al.
[23], Jamalnia and Soukhakian [24], Jiménez et al. [25], Pramanik and Roy [26], and Jana et al. [27]. It is not
always possible that the goals priority is symmetric in nature. The decisions become more complicated,
when the problem has imprecise preferences for the priorities of the goals and their aspiration levels.
In 2007, Aköz and Petrovic [16] proposed a fuzzy goal programming model with an imprecise linear
goal hierarchy. They used a linear membership function for three type of linguistic fuzzy preference
relations, i.e., Goal A is “slightly” or “moderately” or “significantly more important” than Goal B. The
preference relations are of asymmetric nature in importance of goals. After Aköz and Petrovic [16], the
fuzzy preference relation was applied and extended by many authors, e.g. Cheng [19], Petrovic and
Aköz [28], Torabi and Moghaddam [29], Khalili-Damghani and Sadi-Nezhad [30], Díaz-Madroñero et al.
[31], Sheikhalishahi and Torabi [32], Bilbao-Terol et al. [33,34], Arenas-Parra et al. [35] Hasan et al. [36],
and Hashmi et al. [37]. Khalili-Damghani and Sadi-Nezhad [30], Khalili-Damghani et al. [38] extended
the work of Aköz and Petrovic [16]; they extended the linear membership function for three linguistic
preference terms to ten statements. Further, it was applied by Khalili-Damghani et al. [39] in a supply
chain network model.

Fuzzy membership functions are used to define the aspiration levels of a decision maker.
It describes the nature of fuzzy values, data, preferences, etc. Since the behavior of different fuzzy
quantities may vary, the corresponding fuzzy membership functions are of different types, for example,
linear, exponential, logistic, hyperbolic, parabolic, S-curve, and tangent. Decision makers may choose
the membership function which fits best to their problem. Many authors applied and analyzed their
problem models using linear and nonlinear membership functions. A linear membership function
is perhaps the simplest and most common one, as it bounds the upper and lower acceptance levels.
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In nonlinear membership functions, the marginal rate of increase or decrease of membership values
as a function of model parameters is not constant. Hence, it reflects the practical situations better
than the linear case. Some of the authors who applied nonlinear membership functions are Anoop
Kumar Dhingra and Moskowitz [40], Peidro and Vasant [41], Zangiabadi and Maleki [42], Gupta et al.
[43], Ehsani et al. [44], Dhodiya and Tailor [45], and Singh and Yadav [46].

In this paper, Standard goal programming models with fuzzy goal hierarchies are proposed.
The problem considered is a multi-objective optimization model having linguistic preferences among
the objectives, for example “significantly more important”, “moderately more important”, and “slightly
more important”, and can be expressed as follows:

FuzzyHierMax: { f1(x), f2(x), . . . , fK(x)} , (4)

subject to Ax ≤ b (5)

x ≥ 0, x ∈ S. (6)

Here, “FuzzyHierMax” denotes the fuzzy hierarchical maximization for achieving the satisfactory
solution considering the preferences among the objectives. The proposed GP models are the extensions
to existing models of Aköz and Petrovic [16], Arenas-Parra et al. [35]. The preferences among the goals
{ f1(x), f2(x), . . . , fK(x)} are assumed as fuzzy, having linear and exponential membership functions.
The results for different models due to linear and exponential membership functions are further
presented and compared. In real life problems, preferences among goals may be of exponential
nature. To deal with nonlinearity, we formulated the exponential membership function for ten
types of linguistic preference relations, which is the extension to the linear membership function
which was earlier proposed by Aköz and Petrovic [16], Khalili-Damghani and Sadi-Nezhad [30],
and Khalili-Damghani et al. [38]. Four goal programming models are formulated along with the
solution approach. As per our knowledge, in existing literature, there is no GP model with proposed
exponential membership function for relative preferences between the goals. In the proposed GP
model, we take account of maximization of the minimum and the sum of achievements of goals
using approaches from Arenas-Parra et al. [35], Torabi and Hassini [47]. Hence, this work address
the research gap, and helps the decision maker to plan more realistically by introducing exponential
type preference relations. To analyze the performance of proposed models, we developed a distance
measure function. It helps to determine the degree of closeness of the result to the ideal solution.

In this paper, Section 2 presents the proposed goal programming formulations. In Section 3,
the solution approach along with flow diagram is presented. In Section 4, an experimental study is
performed along with efficiency measure analysis to validate the proposed models. Finally, Section 5
presents the conclusion.

2. Goal Programming Formulation

This section presents the goal programming formulation of proposed models with fuzzy hierarchy
among the goals. Before moving to the GP, we first go through the formulation of normalized
function and membership functions of preference relations for linear as well as exponential case.
To avoid biasedness towards goals with high and low aspiration levels, Arenas-Parra et al. [35] used a
normalized function corresponding to each objective. Let us assume that fk and f ∗k , k = 1, . . . , K, are
the anti-ideal and aspiration values of objective fk, respectively. An anti-ideal value is the worst value
of an objective function, whereas an aspiration value is the desired value of an objective function by
the decision maker. Now, the normalized function (nk) for objective function fk can be modeled as:

nk = 1−
∣∣∣∣∣ (d−k + d+k )
( f ∗k − fk)

∣∣∣∣∣ . (7)
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In Equation (7), d−k and d+k represent the negative and positive deviation of the objectives fk from f ∗k .
The deviations must satisfy the condition, d−k · d

+
k = 0, ∀k ∈ 1, . . . , K. The normalized value satisfies

the following property
0 ≤ nk ≤ 1. (8)

If the kth objective is more important than the lth objective, then the kth normalized deviation is greater
than or equal to that of the lth objective. Hence, we have

nl ≤ nk. (9)

However, the normalization constraint may lead to an infeasible solution, as it is a strict relation.
To avoid this infeasibility, Arenas-Parra et al. [35] applied the approach of Aköz and Petrovic [16],
which expresses preferences among goals in terms of fuzzy relations.

2.1. Representation of Fuzzy Preference Relations as Membership Functions

In 2007, Aköz and Petrovic [16] proposed linear membership functions for three type of fuzzy
imprecise preferences namely “slightly more important than”, “moderately more important than”,
and “significantly more important than”, to describe the imprecise relative importance relations among
the goals. Later in 2013, Khalili-Damghani and Sadi-Nezhad [30] and Khalili-Damghani et al. [38]
extended these linear membership functions to ten different linear membership functions. They
introduced ten type of linguistic imprecise preference statements alongwith their formulations.
The hierarchy structure of ten different linguistic preference relations for linear as well as exponential
type is presented in Figure 1. A brief presentation of the figures and linear formulations of membership
functions is given in Figure 2 and Equations (10a)–(10j), respectively.

                                                                                                                                                                                       

                                                                                                                                                            Preference  Type

                                                                
                                                                                                                                                            Linguistic terms 

                                                                                                      
                                                                                                        

                                                                
     

     

                          
                             

Linguistic preferences on goals by DM

Linear preference relation

Exactly equal

Exponential preference relation

Partially equal

Partially more important than 

Slightly more important than

Moderately more important than 

Significantly more important than 

Completely more important than 

Fully more important than 

Extremely more important than

Incomparable

Figure 1. Hierarchy structure of linguistic preference relations.
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In the present work, the formulation of a type of nonlinear membership function, i.e., exponential
membership function, for fuzzy goal hierarchies is presented. More formally, we develop a procedure
using a wide range of linguistic terms, different fuzzy priority relations for the decision makers
preferences on the normalized values of the goals, and their associated membership functions.
The details of the linguistic terms and their associated fuzzy nonlinear membership functions
(µR̃q

, q = 1, . . . , 10) are shown in Table 1. The table has four columns with type of linguistic term,
notation for the fuzzy relation, membership function, and finally the transform function to formulate
the preference membership functions.

µR̃1(k,l) =


0, if − 1 ≤ nk − nl < 0;
1, if nk − nl = 0;
0, if 0 < nk − nl ≤ 1.

(10a)

µR̃2(k,l) =


0, if − 1 ≤ nk − nl ≤ −0.5;
2(nk − nl + 0.5), if − 0.5 ≤ nk − nl ≤ 0;
−2(nk − nl + 0.5), if 0 ≤ nk − nl ≤ 0.5;
0, if 0.5 ≤ nk − nl ≤ 1.

(10b)

µR̃3(k,l) =

{
2(nk − nl + 1), if − 1 ≤ nk − nl ≤ −0.5;
1, if − 0.5 ≤ nk − nl ≤ 1.

(10c)

µR̃4(k,l) =

{
(nk − nl + 1), if − 1 ≤ nk − nl ≤ 0;
1, if 0 ≤ nk − nl ≤ 1.

(10d)

µR̃5(k,l) =

{
2
3 (nk − nl + 1), if − 1 ≤ nk − nl ≤ 0.5;
1, if 0.5 ≤ nk − nl ≤ 1.

(10e)

µR̃6(k,l) =
{

( nk−nl+1
2 ), if − 1 ≤ nk − nl ≤ 1. (10f)

µR̃7(k,l) =

{
1, if − 1 ≤ nk − nl ≤ −0.5;
2
3 (nk − nl + 0.5), if − 0.5 ≤ nk − nl ≤ 1.

(10g)

µR̃8(k,l) =

{
0, if − 1 ≤ nk − nl ≤ 0;
(nk − nl), if 0 ≤ nk − nl ≤ 1.

(10h)

µR̃9(k,l) =

{
0, if − 1 ≤ nk − nl ≤ 0.5;
2(nk − nl − 0.5), if 0.5 ≤ nk − nl ≤ 1.

(10i)

µR̃10(k,l) =

{
0, if − 1 ≤ nk − nl < 1;
1, if nk − nl = 1.

(10j)

Table 1. Linguistic relative preferences of objective k over l.

Linguistic Term Fuzzy Relation Membership Values Transform Function
R̃q, q = 1, . . . , 10 µR̃q

Exactly equal R̃1 µR̃1

Partially equal R̃2 µR̃2

Partially more important than R̃3 µR̃3

Slightly more important than R̃4 µR̃4

Moderately more important than R̃5 µR̃5
µk(X)− µl(X)

Significantly more important than R̃6 µR̃6
∀k, l ∈ 1, . . . , K

Completely more important than R̃7 µR̃7

Fully more important than R̃8 µR̃8

Extremely more important than R̃9 µR̃9

Incomparable R̃10 µR̃10
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The need for introducing the grade or achievement function as a nonlinear membership
function and used for grading levels of preference towards uncertainty is that it may lead to a better
representation of the achievement level than a linear one. It is also good enough to represent practical
situations because sometimes the marginal rate of increase or decrease of membership values is not
constant always, as in the case of linear membership functions. Furthermore, the nature of the behavior
of the nonlinear membership function allows itself to change its achievement values according to the
parameter values, which also allow the decision maker to execute his/her strategy in a very convenient
manner with flexibility. Keeping all these facts in mind, we use the exponential membership function
for the achievement of the fuzzy imprecise preferences amongst the goal relations. The proposed
exponential fuzzy relation membership functions are shown in Figure 3. The exponential membership
function of the fuzzy relations between the goals can be formulated as given in Equations (11a)–(11j).

µR̃1(k,l) =


0, if − 1 ≤ nk − nl < 0;
1, if nk − nl = 0;
0, if 0 < nk − nl ≤ 1.

(11a)

µR̃2(k,l) =



0, if − 1 ≤ nk − nl ≤ −0.5;

1− e−s·2(nk−nl+0.5) − e−s

1− e−s , if − 0.5 ≤ nk − nl ≤ 0;

1− e−s·(−2(nk−nl+0.5)) − e−s

1− e−s , if 0 ≤ nk − nl ≤ 0.5;

0, if 0.5 ≤ nk − nl ≤ 1.

(11b)

µR̃3(k,l) =

 1− e−s·2(nk−nl+1) − e−s

1− e−s , if − 1 ≤ nk − nl ≤ −0.5;

1, if − 0.5 ≤ nk − nl ≤ 1.
(11c)

µR̃4(k,l) =

 1− e−s·(nk−nl+1) − e−s

1− e−s , if − 1 ≤ nk − nl ≤ 0;

1, if 0 ≤ nk − nl ≤ 1.
(11d)

µR̃5(k,l) =

 1− e−s·( 2
3 (nk−nl+1)) − e−s

1− e−s , if − 1 ≤ nk − nl ≤ 0.5;

1, if 0.5 ≤ nk − nl ≤ 1.
(11e)

µR̃6(k,l) =

{
1− e−s·( nk−nl+1

2 ) − e−s

1− e−s , if − 1 ≤ nk − nl ≤ 1; . (11f)

µR̃7(k,l) =


1, if − 1 ≤ nk − nl ≤ −0.5;

1− e−s·( 2
3 (nk−nl+0.5)) − e−s

1− e−s , if − 0.5 ≤ nk − nl ≤ 1.
(11g)

µR̃8(k,l) =

 0, if − 1 ≤ nk − nl ≤ 0;

1− e−s·(nk−nl) − e−s

1− e−s , if 0 ≤ nk − nl ≤ 1.
(11h)

µR̃9(k,l) =

 0, if − 1 ≤ nk − nl ≤ 0.5;

1− e−s·2(nk−nl−0.5) − e−s

1− e−s , if 0.5 ≤ nk − nl ≤ 1.
(11i)

µR̃10(k,l) =

{
0, if − 1 ≤ nk − nl < 1;
1, if nk − nl = 1.

(11j)
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Figure 3. Exponential membership functions for linguistic preferences among objectives.
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In an exponential membership function, s is the measurement of the degree of fuzziness. It can be
determined by the decision maker. The parameter s is the preference of the decision maker in a fuzzy
environment and can be set flexibly in different conditions. Practically, s can be selected according
to the level of impreciseness of the problem. A high imprecision in decision making is reflected by a
high value of s. Therefore, if the decision environment is associated with a high level of uncertainty,
the decision maker should assign a higher value to s. It becomes counter-wise for the cases in which
the uncertainty for decision environment is low.

2.2. Proposed Approach

Now, we explain and formulate four standard goal programming models with fuzzy preference
relations (SGP-PR). Model 1 is from Arenas-Parra et al. [35] and Models 2–4 are extended goal
programming models with imprecise linear and exponential goal hierarchies.

Model 1: This model is derived from Arenas-Parra et al. [35] and considers a linear membership
function for fuzzy preference relations.

Model 2: This model is an extension of Model 1 with an integration of the proposed formulated
exponential membership functions for linguistic preferences among the objectives. This
model uses nonlinearities in preferences among the objectives.

Model 3: It is another extension of Model 1, with a new objective function considering a linear
membership function for linguistic preferences between the objectives.

Model 4: It is an extension of Model 2, incorporating a new objective function and an exponential
membership function for linguistic preferences.

The following are the formulations of standard goal programming models with fuzzy hierarchies:

Model 1: This model was initially proposed by Arenas-Parra et al. [35] and later utilized by
Bilbao-Terol et al. [33]. Bilbao-Terol et al. [33] applied the extended model in forest planning. Here,
Model 1 is the same model proposed by Arenas-Parra et al. [35] with a linear membership function for
linguistic preferences among the objectives as explained. The objective functions are defined as:

Objective-1: Maximize
K

∑
k=1

nk, (12a)

Objective-2: Maximize
K

∑
k=1

K

∑
l=1

bklµR̃(k,l). (12b)

Here, bkl , for k, l = 1, 2, . . . , K with k 6= l; are binary parameters, taking the value 1 if there exists an
importance relation between the goal fk and fl , and 0 otherwise. A convex combination of the two
objectives by applying the respective weights α and (1− α) to obtain a compromise solution between
the two objectives leads to the following formulation:

Maximize Z = α

(
K

∑
k=1

nk

)
+ (1− α)

(
K

∑
k=1

K

∑
l=1

bklµR̃(k,l)

)
, (13a)

subject to nk = 1−
∣∣∣∣∣ (d−k + d+k )
( f ∗k − fk)

∣∣∣∣∣ , (13b)

fk + d−k − d+k = f ∗k , (13c)

(nk − nl + 1) ≥ µR̃4(k,l), ∀bkl = 1 and R̃(k, l) = R̃4, (13d)
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(nk − nl + 1)
2

≥ µR̃6(k,l), ∀bkl = 1 and R̃(k, l) = R̃6, (13e)

(nk − nl) ≥ µR̃8(k,l), ∀bkl = 1 and R̃(k, l) = R̃8, (13f)

µR̃(k,l) ≤ 1, ∀bkl = 1, (13g)

Ax ≤ b, (13h)

x ≥ 0, nk ≥ 0, ∀k = 1, . . . , K, (13i)

nk ≤ 1, ∀k = 1, . . . , K, (13j)

d−k · d
+
k = 0, ∀k = 1, . . . , K, (13k)

µR̃(k,l) ≥ 0, ∀bkl = 1. (13l)

Model 2: This model is the extension of Model 1. It utilizes an exponential membership function for
the fuzzy hierarchies between the goals. The formulation is presented below:

Maximize Z = α

(
K

∑
k=1

nk

)
+ (1− α)

(
K

∑
k=1

K

∑
l=1

bklµR̃(k,l)

)
, (14a)

subject to nk = 1−
∣∣∣∣∣ (d−k + d+k )
( f ∗k − fk)

∣∣∣∣∣ , (14b)

fk + d−k − d+k = f ∗k , (14c)

1− e−s·(nk−nl+1) − e−s

1− e−s ≥ µR̃4(k,l), ∀bkl = 1 and R̃(k, l) = R̃4, (14d)

1− e−s·( nk−nl+1
2 ) − e−s

1− e−s ≥ µR̃6(k,l), ∀bkl = 1 and R̃(k, l) = R̃6, (14e)

1− e−s·(nk−nl) − e−s

1− e−s ≥ µR̃8(k,l), ∀bkl = 1 and R̃(k, l) = R̃8, (14f)

µR̃(k,l) ≤ 1, ∀bkl = 1 (14g)

Ax ≤ b, (14h)

x ≥ 0, nk ≥ 0, ∀k = 1, . . . , K, (14i)

nk ≤ 1, ∀k = 1, . . . , K, (14j)

d−k · d
+
k = 0, ∀k = 1, . . . , K, (14k)

µR̃(k,l) ≥ 0, ∀bkl = 1. (14l)

Model 3: It is derived from a hybridization of the Torabi and Hassini [47] approach with the goal
programming model of Arenas-Parra et al. [35]. Objective 1 in Model 1 only maximizes the sum
of satisfaction levels of normalized values; it does not considers a minimum satisfaction of all the
objectives. By integrating the Torabi and Hassini [47] approach, we get more flexibility as it considers
both the minimum satisfaction and the sum of satisfaction of all the objectives.

Maximize Z = γ1(λ) + γ2

(
K

∑
k=1

nk

)
+ γ3

(
K

∑
k=1

K

∑
l=1

bklµR̃(k,l)

)
, (15a)

subject to nk = 1−
∣∣∣∣∣ (d−k + d+k )
( f ∗k − fk)

∣∣∣∣∣ , (15b)
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λ ≤ nk, (15c)

fk + d−k − d+k = f ∗k , (15d)

(nk − nl + 1) ≥ µR̃4(k,l), ∀bkl = 1 and R̃(k, l) = R̃4, (15e)

(nk − nl + 1)
2

≥ µR̃6(k,l), ∀bkl = 1 and R̃(k, l) = R̃6, (15f)

(nk − nl) ≥ µR̃8(k,l), ∀bkl = 1 and R̃(k, l) = R̃8, (15g)

µR̃(k,l) ≤ 1, ∀bkl = 1, (15h)

Ax ≤ b, (15i)

x ≥ 0, nk ≥ 0, ∀k = 1, . . . , K, (15j)

nk ≤ 1, ∀k = 1, . . . , K, (15k)

d−k · d
+
k = 0, ∀k = 1, . . . , K, (15l)

µR̃(k,l) ≥ 0, ∀bkl = 1. (15m)

Model 4: This model is similar to Model 3, the only difference being in the linguistic preferences,
which are represented here by an exponential membership function. Hence, Model 4 is formulated
as follows:

Maximize Z = γ1(λ) + γ2

(
K

∑
k=1

nk

)
+ γ3

(
K

∑
k=1

K

∑
l=1

bklµR̃(k,l)

)
, (16a)

subject to nk = 1−
∣∣∣∣∣ (d−k + d+k )
( f ∗k − fk)

∣∣∣∣∣ , (16b)

λ ≤ nk, (16c)

fk + d−k − d+k = f ∗k , (16d)

1− e−s·(nk−nl+1) − e−s

1− e−s ≥ µR̃4(k,l), ∀bkl = 1 and R̃(k, l) = R̃4, (16e)

1− e−s·( nk−nl+1
2 ) − e−s

1− e−s ≥ µR̃6(k,l), ∀bkl = 1 and R̃(k, l) = R̃6, (16f)

1− e−s·(nk−nl) − e−s

1− e−s ≥ µR̃8(k,l), ∀bkl = 1 and R̃(k, l) = R̃8, (16g)

µR̃(k,l) ≤ 1, ∀bkl = 1, (16h)

Ax ≤ b, (16i)

x ≥ 0, nk ≥ 0, ∀k = 1, . . . , K, (16j)

nk ≤ 1, ∀k = 1, . . . , K, (16k)

d−k · d
+
k = 0, ∀k = 1, . . . , K, (16l)

R̃(k, l) ≥ 0∀bkl = 1. (16m)

Here, λ = min{nk} denotes the minimum normalized function value among the objectives.
This formulation has a new achievement function defined as a convex combination of the lower
bound (λ), the sum of normalized values of objectives nk, and the sum of membership functions
for linguistic preferences to ensure an adjustable balanced compromise solution. In Model 3 and 4,
γ1, γ2, γ3 are weights such that γ1 + γ2 + γ3 = 1. If we put γ1 = 0, then Models 3 and 4 reduce to
Models 1 and 2, respectively. Hence, it gives wider applicability to the decision maker by considering
extended objective functions.
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2.3. Comparison with Other Approaches

A review related to a comparison of the proposed GP models with models from the literature is
presented, so as to focus on our present work. The following comparisons are presented based on
three aspects.

1. Comparison with respect to the objective function

The objective function defined by Arenas-Parra et al. [35] is a convex combination of two objectives,
the sum of the achievement of a normalized function and the sum of the satisfaction degree of fuzzy
membership functions representing imprecise goal relations. In our work, Models 1 and 2 have the
same objective function as in Arenas-Parra et al. [35], but Models 3, and 4 have an extended objective
function. The new objective is the integration of Torabi and Hassini [47] with the Arenas-Parra et al. [35]
approach. It considers an addition of the maximization of the minimum achievement of normalized
function values of the objectives. Models 3 and 4 can be reduced to Models 1 and 2 by considering
weights associated to the minimum normalized functions as zero.

2. Comparison with respect to Fuzzy preference membership function

Aköz and Petrovic [16] proposed a linear membership function for three linguistic terms. Later,
these linear membership functions were extended to ten linguistic terms by Khalili-Damghani and
Sadi-Nezhad [30], Khalili-Damghani et al. [38]. To our knowledge, no work in the literature considers
nonlinear membership functions for three or ten linguistic preference relations. Here, in our work, we
propose the formulation of ten different linguistic terms as exponential membership functions, which
is more practical for real life problems.

3. Comparison with respect to GP models

In our work, we formulate four GP models. Here, Model 1 derived from Arenas-Parra et al. [35] is
the base for the other three models. These models are obtained by incorporating different combinations
of linear and nonlinear membership functions and objective functions. These proposed models are the
extension of the Aköz and Petrovic [16], Arenas-Parra et al. [35] model.

3. Solution Approach

The solution approach to the SGP-PR is consists of multiple steps. Initially, the crisp model of
the problem is formulated with all the objectives. Then, to know the best (aspiration) and worst
values, either the decision maker is asked or the crisp model is solved individually for each objective
function. To proceed further, the solution obtained should be feasible. Take the optimum value as the
aspiration value of the objective function. Then, determine all the objective function values for the
obtained solution. This will provide us with a payoff table (table of extreme solutions), and the values
of aspiration and tolerance level. Formulate all the normalized functions for the objective functions.
Construct the transform function for linguistic preference relations by using normalized functions
of the objective functions. Define the linguistic preference relations among the different goals and
formulate the membership grades of the preference relations. It may be linear or exponential; choose
the desired function for fuzzy preference relation.

After, formulating all the functions, now, formulate the problem as SGP-PR as Models 1–4, as
detailed in the previous section. Solve the formulation using any optimization software package
such as LINGO (Schrage and LINDO Systems [48], Tan et al. [49]), NEOS (Server [50]), AMPL
(Fourer et al. [51]), etc. For this paper, the obtained mathematical programming problem was modeled
in AMPL language (Fourer et al. [51]) and solved using solvers available on NEOS server online facility
provided by Wisconsin Institutes for Discovery at the University of Wisconsin in Madison for solving
optimization problems (see Server [50], Gropp, W. Moré [52], Czyzyk et al. [53], Dolan [54]).
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As the solution is obtained, check the feasibility and optimality. If it is infeasible, stop and repeat
the steps by changing the aspiration and tolerance values, If not, present the solution to the DM. The
flow chart of the procedure is presented in Figure 4.

                                                                                                                                                                

                                                                                                      
                                                                                                        Yes

                                                                  No
     

     Yes

                          
                             No

                                         No

                                                              Yes

Start

Consider the problem as K-single objective 
problems and determine the individual optima

Formulate the crisp mathematical programming problem model

Is the problem 
Infeasible

Construct the table of extreme 
solutions

Determine the aspiration and tolerance 
levels for different objectives

Formulate the problem as SGP-PR 
model

Formulate the desired membership function 
 for preference relations

Solve the model and present the solution 
to the decision maker

Is it a preferred 
solution

Stop

Is model Modification
 Needed ?

Modify the model

Figure 4. Flow chart of solution approach.

4. Experimental Study

To validate and compare the proposed goal programming models, we applied the GP models on
a numerical example. The solution approach used is already detailed in previous section. The main
focus is on the validity and the performance of the proposed models. We considered a multi-objective
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mathematical programming problem, which was already used by Aköz and Petrovic [16], Chen and
Tsai [18], Cheng [19], and Arenas-Parra et al. [35]:

Goal 1: f1(x) := 4x1 + 2x2 + 8x3 + x4 ≤ 35, (17a)

Goal 2: f2(x) := 4x1 + 7x2 + 6x3 + 2x4 ≥ 100, (17b)

Goal 3: f3(x) := x1 − 6x2 + 5x3 + 10x4 ≥ 120, (17c)

Goal 4: f4(x) := 5x1 + 3x2 + 2x4 ≥ 70, (17d)

Goal 5: f5(x) := 4x1 + 4x2 + 4x3 ≥ 40, (17e)

subject to7x1 + 5x2 + 3x3 + 2x4 ≤ 98, (17f)

7x1 + x2 + 2x3 + 6x4 ≤ 117, (17g)

x1 + x2 + 2x3 + 6x4 ≤ 130, (17h)

9x1 + x2 + 6x4 ≤ 105, (17i)

xi ≥ 0, i = 1, . . . , 4. (17j)

The type of preference relations between the goals are assumed as:

• Goal 1 is significantly more important than Goal 2.
• Goal 2 is significantly more important than Goal 4.
• Goal 2 is significantly more important than Goal 5.
• Goal 3 is fully more important than Goal 2.

The solution steps are as follows:
Step:1 Start
Step:2 The optimization model is formulated as single objective problem and result values are

obtained for all the objectives. It will provide us the best and worst values for the objectives.
Solving the numerical example using the software packages for each objective function

independently and finding the best and worst value of five objective functions, we get f1 = 487.66, f ∗1 =

261.33, f ∗2 = 100, f2 = 0, f ∗3 = 120.16, f3 = −117.6, f ∗4 = 70, f4 = 0 and f ∗5 = 40, f5 = 0. The solution
obtained is feasible and optimal.

Step:3 Formulate the normalized function and membership grades for linear and exponential
preference relations.

n1 = 1−
d+1

226.33
, n2 = 1−

d−2
100

, n3 = 1−
d−3

237.76
, n4 = 1−

d−4
70

, n5 = 1−
d−5
40

,

Membership functions for linear preference relations:

µR̃6(1,2) =
(n1 − n2 + 1)

2
, µR̃6(2,4) =

(n2 − n4 + 1)
2

,

µR̃6(2,5) =
(n2 − n5 + 1)

2
, µR̃8(3,2) = (n3 − n2)

Membership functions for exponential preference relations:

µR̃6(1,2) = 1− e−s·( n1−n2+1
2 ) − e−s

1− e−s , µR̃6(2,4) = 1− e−s·( n2−n4+1
2 ) − e−s

1− e−s ,

µR̃6(2,5) = 1− e−s·( n2−n5+1
2 ) − e−s

1− e−s , µR̃8(3,2) = 1− e−s·(n3−n2) − e−s

1− e−s
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Step:4 Now, formulate the problem as Models 1–4, as detailed in Section 2.2. The formulation of
Model 1 becomes:

Maximize Z = α(n1 + n2 + n3 + n4 + n5) + (1− α)(µR̃6(1,2) + µR̃6(2,4) + µR̃6(2,5) + µR̃8(3,2)), (18a)

subject to 4x1 + 2x2 + 8x3 + x4 + d−1 − d+1 = 35, (18b)

4x1 + 7x2 + 6x3 + 2x4 + d−2 − d+2 = 100, (18c)

x1 − 6x2 + 5x3 + 10x4 + d−3 − d+3 = 120, (18d)

5x1 + 3x2 + 2x4 + d−4 − d+4 = 70, (18e)

4x1 + 4x2 + 4x3 + d−5 − d+5 = 40, (18f)

n1 = 1−
d+1

226.33
, n2 = 1−

d−2
100

, n3 = 1−
d−3

237.76
, (18g)

n4 = 1−
d−4
70

, n5 = 1−
d−5
40

, (18h)

(n1 − n2 + 1)
2

≥ µR̃6(1,2), (18i)

(n2 − n4 + 1)
2

≥ µR̃6(2,4), (18j)

(n2 − n5 + 1)
2

≥ µR̃6(2,5), (18k)

(n3 − n2) ≥ µR̃8(3,2), (18l)

7x1 + 5x2 + 3x3 + 2x4 ≤ 98, (18m)

7x1 + x2 + 2x3 + 6x4 ≤ 117, (18n)

x1 + x2 + 2x3 + 6x4 ≤ 130, (18o)

9x1 + x2 + 6x4 ≤ 105, (18p)

0 ≤ µR̃6(1,2), µR̃6(2,4), µR̃6(2,5), µR̃8(3,2) ≤ 1, (18q)

xi ≥ 0, nk ≥ 0, i = 1, . . . , 4, k = 1, . . . , 5, (18r)

0 ≤ nk ≤ 1, k = 1, . . . , 5. (18s)

d−k · d
+
k = 0, (18t)

µR̃(k,l) ≥ 0 for allbkl = 1. (18u)

The formulation for Model 2 becomes the same model as Model 1 with replacement of
Equations (18i)–(18l) by Equations (19a)–(19d).

1− e−s·( n1−n2+1
2 ) − e−s

1− e−s ≥ µR̃6(1,2), (19a)

1− e−s·( n2−n4+1
2 ) − e−s

1− e−s ≥ µR̃6(2,4), (19b)

1− e−s·( n2−n5+1
2 ) − e−s

1− e−s ≥ µR̃6(2,5), (19c)

1− e−s·(n3−n2) − e−s

1− e−s ≥ µR̃8(3,2), (19d)

The formulation of Model 3 is

Maximize Z = γ1(λ)+γ2(n1 + n2 + n3 + n4 + n5)+γ3(µR̃6(1,2)+µR̃6(2,4)+µR̃6(2,5)+µR̃8(3,2)), (20a)
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subject to λ ≤ n1, n2, n3, n4, n5, (20b)

(18b)–(18u) (20c)

The formulation for Model 4 is as follows:

Maximize Z = γ1(λ)+γ2(n1 + n2 + n3 + n4 + n5)+γ3(µR̃6(1,2)+µR̃6(2,4)+µR̃6(2,5)+µR̃8(3,2)), (21a)

subject to λ ≤ n1, n2, n3, n4, n5, (21b)

(18b)–(18h) (21c)

(19a)–(19d) (21d)

(18m)–(18u) (21e)

Step:5 As the formulation is done, then all the models are modeled in AMPL language
(Fourer et al. [51]) and solved by the CONOPT solver (Drud [55]) using the NEOS server online
facility provided by Wisconsin Institutes for Discovery at the University of Wisconsin in Madison
for solving Optimization problems (see Gropp, W. Moré [52], Czyzyk et al. [53], Dolan [54], and
Server [50]). The solution obtained is feasible and optimal.

Step:6 The method is stopped and the solution is presented to the DM.

4.1. Results and Discussion

The results obtained by formulating and solving Models 1–4 on the numerical example are
presented in Tables 2–5, respectively. To analyze the result in more detail, multiple values of weight
parameter α and (γ1, γ2, γ3) are considered. The decision maker is free to choose these weight
parameters α and (γ1, γ2, γ3), such that γ1 + γ2 + γ3 = 1 in between 0 snf 1. Ten cases of α and
six cases of weight combinations for (γ1, γ2, γ3) as c1 = ( 0.1,0.1,0.8), c2 = ( 0.1,0.3,0.6), c3 = ( 0.1,0.8,0.1),
c4 = ( 0.3,0.3,0.3), c5 = ( 0.3,0.5,0.2), and c6 = ( 0.6,0.3,0.1) on his/her preferences are considered.

Table 2. Solution results for Model 1 (Linear).

Variables Model 1 (Linear)

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z 2.7085 2.696 2.6834 2.67086 2.8468 3.1662 3.486 3.8059 4.1257 4.4456 4.7655
f1 12 12 12 12 45.9139 46.3816 46.3816 46.3816 46.3816 46.3816 46.3816
f2 24 24 24 24 100 100.526 100.526 100.526 100.526 100.526 100.526
f3 120 120 120 120 120 120 120 120 120 120 120
f4 24 24 24 24 57.0168 57.1053 57.1053 57.1053 57.1053 57.1053 57.1053
f5 0 0 0 0 39.6639 40 40 40 40 40 40
x1 0 0 0 0 0 0 0 0 0 0 0
x2 0 0 0 0 8.2563 8.2894 8.2894 8.2894 8.2894 8.2894 8.2894
x3 0 0 0 0 1.6596 1.7105 1.7105 1.7105 1.7105 1.7105 1.7105
x4 12 12 12 12 16.1239 16.1184 16.1184 16.1184 16.1184 16.1184 16.1184
n1 1 1 1 1 0.9517 0.9497 0.9497 0.9497 0.9497 0.9497 0.9497
n2 0.24 0.24 0.24 0.24 1 1 1 1 1 1 1
n3 1 1 1 1 1 1 1 1 1 1 1
n4 0.3428 0.3428 0.3428 0.3428 0.8145 0.8157 0.8157 0.8157 0.8157 0.8157 0.8157
n5 0 0 0 0 0.9915 1 1 1 1 1 1
µ12 0.88 0.88 0.88 0.88 0.4758 0.4748 0.4748 0.4748 0.4748 0.4748 0.4748
µ24 0.4485 0.4485 0.4485 0.4485 0.5927 0.5921 0.5921 0.5921 0.592105 0.5921 0.5921
µ32 0.76 0.76 0.76 0.76 0 0 0 0 0 0 0
µ25 0.62 0.62 0.62 0.62 0.5042 0.5 0.5 0.5 0.5 0.5 0.5

∑ nk 2.5828 2.5828 2.5828 2.5828 4.7579 4.7655 4.7655 4.7655 4.7655 4.7655 4.7655
∑ µRq (k, l) 2.7085 2.7085 2.7085 2.7085 1.5728 1.5669 1.5669 1.5669 1.5669 1.5669 0
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Table 3. Solution results for Model 2 (Exponential).

Variables Model 2 (Exponential)

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z 3.0707 3.0219 2.9731 2.9474 3.0969 3.3464 3.6302 3.914 4.1978 4.4816 4.7655
f1 12 12 12 35 35 46.3816 46.3816 46.3816 46.3816 46.3816 46.3816
f2 24 24 24 45.7463 84.8031 100.526 100.526 100.526 100.526 100.526 100.526
f3 120 120 120 134.416 120 120 120 120 120 120 120
f4 24 24 24 27.1662 54.1798 57.1053 57.1053 57.1053 57.1053 57.1053 57.1053
f5 0 0 0 13.3127 31.0515 40 40 40 40 40 40
x1 0 0 0 0 0.2852 0 0 0 0 0 0
x2 0 0 0 0.6944 6.9784 8.2894 8.2894 8.2894 8.2894 8.2894 8.2894
x3 0 0 0 2.6337 0.4991 1.7105 1.7105 1.7105 1.7105 1.7105 1.7105
x4 12 12 12 12.5414 15.909 16.1184 16.1184 16.1184 16.1184 16.1184 16.1184
n1 1 1 1 1 1 0.9497 0.9497 0.9497 0.9497 0.9497 0.9497
n2 0.24 0.24 0.24 0.4574 0.848 1 1 1 1 1 1
n3 1 1 1 1 1 1 1 1 1 1 1
n4 0.3428 0.3428 0.3428 0.3880 0.7739 0.8157 0.8157 0.8157 0.8157 0.8157 0.8157
n5 0 0 0 0.3328 0.7762 1 1 1 1 1 1
µ12 0.9258 0.9258 0.9258 0.8504 0.6926 0.598 0.5980 0.5980 0.5980 0.5980 0
µ24 0.5718 0.5718 0.5718 0.6551 0.6573 0.7068 0.7068 0.7068 0.7068 0.7068 0
µ32 0.8421 0.8421 0.8421 0.6624 0.223 0 0 0 0 0 0
µ25 0.7309 0.7309 0.7309 0.6804 0.6562 0.6224 0.6224 0.6224 0.6224 0.6224 0

∑ nk 2.5828 2.5828 2.5828 3.1783 4.3983 4.7655 4.7655 4.7655 4.7655 4.7655 4.7655
∑ µRq (k, l) 3.0707 3.0707 3.0707 2.8484 2.2293 1.9273 1.9273 1.9273 1.9273 1.9273 0

Table 4. Solution results for Model 3 (Linear).

Variables Model 3 (Linear)

(γ1, γ2, γ3) c1 c2 c3 c4 c5 c6

Z 2.4251 2.4785 4.0506 2.1444 2.9408 2.0899
f1 12 35 46.3816 46.3816 46.3816 65.1907
f2 24 87.7187 100.526 100.526 100.526 121.692
f3 120 120 120 120 120 120
f4 24 54.9527 57.1053 57.1053 57.1053 60.6625
f5 0 31.8203 40 40 40 53.5177
x1 0 0 0 0 0 0
x2 0 7.4822 8.2894 8.2894 8.2894 9.62345
x3 0 0.4728 1.7105 1.7105 1.7105 3.7559
x4 12 16.253 16.1184 16.1184 16.1184 15.8961
λ 0 0.7850 0.8157 0.8157 0.8157 0.8666
n1 1 1 0.9497 0.9497 0.9497 0.8666
n2 0.24 0.8771 1 1 1 1
n3 1 1 1 1 1 1
n4 0.3428 0.7850 0.8157 0.8157 0.8157 0.8666
n5 0 0.7955 1 1 1 1
µ12 0.88 0.5614 0.4748 0.4748 0.4748 0.4333
µ24 0.4485 0.5460 0.5921 0.5921 0.5921 0.5666
µ32 0.76 0.1228 0 0 0 0
µ25 0.62 0.5408 0.5 0.5 0.5 0.5

∑ nk 2.5828 4.4577 4.7655 4.7655 4.7655 4.7332
∑ µRq (k, l) 2.7085 1.7711 1.5669 1.5669 1.5669 1.5
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Table 5. Solution results for Model 4 (Exponential).

Variables Model 4 (Exponential)

(γ1, γ2, γ3) c1 c2 c3 c4 c5 c6

Z 2.7148 2.7444 4.0867 2.2526 3.0129 2.1262
f1 12 35 46.3816 46.3816 46.3816 65.1907
f2 24 70.4306 100.526 100.526 100.526 121.692
f3 120 120 120 120 120 120
f4 24 50.3698 57.1053 57.1053 57.1053 60.6625
f5 0 27.2614 40 40 40 53.5177
x1 0 1.6916 0 0 0 0
x2 0 4.4949 8.2894 8.2894 8.2894 9.6234
x3 0 0.6287 1.7105 1.7105 1.7105 3.7559
x4 12 14.2134 16.1184 16.1184 16.1184 15.8961
λ 0 0.6815 0.8157 0.8157 0.8157 0.8666
n1 1 1 0.9497 0.9497 0.9497 0.8666
n2 0.24 0.7043 1 1 1 1
n3 1 1 1 1 1 1
n4 0.3428 0.7195 0.8157 0.8157 0.8157 0.8666
n5 0 0.6815 1 1 1 1
µ12 0.9258 0.7543 0.5980 0.5980 0.5980 0.5562
µ24 0.5718 0.6151 0.7068 0.7068 0.7068 0.6843
µ32 0.8421 0.4049 0 0 5.38E-17 0
µ25 0.7309 0.6333 0.6224 0.6224 0.6224 0.6224

∑ nk 2.5828 4.1054 4.7655 4.7655 4.7655 4.7332
∑ µRq (k, l) 3.0707 2.4077 1.9273 1.9273 1.9273 1.8631

On solving models, many result values for normalized function, decision variables, individual
objective function, and membership grade of preference relations between the multiple objectives are
obtained. The detailed result values are presented in Tables 2–5.

In Table 2 and 3, the value of ∑ nk is increasing and for ∑ µRq(k, l) is decreasing from α = 0 to
1. In Table 2, the values for ∑ nk are the same for α = 0− 0.3 as 2.5828 and α = 0.5− 1 as 4.7655.
In Table 3, the values of ∑ nk for α = 0− 0.2 and α = 0.5− 1 are same as Model 1. For all the values of
∑ µRq(k, l), Model 2 is higher and thus better than Model 1 for all values of α.

In addition, all decision variables of Tables 2–5 for Models 3 and 4 present one more decision
variable λ, which is the minimum value of the normalized function (nk) among all the objective
functions fk. Tables 4 and 5 present the solution values of Models 3 and 4, respectively. On comparing
Models 3 and 4, for ∑ nk and ∑ µRq(k, l), we find that Model 4 performs better than Model 3 for all
cases of (γ1, γ2, γ3). The value of ∑ nk is the same for c1, c3, c4, c5, and c6 for Models 3 and 4, whereas
∑ µRq(k, l)Model4 > ∑ µRq(k, l)Model3 for all combinations of (γ1, γ2, γ3). In the case of c2, ∑ nk of Model
4 has a higher value than Model 3.

To get more insight into the analysis of Models 1–4 with linear and exponential preference
relations, we further solved the numerical example for five types of preference relations combinations.
The considered preference relation types are as follows:

Preference Relation Type-1 (PRT-1):

The preference relations between the goals are:

• Goal 1 is significantly more important than Goal 2.
• Goal 2 is significantly more important than Goal 4.
• Goal 2 is significantly more important than Goal 5.
• Goal 3 is fully more important than Goal 2.

Preference Relation Type-2 (PRT-2):

The preference relations between the goals are:
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• Goal 1 is significantly more important than Goal 2.
• Goal 2 is significantly more important than Goal 4.
• Goal 2 is significantly more important than Goal 5.
• Goal 3 is significantly more important than Goal 2.

Preference Relation Type-3 (PRT-3):

The preference relations between the goals are:

• Goal 1 is significantly more important than Goal 2.
• Goal 2 is partially equal to Goal 4.
• Goal 2 is significantly more important than Goal 5.
• Goal 3 is fully more important than Goal 2.

Preference Relation Type-4 (PRT-4):

The preference relations between the goals are:

• Goal 1 is significantly more important than Goal 2.
• Goal 2 is completely more important than Goal 4.
• Goal 2 is moderately more important than Goal 5.
• Goal 3 is fully more important than Goal 2.

Preference Relation Type-5 (PRT-5):

The preference relations between the goals are:

• Goal 1 is significantly more important than Goal 2.
• Goal 2 is significantly more important than Goal 4.
• Goal 2 is significantly more important than Goal 5.
• Goal 3 is partially more important than Goal 2.

A total of twenty five different models are formulated. After modeling and solving the problem
models, the results are presented in table 6, 7, 8, and 9. The values of ∑ nk and ∑ µRq(k, l) are
determined for each preference relation combination on Models 1–4. The values of ∑ nk is increasing
while ∑ µRq(k, l) is decreasing from α =0 to 1 for all PR type in Models 1 and 2. In both models, at
α = 0, the value of ∑ nk is the same for PRT-1, -2, and -4 as 2.5828, whereas, at α = 1, it is teh same for
PRT-1, -3, and -4 as 4.7655 and PRT-2 and -5 as 4.786. The value of ∑ µRq(k, l) is 0 for all PR Type. On
comparing the preference relation membership grades (∑ µRq(k, l)) for Models 1 and 2 for all PR types,
Model 2 performs best.

For Model 3, in c1 the value of ∑ nk is the same for PRT1, -2, and -4. The highest value is for PRT5
at 3.2. In Model 4, for c1 all the values are greater than the values of Model 3. For Model 3, c2 has the
value of 4.4577 for PRT1 and 04 but in Model 4 PRT1 and 04 have lesser values compared to Model 3.
For c3, all the values in Models 3 and 4 are the same from PRT1–5. The highest one is for c5 as 4.7616.
For c4, all the PRTs have same values for Models 3 and 4, except for PRT3 the value is different. For c4,
all the values of Models 3 and 4 are same, but for c5 only PRT4 and -5 values are different.

If we compare ∑ µRq(k, l) for Models 3 and 4, most of the values for Model 4 for all weights
combinations are greater than the values of Model 3. Although the decision can be taken based on the
requirement by the decision maker.
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Table 6. Solution results of Model 1 (Linear) for all cases of preference relations.

PR Type Model 1 (Linear)

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PRT1 ∑ nk 2.5828 2.5828 2.5828 2.5828 4.7579 4.7655 4.7655 4.7655 4.7655 4.7655 4.7655
∑ µRq (k, l) 2.7085 2.7085 2.7085 2.70857 1.5728 1.5669 1.56696 1.56696 1.56696 1.56696 0

PRT2 ∑ nk 2.5828 4.4577 4.4577 4.4577 4.7579 4.7655 4.7655 4.7655 4.786 4.786 4.786
∑ µRq (k, l) 2.8285 2.2097 2.2097 2.2097 2.0728 2.0669 2.0669 2.0669 2.012 2.012 0

PRT3 ∑ nk 2.8 2.8 2.8 2.8 4.1554 4.1554 4.6364 4.7655 4.7655 4.7655 4.7655
∑ µRq (k, l) 3.1 3.1 3.1 3.1 2.4222 2.4222 1.8249 1.6064 1.6064 1.6064 0

PRT4 ∑ nk 2.5828 2.5828 2.5828 2.5828 4.7579 4.7655 4.7655 4.7655 4.7655 4.7655 4.7655
∑ µRq (k, l) 2.7314 2.7314 2.7314 2.7314 1.6051 1.5976 1.5976 1.5976 1.5976 1.5976 0

PRT5 ∑ nk 1.4949 2.85 4.7616 4.7616 4.7616 4.786 4.786 4.786 4.786 4.786 4.786
∑ µRq (k, l) 3 2.925 2.5759 2.5759 2.5759 2.5576 2.5576 2.5576 2.5576 2.5576 0

Table 7. Solution results of Model 2 (Exponential) for all cases of preference relations.

Model 2 (Exponential)
PR Type

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PRT1 ∑ nk 2.5828 2.5828 2.5828 3.17837 4.3983 4.7655 4.7655 4.7655 4.7655 4.7655 4.7655
∑ µRq (k, l) 3.0707 3.0707 3.0707 2.84845 2.2293 1.9273 1.92737 1.92737 1.92737 1.92737 0

PRT2 ∑ nk 2.5828 2.5828 3.2 4.5716 4.7579 4.7655 4.7655 4.7655 4.786 4.786 4.786
∑ µRq (k, l) 3.1543 3.1543 3.0372 2.6378 2.5554 2.5498 2.5498 2.5498 2.4987 2.4987 0

PRT3 ∑ nk 2.7526 2.8 2.8 3.1477 4.1554 4.1554 4.7655 4.7655 4.7655 4.7655 4.7655
∑ µRq (k, l) 3.3765 3.3757 3.3757 3.2372 2.757 2.757 1.9612 1.9612 1.9612 1.9612 0

PRT4 ∑ nk 2.5828 2.5828 2.8261 3.1876 4.4577 4.7655 4.7655 4.7655 4.7655 4.7655 4.7655
∑ µRq (k, l) 3.0257 3.0257 2.9734 2.8471 2.1912 1.9472 1.9472 1.9472 1.9472 1.9472 0

PRT5 ∑ nk 1.4949 3.2 4.7616 4.7616 4.7616 4.786 4.786 4.786 4.786 4.786 4.786
∑ µRq (k, l) 3.2449 3.1955 2.9382 2.9382 2.9382 2.921 2.921 2.921 2.921 2.921 0

Table 8. Solution results of Model 3 (Linear) for all cases of preference relations.

Variables Model 3 (Linear)

PR Type (γ1, γ2, γ3) c1 c2 c3 c4 c5 c6

PRT1 ∑ nk 2.5828 4.4577 4.7655 4.7655 4.7655 4.7332
∑ µRq (k, l) 2.7085 1.77113 1.5669 1.5669 1.5669 1.5

PRT2 ∑ nk 2.5828 4.7579 4.786 4.786 4.7851 4.7556
∑ µRq (k, l) 2.8285 2.0728 2.012 2.012 1.9965 1.9592

PRT3 ∑ nk 2.8 4.1554 4.7655 4.4987 4.7332 4.7332
∑ µRq (k, l) 3.1 2.4222 1.6064 2.0085 1.6665 1.6665

PRT4 ∑ nk 2.5828 4.4577 4.7655 4.7655 4.7655 4.7655
∑ µRq (k, l) 2.7314 1.8001 1.5976 1.5976 1.5976 1.5976

PRT5 ∑ nk 3.2 4.7616 4.786 4.7851 4.7851 4.7851
∑ µRq (k, l) 2.8812 2.5759 2.5576 2.5485 2.5485 2.5485

Table 9. Solution results for Model 4 (Exponential) for all cases of preference relations.

Variables Model 4 (Exponential)

PR Type (γ1, γ2, γ3) c1 c2 c3 c4 c5 c6

PRT1 ∑ nk 2.5828 4.1054 4.7655 4.7655 4.7655 4.7332
∑ µRq (k, l) 3.0707 2.4077 1.9273 1.9273 1.9273 1.8631

PRT2 ∑ nk 2.99 4.7579 4.786 4.786 4.7851 4.7556
∑ µRq (k, l) 3.0787 2.5554 2.4987 2.4987 2.4839 2.4483

PRT3 ∑ nk 4.7154 4.7174 4.7655 4.7332 4.7332 4.7332
∑ µRq (k, l) 2.0184 2.0165 1.9612 2.0008 2.0008 2.0008

PRT4 ∑ nk 2.7121 4.097 4.7655 4.7655 4.7655 4.7332
∑ µRq (k, l) 3.0001 2.4024 1.9472 1.9472 1.9472 1.8709

PRT5 ∑ nk 4.4126 4.7616 4.786 4.7851 4.7851 4.7835
∑ µRq (k, l) 3.0136 2.9382 2.921 2.9126 2.9126 2.91
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4.2. Efficiency Analysis

The proposed models were applied to solve the numerical problem with different types of
preference relations combinations. The problem models are linear and nonlinear programming models.
While solving the models, we found that the solution time is in seconds for both linear and nonlinear
models. The computational time has been found acceptable.

Here, Models 1 and 3 and Models 2 and 4 consist of linear and exponential type of preference
relations, respectively. We have previously analyzed the models based on values of ∑ nk and ∑ µRq(k, l)
which is not a good basis for analyzing the efficiency and performance of proposed models. Thus, to
determine the efficiency of different models, we determine the degree of closeness of the solution value
to the ideal solution. For this the concept of distance function is utilized, see the works of Pramanik
and Roy [56], Zheng et al. [57], and Zhao et al. [58]. In this paper, a new distance function is developed
to select the priority solution for the proposed models.

D(x) = (∑
k
(1− nk)

2 + ∑
q
(1− µRq(k, l))2)1/2 (22)

The smaller value of the distance function gives the most satisfying solution as it represents the
better solution among all other solutions. The results of numerical example for the distance function is
presented in Tables 10 and 11 and Figures 5 and 6.

Furthermore, the proposed approach in Models 1 and 2 considers a utility function divided into
two criteria: (1) sum of individual normalized function; and (2) sum of membership function for the
achievement level of preference relations. Based on these two criteria with a different value of α, the
performance of different models with five different combinations of preference relations is analyzed.
The proposed approach of Models 3 and 4 considers a different and new utility function with addition
of maximization of λ, i.e. minimum value among all the normalized functions. Models 1 and 3 consider
membership function for linear preference relations, whereas Models 2 and 4 consider membership
function for Exponential preference relation.

Table 10. Solution results for distance measure for Models 1 and 2.

PR Type Distance Measure for Model 1 and 2

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PRT1 Model 1 1.5905 1.5905 1.5905 1.5905 1.3126 1.3147 1.3147 1.3147 1.3147 1.3147 2.009
Model 2 1.5151 1.5151 1.5151 1.2129 1.0285 1.1943 1.1943 1.1943 1.1943 1.1943 2.009

PRT2 Model 1 1.5769 1.5769 1.5769 0.9511 0.9864 0.9892 0.9892 0.9892 1.0079 1.0079 2.0056
Model 2 1.5087 1.5087 1.1816 0.7274 0.7518 0.7543 0.7543 0.7543 0.7687 0.7687 2.0056

PRT3 Model 1 1.3909 1.3909 1.3909 1.3909 1.0663 1.0663 1.2424 1.303 1.303 1.303 2.009
Model 2 1.3591 1.3345 1.3345 1.1789 0.9084 0.9084 1.1865 1.1865 1.1865 1.1865 2.009

PRT4 Model 1 1.6285 1.6285 1.6285 1.6285 1.3091 1.3111 1.3111 1.3111 1.3111 1.3111 2.009
Model 2 1.5657 1.5657 1.4032 1.2258 1.069 1.1949 1.1949 1.1949 1.1949 1.1949 2.009

PRT5 Model 1 1.9378 1.4626 0.838 0.838 0.838 0.8475 0.8475 0.8475 0.8475 0.8475 2.0056
Model 2 1.8815 1.171 0.6339 0.6339 0.6339 0.6423 0.6423 0.6423 0.6423 0.6423 2.0056

In Table 10 and Figure 5, the results for distance function values are shown for different values of
α and for type of preference relation model. In Figure 5, it can be seen that for all models of PRT-1–5,
Model 2 performs best for all values of α. In PRT-2 and -5, the difference of values for Models 1 and 2
is slightly greater than for PRT-1, -3, and -5. For PRT-1 and -4, at α = 0.3, the difference is more in
between Model 1 and 2 for distance function values. It can be seen that, for PRT-5, at α = 0.1−−0.3,
the performance of model is best among all other models. It gives the lowest value, 0.838 and 0.6339
for linear and exponential cases, respectively.
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(a) Graph of distance function values of Models 1 (linear)
and 2 (exponential) for fuzzy preference relations type-1.

(b) Graph of distance function values of Models 1 (linear)
and 2 (exponential) for fuzzy preference relations type-2.

(c) Graph of distance function values of Models 1 (linear)
and 2 (exponential) for fuzzy preference relations type-3.

Figure 5. Cont.
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(d) Graph of distance function values of Models 1 (linear)
and 2 (exponential) for fuzzy preference relations type-4.

(e) Graph of distance function values of Models 1 (linear)
and 2 (exponential) for fuzzy preference relations type-5.

Figure 5. Graph of distance function values of Models 1 and 2 for PRT 1–5.

Table 11. Solution results for distance measure for Models 3 and 4.

PR Type Distance Measure for Model 3 and 4

(γ1, γ2, γ3) c1 c2 c3 c4 c5 c6

PRT1 Model 3 1.5905 1.2172 1.3147 1.3147 1.3147 1.3395
Model 4 1.5151 0.982 1.1943 1.1943 1.2143 1.2143

PRT2 Model 3 1.5769 0.9864 1.0079 1.0079 1.0151 1.0322
Model 4 1.2682 0.7518 0.7687 0.7687 0.7754 0.7912

PRT3 Model 3 1.3909 1.0663 1.303 1.2545 1.2953 1.2953
Model 4 1.1928 1.1918 1.1865 1.186 1.186 1.186

PRT4 Model 3 1.6285 1.2284 1.3111 1.3111 1.3111 1.3422
Model 4 1.4763 1.0258 1.1949 1.1949 1.1949 1.2217

PRT5 Model 3 1.258 0.838 0.8475 0.8519 0.8519 0.8519
Model 4 0.6669 0.6339 0.6423 0.6461 0.6461 0.6472

In Table 11 and Figure 6, the results for distance function values are shown for different values
of (γ1, γ2, γ3) and for type of preference relation model. For PRT-1, -2, -4, and -5, Model 4 with
exponential preference relation performs best. In the case of PRT-3 for c2, Model 3 is better than Model
4; for the rest of the weight combinations Model 4 is better than Model 3. For PRT-5, the distance



Symmetry 2020, 12, 934 24 of 28

function values at c2 is the lowest among all distance function values for different types of preference
relations. Overall, the performance ranking is Model2 > Model1 and Model4 > Model3. Thus, We can
conclude that, for the given experimental study, the performance pattern for the type of membership
function is Exponential > Linear. For both examples, the results show that the proposed models
perform best for the exponential case in comparison to the linear one.

(a) Graph of distance function values of Models 3 (linear)
and 4 (exponential) for fuzzy preference relations type-1.

(b) Graph of distance function values of Models 3 (linear)
and 4 (exponential) for fuzzy preference relations type-2.

(c) Graph of distance function values of Models 3 (linear)
and 4 (exponential) for fuzzy preference relations type-3.

Figure 6. Cont.
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(d) Graph of distance function values of Models 3 (linear)
and 4 (exponential) for fuzzy preference relations type-4.

(e) Graph of distance function values of Models 3 (linear)
and 4 (exponential) for fuzzy preference relations type-5.

Figure 6. Graph of distance function values of Model 3 and 4 for PRT 1–5.

5. Conclusions, Limitations, and Future Directions

This work proposes standard goal programming models with fuzzy hierarchies between the
goals. This work is based on several existing methods (see, [16,30,35,38]) and provides an extension to
the existing methods by introducing exponential fuzzy preference relations and incorporating new
objective function. The exponential membership function for fuzzy preference relations of ten types
of linguistic terms is formulated. Four models, namely Models 1–4, based on linear, exponential
preference relations, and a new objective are proposed. A numerical example is solved and results
are analyzed. A comparison is also made using a newly developed distance measure function for the
proposed models to analyze the performance of the proposed models.

It is concluded that, for the experimental numerical problem, solutions are better in case of
models having exponential membership function for preference relations in comparison to linear.
The proposed models perform better than Model 1, which was proposed by Arenas-Parra et al. [35].
Thus, the efficiency of models with respect to the satisfaction level of the decision maker can be
ordered as Model2 > Model1 and Model4 > Model3. Another flexibility in the proposed models
is that the solution can be chosen according to the priority of the minimum normalized value, the
sum of normalized values, and the sum of membership functions of the preference relations. That is,
the decision maker can adopt the best solution by having a sensitivity analysis of weight parameters.
On choosing the weight γ1 = 0, Models 3 and 4 are reduced to Models 1 and 2, respectively.
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This study also hase some limitations. As, the results are presented for a single numerical
example under different scenarios of preference relations. Further investigation on multiple numerical
examples and real life problems are needed to verify the superiority of proposed linear and nonlinear
models. The results may change as per the consideration of type of linear and nonlinear preference
relations. This research can be extended by the implementation in real life problems from industry
such as in scheduling, planning, transportation, manufacturing, supply chain, etc., which can be
a challenging work. The inclusion of exponential preferences provides wider applicability in real
life scenario. The present work can be further extended to advanced goal programming models
using fuzzy, stochastic uncertainties, and different nonlinear membership functions such parabolic,
hyperbolic, S-curve, etc. for preference relations.
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