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Abstract: The study investigated egg quality aspects such as astaxanthin concentration, E/Z-isomer
ratio, and yolk color in laying hens fed with astaxanthin-containing diets. Dried Paracoccus
carotinifaciens cell powder (Panaferd-AX) and fine cell powder (Panaferd-P) were used as sources
of astaxanthin, with average particle diameters of approximately 100 µm and 10 µm, respectively.
Paracoccus carotinifaciens contains valuable rare carotenoids such as adonirubin and adonixanthin,
and thus the concentrations of these carotenoids in egg yolk were also evaluated. The E/Z-isomer
ratios of the egg yolk carotenoids were determined by normal-phase high-performance liquid
chromatography (HPLC) with an improved solvent system. Feeding diets containing P. carotinifaciens
resulted in increased concentrations of astaxanthin, adonirubin, and adonixanthin in egg yolk, as well
as a marked increase in the yolk color fan score; values associated with the Panaferd-P-containing diet
were higher than those associated with the Panaferd-AX-containing diet. For example, the astaxanthin
concentration in egg yolks of hens fed with the Panaferd-AX- and Panaferd-P-containing diets for
21 days were 1.21 µg/g and 1.85 µg/g, respectively. This indicates that the pulverization treatment
of the P. carotinifaciens powder increased the efficiency of carotenoid accumulation in the egg yolk.
Moreover, more than 95% of astaxanthin in P. carotinifaciens was present as the all-E-isomer. However,
approximately 25% of astaxanthin in egg yolk was present as the Z-isomers. In recent years, astaxanthin
Z-isomers have attracted substantial attention as they exhibit a greater bioavailability and bioactivity
than the all-E-isomer. These data are important not only for understanding egg yolk pigmentation
but also for improving the nutritional value of hens’ egg yolk through the addition of P. carotinifaciens
to their diet.

Keywords: Paracoccus carotinifaciens; astaxanthin; adonirubin; adonixanthin; geometric isomer;
egg yolk

1. Introduction

The color of egg yolk is an important factor in determining whether the product will be
acceptable to the consumer. Yolk with a high pigment content is in demand for egg-containing
processed foods such as noodles, baked goods, and mayonnaise. Carotenoids are principally
responsible for the yolk color, but because chickens cannot biosynthesize carotenoids, they obtain
carotenoids from their diet [1–3]. Dietary sources of carotenoids have traditionally been corn,
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alfalfa, and marigold flower, which contain lutein and zeaxanthin [1,4,5]. In recent years, the use of
astaxanthin (3,3’-dihydroxy-β,β-carotene-4,4’-dione; Figure 1a) as a carotenoid for improving egg
yolk pigmentation has attracted substantial attention [6–8]. Astaxanthin efficiently pigments egg
yolk and shows a strong antioxidant activity that is 10 times higher than β-carotene and 100 times
higher than α-tocopherol [9,10]. Furthermore, carotenoid consumption offers various health benefits
such as decreased risks of cardiovascular disease, certain cancers, and eye disease [9–11]. The yeast
Phaffia rhodozyma has been used as a source of astaxanthin to allow pigmentation of egg yolk for
commercial purposes [12,13]. In this study, we evaluated the use of an aerobic Gram-negative
microorganism, Paracoccus carotinifaciens ASB-57 strain [14], as a source of astaxanthin (3S,3’S form).
Paracoccus carotinifaciens contains not only high concentrations of astaxanthin but also two valuable rare
carotenoids, adonirubin (3-hydroxy-β,β-carotene-4,4’-dione, 3S form; Figure 1b) and adonixanthin
(3,3’-dihydroxy-β,β-carotene-4-one, 3S,3’R form; Figure 1c) [15,16]. These rare carotenoids have over
2.5 times more antioxidant activity than astaxanthin [17]. Moreover, microorganisms belonging to the
genes Paracoccus are advantageous in their proliferation rates, and their carotenoid productivity is high
compared to that of yeasts. Thus, the use of P. carotinifaciens should provide advantages in terms of the
nutritional value and production cost of eggs compared to P. rhodozyma [18]. Dried P. carotinifaciens
cell powder was recently commercialized by JXTG Nippon Oil & Energy Corporation (Tokyo, Japan)
for use in the pigmentation of hens’ egg yolk and seafoods such as salmon, trout, and shrimp.
These cell powders are sold under the names Panaferd-AX and Panaferd-P. Panaferd-P is obtained by
finely pulverizing Panaferd-AX; the average particle diameters of Panaferd-AX and Panaferd-P
are approximately 100 µm and 10 µm, respectively [8,15]. Several studies indicated that the
pulverization treatment of ingredients containing carotenoids, such as red pepper (Capsicum frutescens)
and P. rhodozyma, enhanced the yolk pigmentation efficiency of laying hens [19,20]. Therefore, there is
a possibility that Panaferd-P has a higher pigmentation efficiency than Panaferd-AX.
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carotenoids exist in considerable quantities in humans and other animals (Figure 1d,e) [21,24−26]. 
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The aim of this study was to investigate the effects of feeding laying hens with diets containing
P. carotinifaciens powder of different particle sizes on the concentrations of astaxanthin, adonirubin,
and adonixanthin in egg yolk and the yolk color. We also evaluated the impact of the feeding on some
egg qualities such as egg weight, yolk weight, albumen height, and the Haugh unit. Moreover, we
investigated the E/Z-isomer ratios of astaxanthin, adonirubin, and adonixanthin in egg yolk using
an improved high-performance liquid chromatography (HPLC) system. Apart from some notable
exceptions, the carotenoid all-E-isomer is the most predominant geometric isomer in plants and
microorganisms such as P. carotinifaciens (Figure 1a–c) [16,21–23]. In contrast, Z-isomers of carotenoids
exist in considerable quantities in humans and other animals (Figure 1d,e) [21,24–26]. Several studies
have reported that Z-isomers of carotenoids are found in egg yolk [2,6,27,28]. For example, we have
recently reported that even though most dietary lycopene represents the all-E-isomer, more than 65% of
lycopene in egg yolk is present as the Z-isomers [27]. Walker et al. reported that when laying hens were
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fed with astaxanthin-rich diets, several types of astaxanthin Z-isomers could be detected [6]. However,
they did not provide the exact value of the Z-isomer ratio, likely because of the difficulty in accurately
analyzing carotenoid isomers in egg yolk. Recently, several studies have reported that astaxanthin
Z-isomers had a higher bioavailability and showed stronger bioactivities, such as antioxidant and
anti-inflammatory activities, than those by the all-E-isomer [29–31]. Hence, the evaluation of the
carotenoid E/Z-isomer ratio in foods, especially that of astaxanthin, is very important.

2. Materials and Methods

2.1. Reagents

Two forms of carotenoid-rich dried cell powders from the P. carotinifaciens ASB-57 strain [14],
Panaferd-AX (average particle diameter, approximately 100 µm; astaxanthin content, 2.0%; adonirubin
content, 0.61%; adonixanthin content, 0.22%) and Panaferd-P (average particle diameter, approximately
10 µm; astaxanthin content, 1.9%; adonirubin content, 0.63%; adonixanthin content, 0.20%) were
obtained from JXTG Nippon Oil & Energy Corporation (Tokyo, Japan) [8,14,15]. Panaferd-P was
obtained by finely pulverizing Panaferd-AX [8]. High-purity (all-E)-astaxanthin was purchased from
Sigma-Aldrich Co. Ltd. (Dorset, United Kingdom), and (all-E)-adonirubin and (all-E)-adonixanthin
were obtained from JXTG Nippon Oil & Energy Corporation. HPLC-grade acetone, ethyl acetate,
hexane, and dichloromethane (CH2Cl2), and analytical-grade acetone were purchased from Kanto
Chemical Co., Inc. (Tokyo, Japan). The basal diet used in this study was purchased from Kameya
Syoji Co., Ltd. (Ginan, Japan), and its ingredients and chemical composition are shown in Table 1.
The chemical composition of the feed was analyzed as a mixed condition. Although the amino acid
composition of the feed was not analyzed in this study, the feed was mixed by the feed company so as
to meet the amino acid requirements for layers producing 56 g of egg mass a day. The amino acid
requirements were based on the Japanese Feeding Standard for Poultry (2011), edited by the National
Agriculture and Food Research Organization.

Table 1. Ingredients and nutrient composition of the basal diet.

Ingredient g/kg

Corn 566.0
Soybean meal 174.0

Limestone 93.4
Corn gluten meal 50.0

Rice bran 30.0
Vegetable oil 27.9

Fish meal 25.0
Corn gluten feed 20.7

Calcium phosphate 8.60
Sodium chloride 4.40

Chemical Composition (Dry Matter Basis) g/kg

Metabolizable energy (kcal/kg) 2720
Dry matter 898.4

Organic matter 850.3
Crude protein 183.4
Ether extract 69.2
Crude fiber 39.3

Neutral detergent fiber 797.2
Acid detergent fiber 297.6
Nitrogen free extract 558.4

Crude ash 149.7
Calcium 15.5

Phosphorus 9.6
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2.2. Feeding Experiments

Lohmann Julia Lite hens (24 weeks old) housed in individual cages (19.5 × 39.0 × 39.5–43.0 cm) were
used in this study. The laying hens were randomly assigned into three groups: basal diet alone, basal
diet with Panaferd-AX, or basal diet with Panaferd-P (astaxanthin content: 8 mg/kg diet). The dietary
astaxanthin content used in this study was determined to provide sufficient egg yolk pigmentation in
accordance with previous studies [12,13]. After moving the hens to their individual cages, they were fed
with the basal diet for a week, followed by the experimental diets for 21 days. During the experiment,
the laying hens were allowed free access to water and each diet. The evaluation of the egg quality
was conducted at 4, 7, 14, and 21 days from the start of experimental feeding. The concentrations of
astaxanthin, adonirubin, and adonixanthin, and their Z-isomer ratios in yolk were determined using
normal-phase HPLC as described below (Section 2.3). The egg yolk color, assessed by the yolk color fan
score and lightness (L*), redness (a*), and yellowness (b*) values, as well as the other egg qualities such
as egg weight, yolk weight, albumen height, and the Haugh unit, were evaluated using an Egg Multi
Tester (EMT-7300; Robotmation Co., Ltd., Tokyo, Japan) and a color spectrophotometer (CM-700d;
Konica Minolta, Inc., Tokyo, Japan). These experiments were approved and carried out in accordance
with the Institutional Animal Care and Use Committee of Meijo University.

2.3. HPLC Analysis

The determination of the carotenoid (astaxanthin, adonirubin, and adonixanthin) concentrations
and their E/Z-isomer ratios in egg yolk were performed using normal-phase HPLC with a Phenomenex
silica gel column (Luna 5 µm Silica (2), 150 mm × 4.6 mm, 100 Å) [16,32,33]. Several studies successfully
separated astaxanthin, adonirubin, and adonixanthin isomers by normal-phase HPLC with the
Phenomenex silica gel column using hexane/acetone (83:17, v/v) [32] and hexane/ethyl acetate/acetone
(70:20:10, v/v/v) solvent systems [16,33]. However, these solvent systems cannot differentiate the peaks
of the carotenoid isomer and the peaks derived from components originally contained in the egg
yolk. Hence, to clearly separate them, a new hexane/ethyl acetate/acetone (75:23:2, v/v/v) solvent
system was used in this study. The flow rate and column temperature were set at 1.2 mL/min and
40 ◦C, respectively. The detection and quantification of the carotenoid isomers were performed by
peak area integration at 470 nm using a photodiode array detector (SPD-M20A; Shimadzu, Kyoto,
Japan). The peaks of astaxanthin, adonirubin, and adonixanthin isomers were identified according to
HPLC retention times, visible spectral data (absorption maxima and shape of spectrum), and relative
intensities of the Z-peak (350–370 nm) compared to the main absorption peak of the isomer (Figure S1;
Q-ratio) [16,32–34]. The carotenoid Z-isomer ratio (%) was estimated as the amount of total Z-isomers
to the amount of total carotenoid isomers including the all-E-isomer.

2.4. Carotenoid Extraction from Egg Yolk

The extraction of astaxanthin, adonirubin, and adonixanthin isomers from egg yolk was performed
using acetone, following previously established protocols [22,27]. All procedures were performed at
room temperature unless otherwise indicated, and light exposure was kept to a minimum throughout
the extraction. Approximately 1 g of egg yolk was weighed into a 100-mL screw-capped glass bottle,
and 50 mL of acetone was added to the bottle. Carotenoid extraction was performed using ultrasonic
treatment (CPX1800H-J; Yamato Scientific Co., Ltd.) at 80 W and 38 kHz for 15 min on ice (approximately
5 ◦C). The residue was removed with a 0.22-µm polytetrafluoroethylene (PTFE) membrane filter (Osaka
Chemical Co., Ltd., Osaka, Japan), and the filtrate containing carotenoid isomers was dried under
reduced pressure at 35 ◦C for 5 min. The obtained extract was dissolved in a defined amount of ethyl
acetate and filtered through a 0.22-µm PTFE membrane filter for HPLC analysis.
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2.5. Statistical Analysis

Data were statistically analyzed by analysis of variance (ANOVA) and the Tukey's multiple
comparison tests using a commercially available computer program (Excel Statistics; SSRI Co., Ltd.).
Differences were considered statistically significant when p < 0.05.

3. Results and Discussion

3.1. Profile of Carotenoid Isomers in Egg Yolk

The use of reversed-phase HPLC with C18 or C30 columns and normal-phase HPLC with a silica gel
column to separate astaxanthin isomers has been well documented [16,32–38]. However, ample studies
have shown that normal-phase HPLC exhibits a greater separation ability than that by reversed-phase
HPLC when separating carotenoid isomers [16,32–38]. In addition, a sufficient separation of adonirubin
and adonixanthin isomers can be obtained in normal-phase HPLC [16,32–34]. Thus, this study used
normal-phase HPLC with a Phenomenex silica gel column to separate astaxanthin, adonirubin, and
adonixanthin isomers. However, previously reported solvent systems using hexane/acetone (83:17,
v/v) [32] and hexane/ethyl acetate/acetone (70:20:10, v/v/v) [16,33] do not clearly separate peaks
corresponding to the carotenoid isomer and components originally contained in the egg yolk. Hence,
we used an improved solvent system using hexane/ethyl acetate/acetone (75:23:2, v/v/v). On the other
hand, we also evaluated other solvent systems, such as hexane/ethyl acetate (82:12, v/v), hexane/acetone
(82:12. v/v), and hexane/ethyl acetate/acetone (76:16:8, 75:15:10, and 75:20:5, v/v/v), but their good
separation could not be obtained. The typical chromatograms of a mixture of astaxanthin, adonirubin,
and adonixanthin isomers, obtained by the thermally Z-isomerized treatment of their all-E-isomer
standards at 80 ◦C for 3 h in CH2Cl2 [38–40], as well as extracts from Panaferd-AX, Panaferd-P, and egg
yolks before and after the 21-day feeding of the experimental diets, are shown in Figure 2. This improved
HPLC method could not only clearly separate astaxanthin, adonirubin, and adonixanthin isomers
(peaks 1–10; peaks 5 and 6 were tentatively identified as (9Z)-astaxanthin and a mixture of (13Z)- and
(15Z)-astaxanthin according to previous studies [16,32–34]; Table S1), but also their isomers and egg
yolk-derived peaks (denoted by asterisks).

In Panaferd-AX and Panaferd-P dried cell powders, large peaks from (all-E)-astaxanthin,
(all-E)-adonirubin, and (all-E)-adonixanthin were observed (Figure 2b,c), as in previous studies [16,41],
and minor peaks from the Z-isomers of astaxanthin and adonirubin were detected. Before the
feeding with the experimental diets, the astaxanthin, adonirubin, and adonixanthin isomer peaks
were not detected in egg yolk, but large peaks from lutein and zeaxanthin were observed (Figure 2d).
After 21 days of feeding diets containing Panaferd-AX and Panaferd-P, the peaks from astaxanthin,
adonirubin, and adonixanthin isomers could be detected (Figure 2e,f). To the best of our knowledge,
this is the first study to show that feeding laying hens with valuable rare carotenoids such as adonirubin
and adonixanthin causes their accumulation in the hens’ egg yolks. Furthermore, it is interesting that
the egg yolk contained an abundance of astaxanthin Z-isomers despite the hens being fed with diets
rich in (all-E)-astaxanthin. This data contributes to improving the nutritional value of egg yolk by
using P. carotinifaciens for pigmentation.
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Figure 2. Normal-phase HPLC chromatograms of (a) a standard mixture of (all-E)-astaxanthin (AST),
(all-E)-adonirubin (ADR), and (all-E)-adonixanthin (ADR), which were treated with CH2Cl2 at 80 ◦C
for 3 h in order to increase their Z-isomers, extracts from (b) Panaferd-AX, (c) Panaferd-P, (d) egg yolk
before feeding the experimental diets, and egg yolks after feeding diets containing (e) Panaferd-AX
and (f) Panaferd-P. Peak identifications: 1, 2 = adonirubin Z-isomers, 3, 4 = astaxanthin Z-isomers,
5 = (9Z)-astaxanthin, 6 = (13Z + 15Z)-astaxanthin, 7–10 = adonixanthin Z-isomers, LUT = lutein,
ZEA = zeaxanthin [16,32–34]. Asterisk symbols (*) show several egg yolk-derived compounds. Several
peaks (1–10) were tentatively identified, as shown in Table S1.

3.2. Evaluation of Carotenoid Concentration and Z-isomer Ratio in Egg Yolk

The effects of feeding laying hens diets containing P. carotinifaciens of different particle sizes
(Panaferd-AX and Panaferd-P) on the concentrations of astaxanthin, adonirubin, and adonixanthin
and their total Z-isomer ratios in egg yolk are shown in Figures 3–5. Astaxanthin, adonirubin, and
adonixanthin could be detected in egg yolk from the fourth day of feeding, and the carotenoid
concentrations reached their maximum levels around 14–21 days in both Panaferd-AX- and
Panaferd-P-containing diets. When hens were fed with a diet containing Panaferd-P, the egg yolk
concentrations of astaxanthin, adonirubin, and adonixanthin were significantly higher than those in
hens fed with a diet containing Panaferd-AX. This is likely due to the smaller particle size of Panaferd-P.
Several studies have shown that carotenoids’ bioavailability depends on their particle size, such that
the micronization of carotenoids effectively enhances their bioavailabilities [42,43]. In addition, since
Panafed-P was obtained by pulverizing Panafed-AX, the release of carotenoids from the microorganism
cell by pulverization treatment would also improve their bioaccessibilities [44]. This theory is supported
by Li et al. [19]; that is, the breakup of the cell wall by pulverization treatment would increase the
ability of hens to access the carotenoids in the feeds, facilitating their uptake and incorporation into the
egg yolk. These improvements to carotenoid bioaccessibility and/or bioavailability would result in
increased concentrations of astaxanthin, adonirubin, and adonixanthin in the egg yolk of hens fed
with Panafed-P. When fed with diets containing Panaferd-AX and Panaferd-P (astaxanthin content:
8 mg/kg diet) for 21 days, the astaxanthin concentration in egg yolk reached 1.21 µg/g and 1.85 µg/g,
respectively. Akiba et al. [12] reported similar concentrations of astaxanthin in egg yolk upon feeding
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a diet containing P. rhodozyma, a yeast that has been commercially used for pigmenting hens’ egg
yolk. They found that laying hens fed with this diet (astaxanthin content: 8 mg/kg diet) for 28 days
produced eggs with yolk astaxanthin concentrations of 1.39 µg/g. These results indicate that, similar to
P. rhodozyma, P. carotinifaciens is commercially suitable for pigmenting a hen’s egg yolk.

The total Z-isomer ratios of astaxanthin, adonirubin, and adonixanthin in Panaferd-AX were
3.9%, 11.3%, and 5.0%, respectively, and those in Panaferd-P were 4.2%, 11.6%, and 5.3%, respectively.
In contrast, in both diets, the Z-isomer ratios of astaxanthin, adonirubin, and adonixanthin in egg yolk
were approximately 25%, 20%, and 7%, respectively (Figure 3b, Figure 4b, and Figure 5b). These results
suggest that the carotenoid Z-isomer ratio in egg yolk differs depending on the types of carotenoids. For
example, astaxanthin and lycopene (reported in our previous study [26]) had higher Z-isomer contents.
This may be related to the fact that the Z-isomers of astaxanthin and lycopene are more bioavailable
than the all-E-isomers [24,28]. Since the mechanisms underlying the differences in carotenoid Z-isomer
ratios in egg yolk remain unknown, future studies should be conducted on this topic. In any case, the
fact that high amounts of astaxanthin are present as Z-isomers (over 25%) in egg yolks of hens fed with
astaxanthin-rich sources (Panaferd-AX and Panaferd-P) is a very important finding in relation to their
nutritional value.
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Figure 3. Effects of feeding laying hens with diets containing P. carotinifaciens of different particle sizes
(Panaferd-AX and Panaferd-P) for 21 days on the (a) astaxanthin concentration and (b) total Z-isomer
ratio in egg yolk. Error bars depict the standard deviation (n = 8). Means with different letters within
each day are significantly different (p < 0.05), whereas means with similar letters are not different.
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Figure 4. Effects of feeding laying hens with diets containing P. carotinifaciens of different particle sizes
(Panaferd-AX and Panaferd-P) for 21 days on the (a) adonirubin concentration and (b) total Z-isomer
ratio in egg yolk. Error bars depict the standard deviation (n = 8). Means with different letters within
each day are significantly different (p < 0.05), whereas means with similar letters are not different.
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3.3. Evaluation of Egg Yolk Pigmentation

The evaluation of the egg yolk pigmentation was performed by examining the appearances
(Figure 6), the yolk color fan score, and L*, a*, and b* values of the egg yolk (Figure 7). Feeding
hens with diets containing Panaferd-AX and Panaferd-P markedly improved the yolk appearance
as well as the color fan score; the score increased by a value of two or more compared to the
control group. When comparing Panaferd-AX- and Panaferd-P-containing diets, the latter had a
significantly higher yolk color fan score than the former. These results are correlated with the egg yolk
concentrations of astaxanthin, adonirubin, and adonixanthin. In this study, when hens were fed with
diets containing P. carotinifaciens (astaxanthin concentration: 8 mg/kg), the yolk color fan score was
over 14. In contrast, when fed with diets rich in lutein such as alfalfa and marigold flower (lutein
concentration: approximately 18–30 mg/kg) [2] or diets rich in lycopene such as tomatoes (lycopene
concentration: 100 mg/kg) [27], the yolk color fan scores were around 8–12. This suggests that the
pigmentation efficiency of astaxanthin in egg yolk is higher than for other carotenoids such as lutein
and lycopene. Furthermore, feeding hens with Panaferd-AX and Panaferd-P increased the a* value
and decreased the L* and b* values. The appearances of egg yolks showed these trends well (Figure 6);
that is, the feeding of the astaxanthin-rich diets contributed to a redness enhancement of the egg yolk.
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Figure 6. Appearances of egg yolks (a) before and after 21 days of feeding hens with diets containing
P. carotinifaciens powders of different particle sizes: (b) Panaferd-AX and (c) Panaferd-P.



Symmetry 2020, 12, 923 9 of 13Symmetry 2020, 12, x FOR PEER REVIEW 9 of 12 

 

 

Figure 7. Effects of feeding laying hens with diets containing P. carotinifaciens of different particle sizes 
(Panaferd-AX and Panaferd-P) for 21 days on the (a) yolk color fan score and (b) L*, (c) a*, and (d) b* 
values of egg yolk. Error bars depict the standard deviation (n = 8). Means with different letters within 
each day are significantly different (p < 0.05), whereas means with similar letters are not different. 

3.4. Evaluation of other Egg Qualities 

The effects of feeding hens with diets containing Panaferd-AX- and Panaferd-P on egg qualities 
(egg weight, yolk weight, albumen height, and Haugh unit) have been shown in Table 2. There were 
no significant differences in egg weight, yolk weight, albumen height, and the Haugh unit between 
the different diets (with and without adding P. carotinifaciens). Furthermore, the particle size of the 
dried P. carotinifaciens cell powder did not affect the above-mentioned egg qualities. Yang et al. did 
not observe significant differences in egg weight, yolk height, and the Haugh unit when feeding 1.3 
mg/kg astaxanthin to Hy-Line Brown laying hens [45]. Walker et al. also did not observe significant 
effects on the yolk weight and the Haugh unit when Hy-Line W-36 hens were fed up to 400 mg/kg of 
astaxanthin in their diets [6]. Our results are consistent with these previous studies in that they 
suggest that feeding hens with astaxanthin does not have significant effects on the egg quality other 
than the carotenoid concentration and egg color. 

Table 2. Effects of feeding laying hens with diets containing P. carotinifaciens powders of different 
particle sizes (Panaferd-AX and Panaferd-P) on egg quality (1Feeding diets without P. carotinifaciens; 
2Calculated as 100 × log (H + 7.6 – 1.7 × W0.37), where H is the albumen height (mm) and W is the egg 
weight (g)). 

  Diet   
Items Days Control1 Panaferd-AX  Panaferd-P SEM p-Value 

Egg weight (g) 0 57.3 57.7 55.3 4.8 0.576 
 4 58.0 55.8 59.2 5.8 0.517 
 7 58.8 58.4 59.0 3.6 0.947 
 14 60.4 58.6 59.9 3.0 0.503 

Figure 7. Effects of feeding laying hens with diets containing P. carotinifaciens of different particle sizes
(Panaferd-AX and Panaferd-P) for 21 days on the (a) yolk color fan score and (b) L*, (c) a*, and (d) b*
values of egg yolk. Error bars depict the standard deviation (n = 8). Means with different letters within
each day are significantly different (p < 0.05), whereas means with similar letters are not different.

3.4. Evaluation of Other Egg Qualities

The effects of feeding hens with diets containing Panaferd-AX- and Panaferd-P on egg qualities
(egg weight, yolk weight, albumen height, and Haugh unit) have been shown in Table 2. There were
no significant differences in egg weight, yolk weight, albumen height, and the Haugh unit between
the different diets (with and without adding P. carotinifaciens). Furthermore, the particle size of the
dried P. carotinifaciens cell powder did not affect the above-mentioned egg qualities. Yang et al. did not
observe significant differences in egg weight, yolk height, and the Haugh unit when feeding 1.3 mg/kg
astaxanthin to Hy-Line Brown laying hens [45]. Walker et al. also did not observe significant effects on
the yolk weight and the Haugh unit when Hy-Line W-36 hens were fed up to 400 mg/kg of astaxanthin
in their diets [6]. Our results are consistent with these previous studies in that they suggest that feeding
hens with astaxanthin does not have significant effects on the egg quality other than the carotenoid
concentration and egg color.
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Table 2. Effects of feeding laying hens with diets containing P. carotinifaciens powders of different
particle sizes (Panaferd-AX and Panaferd-P) on egg quality (1 Feeding diets without P. carotinifaciens;
2 Calculated as 100 × log (H + 7.6 − 1.7 ×W0.37), where H is the albumen height (mm) and W is the egg
weight (g)).

Diet

Items Days Control 1 Panaferd-AX Panaferd-P SEM p-Value

Egg weight
(g)

0 57.3 57.7 55.3 4.8 0.576
4 58.0 55.8 59.2 5.8 0.517
7 58.8 58.4 59.0 3.6 0.947
14 60.4 58.6 59.9 3.0 0.503
21 59.8 59.7 61.0 3.6 0.701

Yolk weight
(g)

0 13.8 14.6 13.0 2.6 0.459
4 14.2 13.7 15.2 2.8 0.578
7 14.9 14.5 14.6 1.1 0.794
14 15.5 14.9 15.3 1.0 0.442
21 16.0 15.7 15.6 0.8 0.626

Albumen
height (mm)

0 7.0 7.1 7.9 1.0 0.121
4 7.7 8.1 7.4 1.6 0.706
7 7.4 7.7 7.7 1.2 0.885
14 8.3 7.6 8.5 1.2 0.250
21 7.1 7.5 6.8 1.3 0.598

Haugh unit 2

0 84.7 84.3 89.9 10.1 0.468
4 91.6 93.4 86.2 10.6 0.384
7 86.6 91.5 89.1 7.5 0.441
14 94.6 90.4 95.7 6.4 0.240
21 83.2 87.0 82.8 10.1 0.664

4. Conclusions

Feeding hens with dried P. carotinifaciens cell powders (Panaferd-AX and Panaferd-P) increased
the concentrations of valuable carotenoids (astaxanthin, adonirubin, and adonixanthin) in their egg
yolk and enhanced the egg yolk pigmentation. Their pigmentation efficiencies were improved by
the pulverization of the P. carotinifaciens powder. Moreover, this study accurately evaluated the total
Z-isomer ratios of astaxanthin, adonirubin, and adonixanthin in egg yolk for the first time, using
normal-phase HPLC with an improved solvent system. The all-E-isomers of carotenoids are the
most predominant geometric isomers in P. carotinifaciens. However, large amounts of astaxanthin
and adonirubin Z-isomers were present (over 25% and 20% of the total Z-isomer ratio, respectively)
in the egg yolk. Since several types of carotenoid Z-isomers, including astaxanthin, have a higher
bioavailability and bioactivity than the all-E-isomers, the information produced by this study is valuable
for enhancing the nutritional value of hens’ egg yolk through feeding hens astaxanthin-rich diets.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/12/6/923/s1,
Figure S1: Calculation of Q-ratio as an indicator of the Z-peak intensity, Table S1: Absorption maxima and relative
intensities of the Z-peaks for adonirubin, astaxanthin, and adonixanthin isomers.
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