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Abstract: The circular photogalvanic effect (CPGE) is the photocurrent generated in an optically
active material in response to an applied AC electric field, and it changes sign depending on the
chirality of the incident circularly polarized light. It is a non-linear DC current as it is second order
in the applied electric field, and for a certain range of low frequencies, takes on a quantized value
proportional to the topological charge for a system which is a source of non-zero Berry flux. We show
that for a non-interacting double-Weyl node, the CPGE is proportional to two quanta of Berry flux.
On examining the effect of short-ranged Hubbard interactions up to first-order corrections, we find
that this quantization is destroyed. This implies that unlike the quantum Hall effect in gapped phases
or the chiral anomaly in field theories, the quantization of the CPGE in topological semimetals is
not protected.
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1. Introduction

Semimetals are materials which can support gapless quasiparticle excitations in two or three
dimensions, in the vicinity of isolated band touching points in the Brillouin zone, thus possessing
discrete Fermi points (rather than Fermi surfaces). They come in different varieties, for example,
the Fermi points may appear at linear band crossings (e.g., graphene, Weyl semimetals), or at quadratic
band crossings [1,2] (e.g., Luttinger semimetals). A more non-trivial example of such semimetal
is the double-Weyl semimetal, which consists of two bands touching each other linearly along
one momentum direction, but quadratically along the remaining directions [3–7]. Some of these
three-dimensional (3d) semimetals (e.g., Weyl and double-Weyl semimetals) possess a non-zero Berry
curvature at the Fermi nodes. In this paper, we focus on the 3d double-Weyl semimetals [2,8,9],
which, in the momentum space, have double the monopole charge of Weyl semimetals.

A double-Weyl semimetal can be realized by applying a Zeeman field to an isotropic Luttinger
semimetal [2]. They are also predicted to appear [9,10] in SrSi2, and in the ferromagnetic phase
of HgCr2Se4. Our aim is to study the circular photogalvanic effect (CPGE), also known as chiral
photocurrent. The CPGE refers to the DC current that is generated as a result of shining circularly
polarized light on the surface of an optically active metal [11–14]. In fact, the CPGE refers to the
part of the photocurrent that switches sign with the sign of the helicity of the incident polarized
light. This is a non-linear response, as it is second order in the applied AC electric field, and at low
frequencies, it depends on the orbital Berry phase of the Bloch electrons. Hence, CPGE is a measure of
the topological charge at a Fermi node possessing a non-trivial Berry curvature.

The quantization of the CPGE has been demonstrated in earlier works for the topological Weyl
nodes [15,16]. In this paper, we will consider the issue of quantization of CPGE for the double-Weyl
nodes. First, we will show that in the absence of interactions, the CPGE is indeed proportional to the
topological charge of the node at low-enough frequencies. Secondly, we will examine the effect of
Hubbard interactions on this quantized value.
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2. The Continuum Hamiltonian for a Double-Weyl Semimetal

The Hamiltonians describing a pair of double-Weyl nodes can be written in the form [2,8,9]

H± = b±(k) · σ, (1)

with

b±(k) =

 −
√

3
2

(
k2

x − k2
y

)
√

3 kx ky

∓v kz

 . (2)

Here, σi (i = x, y, z) are the three Pauli matrices, and the “±” sign reflects the two opposite
chiralities of the two nodes. The energy eigenvalues are:

E±(k) = ±
√

v2 k2
z +

3
4
(k2

x + k2
y)

2 . (3)

For each the given two-band Hamiltonians, we can define an U(1) Berry curvature, which is
analogous to a magnetic field in momentum space. This Berry curvature is given by:

Bi
± =

1
8π

εijl b̂± · ∂kj
b̂± × ∂kl

b̂± , (4)

where b̂± = b±/|b±|. It is easy to check that this magnetic field is divergenceless
(

∂kj
B j
± = 0

)
, as

long as it is computed in regions away from the points of singularity where b± = 0. The band touching
point is such a singularity, where we have:

∂kj
B j
±(k) = ±2 δ(k) . (5)

Thus, each double-Weyl node is a source of two Berry flux quanta. These nodes come in pairs,
sourcing equal and opposite flux quanta, such that the sum of Berry flux quanta from both the
double-Weyl nodes vanishes, which is the desired physical scenario as the Brillouin zone is a closed
manifold without any boundary through which no net flux can emanate.

3. Quantization of CPGE in the Absence of Interactions

The CPGE tensor is defined as [15,16]:

β
ij
± =

i π e3
A

h2

∫
d3k

[
∂ki (E+ − E−)

]
B j
± δ (h̄ ω− E+ + E−) , (6)

where eA is the electric charge. To perform the integrals, we change variables as follows:

kr =
√
R sin θ , kz =

√
3R cos θ

2 v
, kx = kr cos φ , ky = kr sin φ ,

where 0 ≤ R ≤ ∞ , 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2 π . (7)

Using the above, we get:

β11
± = β22

± = β33
± = (±2)× i π e3

A
3 h2 . (8)
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All non-diagonal components
(

β
ij
±
∣∣
i 6=j

)
evaluate to zero. Clearly, we see that

tr[β±] = (±2)× i π e3
A

h2 , (9)

where is ±2 the monopole charge of the corresponding double-Weyl node. The time derivative of the
injection current is defined as the second-order response

dj±i
dt

= β
ij
± [E(ω)× E∗(ω)]j , (10)

to an electric field E(ω) = E∗(−ω). Therefore, the CPGE is also quantized.
Now let us compute the second-order photocurrent from the field-theoretic definition, using

Feynman diagrams. First, we need the three components of the paramagnetic current operator (using
J ±i (k) ≡ eA

δH±(k)
δki

), which are given by:

Jx(k) = eA
√

3
(
−kx σx + ky σy

)
, Jy(k) = eA

√
3
(
ky σx + kx σy

)
, Jz(k)± = ∓eA v σz . (11)

From now on we will drop the “±” subscript/superscript and concentrate only on the
double-Weyl node with charge +2, unless stated otherwise. This is justified when the DC contribution
to the photocurrent can be calculated separately for each node, such as when the nodes are well
separated in the momentum space.

The expression for the second-order photocurrent is given by:

ji(Ω) = − χ
jli
1 (ω1,ω2)+χ

jli
2 (ω1,ω2)

h̄2 Aj(ω1) Al(ω2) =
χ

jli
1 (ω1,ω2)+χ

jli
2 (ω1,ω2)

h̄2 ω1 ω2
Ej(ω1) El(ω2) , (12)

where Ω ≡ ω1 + ω2, and the contributions χ
jli
1 and χ

jli
2 are given by Feynman diagrams of the type

shown in Figure 1. In the second line, we have used the relation between the electric field and the
vector potential, which is: E(ω) = i ω A(ω).

Figure 1. Feynman diagram contributing to the quantized circular photogalvanic effect in the absence
of interactions.

We compute the analytical expressions for χ
jli
1,2 in the Matsubara formalism, such that

χ
ijl
1 (i ω1, i ω2) = T ∑

εn

∫ d3k
(2π)3 tr

[
Ji G(i εn − i ω1, k)Jj G(i εn − i Ω, k)Jl G(i εn, k)

]
, (13)

where T is the temperature, n is an integer, and εn = (2 n + 1)π T. In the zero-temperature limit, we
can use T ∑

εn
. . .→

∫ dε
2 π . . . . Furthermore, from the expression for χ

ijl
1 (i ω1, i ω2), we can obtain χ

jli
2 by

using the relation:

χ
ijl
2 (i ω1, i ω2) = χ

jil
1 (i ω2, i ω1) . (14)
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In the absence of interactions, we can calculate the contributions from each node separately.
The Green’s function for the first double-Weyl node is given by:

G(i εn, k) =
1
2

[
1+ b̂+(k) · σ

i εn − E+(k)− |µ|
+

1− b̂+(k) · σ
i εn + E+(k)− |µ|

]
, (15)

where we have introduced the projectors
(
1± b̂+(k) · σ

)
onto the conduction (“+”) and the valence

(“−”) bands, and have chosen the chemical potential µ to be negative for definiteness (i.e., µ < 0).
Similarly, the Green’s function for the second double-Weyl node is given by:

G̃(i εn, k) =
1
2

[
1+ b̂−(k) · σ

i εn − E+(k) + |µ̃|
+

1− b̂−(k) · σ
i εn + E+(k) + |µ̃|

]
, (16)

where we have chosen µ̃ > 0 for definiteness.
Performing all the integrals, we finally get:

χ123
1 (i ω1, i ω2) =

∫ dε d3k
(2 π)4 tr

[
Jx G(i εn − i ω1, k)Jy G(i εn − i Ω, k)Jz G(i εn, k)

]
=

e3
A[ω

3
1(ω1+2 ω2) ln(4 µ2+ω2

1)−ω3
2(2 ω1+ω2) ln(4 µ2+ω2

2)+(ω2−ω1)(ω1+ω2)
3 ln(4 µ2+(ω1+ω2)

2)]
24 π2 ω1 ω2(ω1+ω2)

(17)

for T → 0 . One can check that χ
ijl
1 ∝ εijl , and hence the computation of χ123

1 is sufficient to know all

the non-zero components of χ
ijl
1 .

We need to find the physical response through the analytical continuation of the above expressions
from Matsubara frequencies to real frequencies. This is a subtle procedure which should be carried out
carefully. Choosing ω1,2 > 0 for definiteness, the analytical continuation is performed by taking [17,18]

i ω1,2 → ω1,2 + i δ , δ→ +0 . (18)

The logarithms then transform according to

ln
[
4 µ2 + ω2

]
→ ln

[
4 µ2 − (ω + i δ)2

]
= ln |4 µ2 −ω2| − i π sign(ω)Θ

(
|ω| − 2 |µ|

)
. (19)

We then need to set ω1 = Ω−ω2 with Ω→ 0. After the analytical continuation, we find that in
this limit,

χ123
1 (ω + Ω,−ω)

Ω→0
= − e3

A ω2

12 π Ω
Θ
(
ω− 2 |µ|

)
. (20)

An identical contribution comes from χ123
2 (on using Equation (14)). Adding these together, we

find that the current expression in Equation (12) reduces to:

jl =
2 π e3

A
3 h2 Ω

εijl Ei(ω + Ω) Ej(−ω)Θ
(
ω− 2 |µ|

)
. (21)

In the time domain, this corresponds to

dji
dt

=
i β0(ω)

3
[E(ω)× E(−ω)]i ,

β0(ω) ≡ 2 π e3
A Θ

(
ω− 2 |µ|

)
h2 . (22)

This agrees with Equation (10).



Symmetry 2020, 12, 919 5 of 9

This result from the non-interacting case has been obtained for the first double-Weyl node with
the chemical potential µ. Analogously, for the second node, we would obtain:

β̃0(ω) = −2 e3
A Θ

(
ω− 2 |µ̃|

)
π h2 . (23)

Consequently, in the frequency range 2 |µ| < ω < 2 |µ̃|, only the first node contributes to the
CPGE, while the contribution from the second node is zero due to Pauli blocking.

4. Corrections to the Quantized CPGE Due to Short-Ranged Hubbard Interactions

In this section, we consider the first-order perturbative corrections originating from four-fermion
interactions. The interaction Hamiltonian for short-ranged Hubbard interactions is given by:

Hint =
−λ
2 ∑

s,s′

∫ d3k d3 p
(2π)6

[ 2
∑

ζ,η=1
ψ†

ζ,s(k)ψζ,s(k)ψ†
η,s′(p)ψη,s′(p) +

2
∑

ζ=1
ψ†

ζ,s(k)ψζ̄,s(k)ψ†
ζ̄,s′(p)ψζ,s′(p)

]
, (24)

where λ is the Hubbard interaction strength (positive λ corresponds to the attractive interaction), and
ψζ,s(k) denotes the fermion field with nodal index ζ and pseudospin index s. The first and the second
terms describe the intranodal and internodal scattering processes, respectively. These are shown
diagrammatically in Figure 2. In the diagrams, we have used a solid line to represent the Green’s
function for the first double-Weyl node, and a dashed line to depict the Green’s function for the second
double-Weyl node. In the following subsections, we will compute the first-order self-energy and vertex
corrections due to the Hubbard interactions.

−λ

(a)

−λ

(b)

−λ

(c)

−λ

(d)

−λ

(e)

Figure 2. Feynman diagrams contributing to the scattering processes for Hubbard interactions,
described by Equation (24). Here, a solid line represents the Green’s function of the first node (with
chemical potential µ), while a dashed line represents the Green’s function of the second node (with
chemical potential µ̃). The wavy lines represent the four-fermion interactions. Hence, diagrams (a–c)
involve only intranodal scatterings, whereas (d,e) describe internodal processes.

4.1. First-Order Self-Energy Corrections

The contributions to the first-order self-energy correction are given by the Feynman diagrams
shown in Figure 3. For the short-ranged Hubbard interaction, scatterings between double-Weyl nodes
of opposite chiralities must be taken into account, which are given by the second term of Equation (24).
The analytic expression for Figure 3a reads as:

Σ(a) = λ T ∑
εn

∫ d3k
(2 π)3 G(i εn, k) T→0

= −λ

2

∫ d3k
(2π)3 [1−Θ(E+ − |µ|)] = −

λ Nh
2

, (25)
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where Nh > 0 is the number of holes below the double-Weyl point in the first node. In a similar fashion,
the contribution from Figure 3b evaluates to:

Σ(b) = λ T ∑
εn

∫ d3k
(2 π)3 G̃(i εn, k) =

λ Ne

2
, (26)

with Ne > 0 denoting the number of electrons above the double-Weyl point in the second node.

(a) (b)

(c) (d)

Figure 3. Feynman diagrams contributing to first-order corrections to self-energy. Diagrams (a,c) depict
the internodal scatterings, while diagrams (b,d) describe the internodal scatterings.

Finally, the contributions from Figure 3c,d evaluate to:

Σ(c) = −λ T ∑
εn

∫ d3k
(2 π)3 tr [G(i εn, k)] = −2 Σ(a) ,

Σ(d) = −λ T ∑
εn

∫ d3k
(2 π)3 tr

[
G̃(i εn, k)

]
= −2 Σ(b) , (27)

resulting in the total self-energy

Σ = Σ(a) + Σ(b) + Σ(c) + Σ(d) = −λ (Ne − Nh)

2
. (28)

The effect of this self-energy is to simply shift the chemical potential by an amount

δµ = −Σ =
λ (Ne − Nh)

2
. (29)

Clearly, this does not change the CPGE current, as it only modifies the frequency range where the
quantized value of the CPGE is valid.

4.2. First-Order Vertex Corrections

The Feynman diagrams contributing to first-order vertex corrections are shown in Figure 4.
When the vertex i = x, with the external Matsubara frequency set to ω1 for definiteness, Figure 4a
contributes as:

√
3
(
−kx σx + ky σy

)
→ λ
√

3
∫ dε d3k

(2 π)4 G(i ε, k)
(
ky σy − kx σx

)
G(i ε− i ω1, k) = 0 . (30)

Similarly, for i = y, Figure 4a gives:

√
3
(
ky σx + kx σy

)
→ λ
√

3
∫ dε d3k

(2 π)4 G(i ε, k)
(
ky σx + kx σy

)
G(i ε− i ω1, k) = 0 . (31)
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(a) (b)

Figure 4. Feynman diagrams contributing to first-order vertex corrections. Diagrams (a,b) describe the
intranodal and internodal scatterings, respectively.

The only non-vanishing contribution from Figure 4a comes for i = z, which gives:

−v σz → −λ v
∫ dε d3k

(2 π)4 G(i ε, k) σz G(i ε− i ω1, k) = λ

6 Λ−
√

3

4 |µ|+i ω1 ln

−
(√

3Λ + i ω1

)
(ω1 + 2 i |µ|)(√

3Λ− i ω1

)
(ω1 − 2 i |µ|)


σz

192 π ,
(32)

where Λ is the UV momentum cutoff.
The contribution from the diagram in Figure 4b is analogous, but has an overall opposite sign

due to the opposite chirality of the second node, and with |µ| → |µ̃|:

v σz → λ v
∫ dε d3k

(2 π)4 G̃(i ε, k) σz G̃(i ε− i ω1, k) = λ

−6 Λ+
√

3

4 |µ̃|−i ω1 ln

−
(√

3Λ + i ω1

)
(ω1 + 2 i |µ̃|)(√

3Λ− i ω1

)
(ω1 − 2 i |µ̃|)


σz

192 π .
(33)

Adding these two contributions together, we find that for the first node, the vertex with σz (and
external frequency ω1) is renormalized according to:

− v σz|total → λ

[
4 (|µ̃| − |µ|) + i ω1 ln

(
4 |µ| |µ̃|+2 i ω1(|µ̃|−|µ|)+ω2

1
4 |µ| |µ̃|−2 i ω1(|µ̃|−|µ|)+ω2

1

)]
σz

64
√

3 π
, (34)

which is finite and does not contain the UV cutoff anymore. This gives the correction:

δχ123
1 (i ω1, i ω2)

=
λ e3

A

[
ω3

1 (ω1 + 2 ω2) ln
(
4 µ2 + ω2

1
)
−ω3

2 (2 ω1 + ω2) ln
(
4 µ2 + ω2

2
)
+ (ω2 −ω1) (ω1 + ω2)

3 ln
(
4 µ2 + (ω1 + ω2)

2)]
1536

√
3 π3 v ω1 ω2 (ω1 + ω2)

×
[

4 (|µ̃| − |µ|) + i (ω1 + ω2) ln

(
4 |µ| |µ̃|+ 2 i (ω1 + ω2) (|µ̃| − |µ|) + (ω1 + ω2)

2

4 |µ| |µ̃| − 2 i (ω1 + ω2) (|µ̃| − |µ|) + (ω1 + ω2)
2

)]
.

(35)

Performing the analytical continuation i ω1,2 → ω1,2 + i δ, and setting ω1 = −ω2 = ω, we find
that this contributes as:

δχ123
1 (ω + Ω,−ω) = δχ213

1 (−ω, ω + Ω)
Ω→0
=

λ e3
A ω2 (|µ̃| − |µ|)

192
√

3 π2 v Ω
Θ
(
ω− 2 |µ|

)
, (36)

which leads to the correction

δ

(
djz
dt

)
= − i λ e3

A (|µ̃| − |µ|)
24
√

3 h2 v
Θ
(
ω− 2 |µ|

)
[E(ω)× E(−ω)]z , (37)

for the current in the z−direction. Here, we have neglected the corrections to the chemical potentials,
since they only change the frequency range within which CPGE for the non-interacting case is non-zero.
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In a similar fashion, we get:

δχ312
1 (ω + Ω,−ω) = δχ132

1 (−ω, ω + Ω)

Ω→0
=

λ e3
A ω2

[
4 (|µ| − |µ̃|)−ω ln

∣∣∣ (2 |µ|+ω)(2 |µ̃|−ω)
(ω−2 |µ|)(2 |µ̃|+ω)

∣∣∣]
768
√

3 π2 v Ω
Θ
(
ω− 2 |µ|

)
, (38)

δ

(
djy
dt

)
= i λ e3

A

4 (|µ̃| − |µ|) + ω ln
∣∣∣ (2 |µ|+ω)(2 |µ̃|−ω)
(ω−2 |µ|)(2 |µ̃|+ω)

∣∣∣
96
√

3 h2 v
Θ
(
ω− 2 |µ|

)
[E(ω)× E(−ω)]y . (39)

By symmetry in the xy−plane, we infer that

δ

(
djx
dt

)
= δ

(
djy
dt

)
. (40)

Due to the intrinsic anisotropy of the problem, it is not surprising that the corrections for the
current in the z−direction is different from that in the xy−plane.

5. Summary and Outlook

We have computed the CPGE for the double-Weyl semimetal, first in the absence of interactions
and then in the presence of short-ranged Hubbard interactions. In the non-interacting case, for low-
enough frequency ranges of the applied electric field, the CPGE gets contribution only from
one double-Weyl node and has a quantized value proportional to the topological charge of the
corresponding node. However, switching on Hubbard interactions affects this result, destroying the
quantization. This is similar to the results found for the case of CPGE currents in Weyl semimetals [18].
The only difference is that the corrections for the current in the z−direction is different from that in the
xy−plane, due to the anisotropic dispersion of the starting Hamiltonian. These results imply that unlike
the quantum Hall effect in gapped phases or the chiral anomaly in field theories, the quantization of
the CPGE in topological semimetals is not protected.

In future, it will be interesting to look at the corrections coming from the Coulomb interactions.
The computations will be cumbersome for this case compared to the Weyl semimetal, due to the
anisotropic dispersion of the double-Weyl Hamiltonian. It will also be interesting to see the effect of
short-ranged correlated disorder on the CPGE, using the well-known techniques [19–21].
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