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Abstract: This work concerns the preparation of a mineral membrane by the slip casting method
based on zirconium oxide (ZrO2) and kaolin. The membrane support is produced from a mixture of
clay (kaolin) and calcium carbonate (calcite) powders using heat treatment (sintering). Membrane and
support characterization were performed by Scanning Electron Microscopy (SEM), X-ray Fluorescence
(XRF), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Raman
Spectroscopy. The prepared mineral membrane was tested to treat drinking water obtained from
different zones of the El Athmania (Algeria) water station (raw, coagulated, decanted, and bio filtered
water). Experimental parameters such as permeate flux, turbidity, and total coliforms were monitored.
The results showed that the mineral membrane was mainly composed of SiO2 and Al2O3 and the outer
surface, which represented the membrane support, was much more porous than the inner surface
where the membrane was deposited. The permeate flux of the raw water decreased with filtration
time, due to a rejection of the organic matters contained in the raw water. Moreover, the absence of
total coliforms in the filtrate and the increase in concentration in the concentrate indicate that the
prepared mineral membrane can be used for drinking water treatment.

Keywords: kaolin; membrane; ZrO2; flux; turbidity; total coliforms

1. Introduction

Membrane processes are increasingly used in industrial areas, covering a wide range of operating
conditions and module designs. Using membrane technology, instead of a conventional separation or
purification step that is part of an existing industrial process, can reduce overall energy consumption
and produce acceptable results under softer conditions. In addition, membrane processes generally
permit continuous operation and can be combined easily with other separation processes [1–3].

The significant development of membrane filtration processes has generated a great deal of interest
in research on membrane materials. Although polymeric membranes have been used in industrial
areas for many years, inorganic membranes, also known as ceramic membranes, are used for longer life,
considering their better chemical and mechanical stabilities compared to polymeric membranes [4–6].
For this reason, many studies have been performed in recent years to develop new types of inorganic
membranes [7,8].

The development of clay-based inorganic membranes can lead to an important new technological
application that will add economic value to the enormous natural deposits of clay minerals, many of
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which are currently underutilized [9]. Kaolins are white, friable, and refractory clays, consisting
mainly of kaolinite of the formula Al2Si2O5(OH)4 or aluminum silicates (Al2SiO5). It was discovered
in China and it is used on the basis of porcelain manufacturing and also in the ceramic industry [10].
Clay (kaolin) is used extensively for the production of microporous tubular supports that can withstand
high pressures and chemical attacks, where zirconium oxide gels are deposited for the preparation of
membranes [11].

Ceramic membranes (CM) have been used in various industries, such as food, petrochemical,
chemical, biotechnological, pharmaceutical, dairy, etc. [12]. So far, many materials such as zeolites,
α- and γ- alumina (Al2O3), titania (TiO2), zirconia (ZrO2), silicon oxide (SiO2), and microporous glasses
are commonly used in the development of ceramic membranes [13,14]. To date, various methods
have been used to prepare inorganic ceramic membranes. These methods include chemical extraction,
the sol-gel method, solid state sintering, phase separation, chemical vapor deposition and synthesis
methods [15–17].

Zirconium oxide (ZrO2) was used to prepare a flexible and thermally stable porous ceramic
membrane, using PVdF–HFP as a binder. The membrane showed 60% porosity with good
electrolyte uptake, thermal stability of up to 400 ◦C, and substantial Li+-ion transport number [18].
Ceramic zirconium membranes were used in the separation of oil-in-water emulsion [19,20].
Commercial alumina microfiltration membranes were coated by the nano-sized ZrO2 to reduce
the membrane fouling by oil droplets. They reported that the modified membrane reached the
steady flux in a very short time and the steady flux retained 88% of the initial flux, even when oil
rejection was above 97.8% [20]. The oily wastewater produced from the post-treatment unit of the
refinery processes was treated using flocculation and a zirconia-based microfiltration membrane
(0.2 µm) [21]. The membrane was operated at a transmembrane pressure of 0.11 MPa and a cross-flow
velocity of 2.56 m/s. The membrane filtration results showed that the membrane fouling decreased,
and the permeate flux as well as the permeate quality increased with flocculation as pretreatment [21].
In another study, Kroll et al. fabricated and characterized zirconia microtubes with 1.6 and 1.0 mm
outer and inner diameters, respectively, for bacteria filtration and digestion [22]. Tubular zirconia
membranes sintered with a temperature of 1050 ◦C had an open porosity of 51.3%, with pore sizes
of ≤0.2 µm, and were suitable for bacteria filtration [22]. Commercial tubular zirconia membranes
supported on the alumina were used for modification with two different grafting procedures [23].
Different kinds of hydrophobic ceramic membranes were prepared by grafting organosilane molecules
(FAS) on the membrane surface. The hydrophobic ceramic membranes with 200 and 50 nm pore
diameters were used for water desalination by membrane distillation [24]. The zirconia membrane was
prepared using an in situ hydrothermal crystallization technique for the separation of methyl orange
dye [25]. The porosity, average pore size and pure water permeability of the zirconia membrane were
estimated to be 42%, 0.66 µm, and 1.44 × 10−6 m3/m2 s kPa, respectively. The prepared membrane
showed a 61% rejection of methyl orange from the aqueous solution and a high permeation flux
of 2.28 × 10−5 m3/m2 s at 68 kPa operating pressure [25]. The zirconia-based ceramic composite
membranes were used for the separation of whey components [26]. The prepared membrane enhanced
relatively high protein content (∼80%) and low lactose retention (∼7%), with a 40 L/m2h permeate flux
value. A zirconia ultrafiltration (UF) membrane with a mean pore diameter of 40 nm was prepared in
single step coating of zirconia nanopowder suspension by the slip casting method [27]. The membrane
was applied for treatment of industrial (tannery) and domestic (kitchen sink) wastewater. They reported
that 82% and 92% removal of chemical oxygen demand (COD) were obtained for tannery wastewater
and kitchen sink wastewater, respectively. Turbidity was reduced below 1 NTU for both the effluents,
with complete removal of pathogenic organisms [27].

In this study, an inexpensive tubular zirconia membrane on a low cost porous ceramic support
was synthesized and characterized. Kaolin powders were used to prepare the membrane support.
CaCO3 and Methocel were used in the support preparation as inorganic and organic additives,
respectively. The prepared ceramic membrane and support were characterized by SEM, XRF, FTIR,
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XRD, and Raman Spectroscopy. The membrane was used to remove organic matters from drinking
water. The developed ceramic membrane was also tested for removal of Escherichia coli (E. coli).
Variations in the permeate flux of distilled and raw drinking water versus filtration time were
investigated. Moreover, the characterizations of raw drinking water, permeate and concentrate quality
were also illustrated.

2. Material and Methods

2.1. Characterization of Raw Kaolin Powders

Table 1 shows the chemical composition of the raw kaolin determined by X-ray fluorescence (XRF)
analysis. A chemical composition of kaolin powders for the ceramic membrane support showed that
SiO2, Al2O3, Fe2O3 were major elements. However, K2O, Na2O, MgO, P2O5, TiO2, and MnO were
detected as minor elements.

Table 1. Chemical analysis (wt. %) of the raw kaolin.

Oxide Weight (%)

SiO2 55.080

Al2O3 29.041

Fe2O3 2.813

K2O 1.422

Na2O 0.320

MgO 0.172

CaO 0.010

P2O5 0.082

TiO2 0.066

MnO 0.014

Loss on ignition 10.980

2.2. The Methods of the Membrane Support and Ceramic Membrane Preparation

In this part, we describe the methods of the membrane support from the clay powders (kaolin)
and zirconia-based ceramic membrane preparations. The clay consisted mainly of aluminum silicate
(Al2SiO5), intended for the manufacture of the tubular microporous support. The method of tubular
support preparation can be summarized in the following steps [28,29]:

• Thermal treatment of the clay material at a temperature of 400–600 ◦C for 30 min for the removal
of water contained in kaolin (dehydration) and the combustion of organic matters.

• Grinding of the clay material to obtain small particles.
• Sieving of the small particles to obtain particles smaller than 125 µm.
• Addition of kaolin (75%) and calcium carbonate (CaCO3) (22%) for the appearance of pores with

an acceptable number and size in the final support.
• Addition of an organic additive (Methocel) (3%) to improve the elastic properties of the dough

and to facilitate the formation process.
• Mixing of the above-mentioned materials with the presence of the solvent (distilled water),

by using the mixer until a paste of good elastic properties was obtained. Then, the mixture was
placed in a tightly closed plastic bag for 12 h to properly spread the water in the ceramic paste.

• Extrusion of ceramic paste in tubular form.
• Drying of the tubular support with ambient air by placing it on the machine containing the

rotating cylinders to dry it uniformly and maintain its shape for 24 h.
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• Sintering the components of the ceramic paste that forms the support at a temperature equal
to 1100 ◦C, which will convert it to anorthite according to a series of reactions during a specific
thermal program.

The sintering of the support was realized in the following steps. First, the temperature of the
chamber was increased from the ambient temperature to the temperature of 250 ◦C, with a rise speed
of 3 ◦C/min and a plateau of 15 min. During this step, water could be eliminated quickly. Second,
the temperature was increased from 250 to 1100 ◦C with a rise speed of 3 ◦C/min and a plateau of
60 min. During this step, organic matters could be removed (Figure 1).
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Figure 1. Thermal program used for the sintering of the support.

2.3. The Method of the Slip Casting Membrane Preparation

The method consisted of suspending zirconia and polyvinyl alcohol in distilled water and pouring
the produced slip inside the porous support (Figure 2). The method results in the controlled diffusion
process, which amounts to a simple loss of water from the suspension in the mass of the support;
this causes the accumulation of zirconia particles on its surface. The support sintered with thermal
sequences ensures that the material can withstand high pressures and chemical attacks. However,
zircon oxide (ZrO2) accumulated in the inner part of the tubular support provides the formation of
selective permeable membrane.

The method of zirconia-based ceramic membrane preparation can be summarized in the
following steps:

• Take 70% of the distilled water and add in 4% by weight of ZrO2 powder to mix the mixture until
a good homogeneous mixture was obtained.

• Place the mixture in an ultrasonic bath for 10 min to dispel the granules and dissolve the sediments.
• Then, add 26% polyvinyl alcohol (PVA) and mix for 12 h to obtain the suspension solution.
• The solution is poured into the support for 10 min and dried for 5 min.
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2.4. Experimental Setup of Filtration

The prepared zirconia-based ceramic membrane was used for the treatment of drinking water
obtained from Oued El Athmania water treatment plant (Mila, Algeria). The filtration experiments
were carried out using a tangential filtration system (Figure 3). The total volume of the reservoir was
5 L, and 3 L of drinking water was used for each experiment. The effective membrane area was 45 cm2

and cross-flow velocity was 4.18 m/s. The concentrate was recycled back into the feed tank and the
filtered water (permeate) was collected in an Erlenmeyer flask for analysis. The volume of filtrate was
monitored as a function of time to determine the permeate flux (Jp).
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2.5. Determination Method of Total Coliform Bacteria

Coliform bacteria filtration experiments were also carried out by prepared ceramic membrane.
Coliform bacteria in water, thermo-tolerant coliforms, and E. coli were investigated and counted
using the most probable number (MPN) technique in liquid medium. BCP (Bromocresol Purple)
Lactose Broth Tubes were used for presumptive identification and enrichment of total coliforms,
including thermotolerant coliforms. Water samples were collected in sterile glass bottles (1 L) in order
to detect and count the final concentration of bacteria after filtration. The final reading was carried out
according to the requirements of the MPN table, taking into account that E. Coli is a producer of gas
and indole at 44 ◦C.

3. Results

3.1. Characterization of the Support and Zirconia-Based Ceramic Membrane

The characterizations of the support and zirconia-based ceramic membrane are given in Tables 2
and 3.

Table 2. The characteristics of the tubular kaolin support.

Properties Support Material

Outside diameter 9 mm

Inside diameter 4.6 mm

Thickness 2.2 mm

Length 190 mm

Operating pH range 1–14

Washing pH range 1–14

Table 3. The characteristics of the tubular zirconia-based ceramic membrane.

Properties Ceramic Membrane

Total area 4.48 × 10−3 m2

Average pore diameter 0.2 µm

Operating pH range 1–14

Washing pH range 1–14

3.1.1. Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy allows for the observation of the morphology and cavities of
the membrane-support (inner and outer surfaces). It should be remembered that the slip casting
membrane was deposited inside the tubular support. Figure 4A,B show the outer surface of the support
material. It could be seen from the figures that there were large and irregular pores on the support layer.
Figure 4C,D show the inner surface of the ceramic membrane. The layered structure of zirconia and
the asymmetric distribution of the pores can be seen from the figures. Moreover, cross-section images
of the tubular membrane are seen in Figure 4E,F. The outer surface of the support had wider cavities
compared to the inner surface. These cavities can be considered to be an advantage for deposition or
adhesion of the solution inside the module.



Symmetry 2020, 12, 933 7 of 15
Symmetry 2019, 11, x FOR PEER REVIEW 7 of 16 

 

 

 

 
Figure 4. SEM images of the support and ceramic membrane (A,B): the outer surface of the support 
material; (C,D): the inner surface of the ceramic membrane; (E,F): cross-section of the tubular 
membrane). 

3.1.2. X-Ray Fluorescence (XRF) 

The X-Ray fluorescence analyses were carried out by a Panalytical Epsilon 3 spectrophotometer, 
for the evaluation of the most present elements in the membrane support. This energy dispersive X-
Ray spectrophotometer was connected to a computer using the Omnian analysis software. The 
sample was placed under helium flow during the analysis. Fluorescence X-ray spectra were recorded 
under different excitation conditions.  

The use of a particular filter with a potential difference and a particular current allows for the 
better exploration of a particular region of the spectrum. For the support material, the first spectrum 
was realized with a potential difference (dp) of 5.00 keV and a current of 1000 μA (Figure 5A). It 
allowed us to explore the region of energies up to about 4 keV. For the zirconia-based ceramic 
membrane, the second spectrum was realized with a silver filter with a thickness of 100 μ, a dp of 
30.00 keV and a current of 300 μA (Figure 5B). It allows the peaks of high energy to be observed. 
However, in this case, the peaks are strongly attenuated. From the spectrograms of Figure 5A,B, 
excitation energy spectra in the range of 1.486 to 1.597 keV and 1.739 to 1.836 keV corresponding to 
atoms (Al) and (Si), respectively, come from aluminum silicate (Al2SiO5) (the clay material). 
Moreover, in the spectrogram of Figure 5B, the excitation energy spectrum of 15.744 keV 
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3.1.2. X-ray Fluorescence (XRF)

The X-ray fluorescence analyses were carried out by a Panalytical Epsilon 3 spectrophotometer,
for the evaluation of the most present elements in the membrane support. This energy dispersive X-ray
spectrophotometer was connected to a computer using the Omnian analysis software. The sample
was placed under helium flow during the analysis. Fluorescence X-ray spectra were recorded under
different excitation conditions.

The use of a particular filter with a potential difference and a particular current allows for the
better exploration of a particular region of the spectrum. For the support material, the first spectrum
was realized with a potential difference (dp) of 5.00 keV and a current of 1000 µA (Figure 5A). It allowed
us to explore the region of energies up to about 4 keV. For the zirconia-based ceramic membrane,
the second spectrum was realized with a silver filter with a thickness of 100 µ, a dp of 30.00 keV and a
current of 300 µA (Figure 5B). It allows the peaks of high energy to be observed. However, in this case,
the peaks are strongly attenuated. From the spectrograms of Figure 5A,B, excitation energy spectra in
the range of 1.486 to 1.597 keV and 1.739 to 1.836 keV corresponding to atoms (Al) and (Si), respectively,
come from aluminum silicate (Al2SiO5) (the clay material). Moreover, in the spectrogram of Figure 5B,
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the excitation energy spectrum of 15.744 keV corresponding to the zirconia atom (Zr) constituent of the
zirconia oxide (ZrO2) membrane was noted. Zirconia detected in the ceramic membrane showed that
zirconia had entered the structure of the support material.
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Figure 5. X-ray Fluorescence (XRF) spectrum of the support (A,C,D) and ceramic membrane (B).

It was also found from the spectrograms of Figure 5C,D, that the clay used in the preparation of
the support contained other constituents such as Mn and Fe. We also noticed excitation energy spectra
in the range of 3.5 to 4 keV, which confirmed the presence of the calcium (Ca). It composed the calcium
oxide (CaO) by addition of calcite (CaCO3) transformed into (CaO) during the heat treatment of the
support paste.

3.1.3. X-ray Diffraction (XRD)

The support was characterized by a Panalytical Empyrian brand diffractometer operating under
the following conditions: 40 mA, 45 kV with monochromatic radiation Kα = 1.54 A◦ of copper,
equipped with a goniometer and an X-ray detector.

Figure 6 represents XRD reflections of the support at a temperature of 1100 ◦C for 1 h. The main
phase identified in the membrane support was the anorthite (CaO, Al2O3, 2SiO2) which was a
predominant phase. This phase was very important because of its promising physical and mechanical
properties [5,29].
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3.1.4. Fourier-Transform Infrared Spectroscopy (FTIR)

Infrared spectra were recorded on a spectrophotometer equipped with an ATR accessory (Jasco
FT/IR-4000). Infrared spectroscopy is a tool for mineralogists to characterize the crystallinity of
materials, by observing the relative intensities of the hydroxyl (OH) vibration bands and that of the
Si-O, Si-O-Si, Al-OH and Al-O in their structures [30,31].

The IR spectrogram of the clay support represented by Figure 7 was divided into two main
zones. The first peaks corresponded to high frequency bands (wave numbers) between 3700 and
2800 cm−1, and the second peaks corresponded to the lower frequencies located in the 1500–500 cm−1

area. The high frequency bands (zone II) concerned the vibration of OH hydroxyls, while the low
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The wave numbers (υ) of peaks and the functional groups corresponding to kaolin are summarized
in Table 4. According to Table 2, in correlation with the literature, it was found that the clay used as
support contained the different chemical elements with different percentages, such as Si, Al, Fe’ and
bonds with hydroxyls, which has been confirmed by several authors [33–35].

Table 4. Attribution of vibration bands of IR spectra of clay materials.

Wave Number υ in (cm−1) of the
Clay Support

Wave Number υ in (cm−1)
Observed in Literature

Kaolin Band Assignment

3670
3695 ν O-H interlayer
3670 ν O-H grain surface

1070
1096 νSi-O

1010–1033 νSi-O-Si

897
875 Al-OH-Fe3+

937 δAl-OH-Al intern with Feuillet
912–915 δAl-OH-Al external with layer

780 800–778 Si-O of Quartz
760 757–700 Al-OH

540 540 Al-O

3.1.5. Raman Spectroscopy

The Raman scattering spectra were collected by a Thermo Fisher DXR spectrometer equipped
with an optical microscope, a three-grating monochromator (triple additive mode) and a CCD camera
detector (Charge Coupled Device). The exciting radiation of a wavelength of 780 nm was delivered by
the beam of a NIR diode laser. The beam was focused with a long frontal lens (×100 magnification)
numerical aperture of 0.9 over 50 µm of the sample surface. The power irradiating the sample was
about 10 mW. The scattered retro Raman spectrum was collected in confocal mode to avoid optical
artifacts, particularly the signal from the glass slide above the sample cell. The spectral resolution was
1.9 cm−1, with a precision on the measurement of the best wave number only 1 cm−1.

Figure 8 represents the Raman spectrum of the clay support, where several bands were observed.
We noticed the appearance of new spectra at 1694, 2080, and 3372 cm−1, which express the vibrations
of ν (C=O), Si-H, and OH, respectively [36].
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3.2. Filtration Experiments

3.2.1. Permeate Flux Variation versus TMP and Time

Figure 9A shows that the permeate flux (Jp) of distilled water increases with the increase in the
transmembrane pressure (TMP) according to the Darcy law [37]. The variations of the permeate flux
(Jp) versus time using distilled and raw drinking water are presented in Figure 9B. According to the
obtained results, it can be seen that the permeate flux for the distilled and the raw water were not of
the same order. This behavior can be explained by the retention of certain matters by the ceramic
membrane causing a blockage of the pores, which leads to the reduction of the amount of water passing
through the membrane (permeate). The straight line for distilled water explains that the flow of water
was constant over the filtration time. On the other hand, the permeate flux of raw drinking water
decreased during the first 20 min and then became constant. It could be explained by there being a
certain amount of suspended matter which had deposited on the surface of the membrane.Symmetry 2019, 11, x FOR PEER REVIEW 12 of 16 
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3.2.2. Turbidity Variation Versus Time

Turbidity was determined using a 2100Q portable turbidimeter proposed by Hach, with a tungsten
filament lamp equipped with a two-detector ratio optical system for accurate results during routine
analyses. It brings greater measurement sensitivity over a wider range of 0 to 1000 NTU. The suspended
solid in water causes turbidity. The membrane filtration experiments were carried out for raw drinking
water obtained from Oued El Athmania water treatment plant. The turbidity of raw drinking water
increased in the concentrate versus filtration time because the water was completely recycled into the
feed tank (Figure 10).
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The characterizations of raw drinking water, permeate and concentrate quality are presented in
Table 5.

Table 5. The properties of raw drinking water, permeate and concentrate.

Physico-Chemical Parameters Units Raw Water Permeate Concentrate

pH - 8.35 8.17 8.39

Conductivity µS/cm 1120 1100 1133

Dissolved Salt Rate (DSR) mg/L 617 610 631

Turbidity NTU 8.10 0.69 21.10

Total hardness mg/L 400 380 410

Phosphate (PO4
3−) mg/L 0.07 0.00 0.16

Ammonium (NH4
+) mg/L 0.03 0.02 0.06

Nitrite (NO2
−) mg/L 0.0 0.0 0.0

Nitrate (NO3
−) mg/L 7.00 6.18 7.40

Ferrous iron (Fe2+) mg/L 0.17 0.03 0.33

Manganese (Mn2+) mg/L 0.1 0.0 0.7

Aluminum (Al3+) mg/L 0.0 0.0 0.0

Zinc (Zn2+) mg/L 0.43 0.30 0.60

Chloride (Cl−) mg/L 177.27 173.72 180.81

Calcium (Ca+2) mg/L 84.17 80.16 92.18

3.2.3. Total Coliform Bacteria Variation versus Time

Biological tests of total coliform bacteria were also performed in this work to test the retention
capacity of the ceramic membrane. E. coli are considered as indicators of the microbial quality of
drinking water [38]. In the filtered water (permeate), the number of coliforms was equal to zero during
60 min filtration, which depicted that all of the total coliforms were rejected by the zirconia-based
ceramic membrane (Figure 11). On the other hand, in the concentrated water, an increase in the number
of total coliforms from 15 to 35 in 100 mL was obtained after 60 min of filtration.
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4. Conclusions

In this work, a zirconia-based ceramic membrane with a tubular configuration was prepared by
the casting method. The anorthite support, which had favorable physical and mechanical properties,
was prepared by the extrusion method. The inner layer, containing smaller pores compared to the
support, reduced the size of the pores and eliminated defects of the support. The membrane filtration
results showed that there was an improvement in the physicochemical and bacteriological quality
of raw drinking water. The prepared membrane retained all of the total coliforms. Using a ceramic
membrane can help to obtain a good clarification, and can reduce the addition of chemical agents such
as aluminum and chlorine used for coagulation and disinfection. These agents form an additional
pollution, such as the presence of aluminum in the sludge from the settling basin, and an acceptable
taste of water after the addition of a smaller amount of chlorine.
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